-
Notifications
You must be signed in to change notification settings - Fork 189
/
schema.rs
2227 lines (2034 loc) · 75 KB
/
schema.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! This module defines schema in iceberg.
use crate::error::Result;
use crate::expr::accessor::StructAccessor;
use crate::spec::datatypes::{
ListType, MapType, NestedFieldRef, PrimitiveType, StructType, Type, LIST_FILED_NAME,
MAP_KEY_FIELD_NAME, MAP_VALUE_FIELD_NAME,
};
use crate::{ensure_data_valid, Error, ErrorKind};
use bimap::BiHashMap;
use itertools::{zip_eq, Itertools};
use serde::{Deserialize, Serialize};
use std::collections::{HashMap, HashSet};
use std::fmt::{Display, Formatter};
use std::sync::Arc;
use _serde::SchemaEnum;
use super::NestedField;
/// Type alias for schema id.
pub type SchemaId = i32;
/// Reference to [`Schema`].
pub type SchemaRef = Arc<Schema>;
const DEFAULT_SCHEMA_ID: SchemaId = 0;
/// Defines schema in iceberg.
#[derive(Debug, Serialize, Deserialize, Clone)]
#[serde(try_from = "SchemaEnum", into = "SchemaEnum")]
pub struct Schema {
r#struct: StructType,
schema_id: SchemaId,
highest_field_id: i32,
identifier_field_ids: HashSet<i32>,
alias_to_id: BiHashMap<String, i32>,
id_to_field: HashMap<i32, NestedFieldRef>,
name_to_id: HashMap<String, i32>,
lowercase_name_to_id: HashMap<String, i32>,
id_to_name: HashMap<i32, String>,
field_id_to_accessor: HashMap<i32, Arc<StructAccessor>>,
}
impl PartialEq for Schema {
fn eq(&self, other: &Self) -> bool {
self.r#struct == other.r#struct
&& self.schema_id == other.schema_id
&& self.identifier_field_ids == other.identifier_field_ids
}
}
impl Eq for Schema {}
/// Schema builder.
#[derive(Debug)]
pub struct SchemaBuilder {
schema_id: i32,
fields: Vec<NestedFieldRef>,
alias_to_id: BiHashMap<String, i32>,
identifier_field_ids: HashSet<i32>,
}
impl SchemaBuilder {
/// Add fields to schema builder.
pub fn with_fields(mut self, fields: impl IntoIterator<Item = NestedFieldRef>) -> Self {
self.fields.extend(fields);
self
}
/// Set schema id.
pub fn with_schema_id(mut self, schema_id: i32) -> Self {
self.schema_id = schema_id;
self
}
/// Set identifier field ids.
pub fn with_identifier_field_ids(mut self, ids: impl IntoIterator<Item = i32>) -> Self {
self.identifier_field_ids.extend(ids);
self
}
/// Set alias to filed id mapping.
pub fn with_alias(mut self, alias_to_id: BiHashMap<String, i32>) -> Self {
self.alias_to_id = alias_to_id;
self
}
/// Builds the schema.
pub fn build(self) -> Result<Schema> {
let highest_field_id = self.fields.iter().map(|f| f.id).max().unwrap_or(0);
let field_id_to_accessor = self.build_accessors();
let r#struct = StructType::new(self.fields);
let id_to_field = index_by_id(&r#struct)?;
Self::validate_identifier_ids(
&r#struct,
&id_to_field,
self.identifier_field_ids.iter().copied(),
)?;
let (name_to_id, id_to_name) = {
let mut index = IndexByName::default();
visit_struct(&r#struct, &mut index)?;
index.indexes()
};
let lowercase_name_to_id = name_to_id
.iter()
.map(|(k, v)| (k.to_lowercase(), *v))
.collect();
Ok(Schema {
r#struct,
schema_id: self.schema_id,
highest_field_id,
identifier_field_ids: self.identifier_field_ids,
alias_to_id: self.alias_to_id,
id_to_field,
name_to_id,
lowercase_name_to_id,
id_to_name,
field_id_to_accessor,
})
}
fn build_accessors(&self) -> HashMap<i32, Arc<StructAccessor>> {
let mut map = HashMap::new();
for (pos, field) in self.fields.iter().enumerate() {
match field.field_type.as_ref() {
Type::Primitive(prim_type) => {
// add an accessor for this field
let accessor = Arc::new(StructAccessor::new(pos, prim_type.clone()));
map.insert(field.id, accessor.clone());
}
Type::Struct(nested) => {
// add accessors for nested fields
for (field_id, accessor) in Self::build_accessors_nested(nested.fields()) {
let new_accessor = Arc::new(StructAccessor::wrap(pos, accessor));
map.insert(field_id, new_accessor.clone());
}
}
_ => {
// Accessors don't get built for Map or List types
}
}
}
map
}
fn build_accessors_nested(fields: &[NestedFieldRef]) -> Vec<(i32, Box<StructAccessor>)> {
let mut results = vec![];
for (pos, field) in fields.iter().enumerate() {
match field.field_type.as_ref() {
Type::Primitive(prim_type) => {
let accessor = Box::new(StructAccessor::new(pos, prim_type.clone()));
results.push((field.id, accessor));
}
Type::Struct(nested) => {
let nested_accessors = Self::build_accessors_nested(nested.fields());
let wrapped_nested_accessors =
nested_accessors.into_iter().map(|(id, accessor)| {
let new_accessor = Box::new(StructAccessor::wrap(pos, accessor));
(id, new_accessor.clone())
});
results.extend(wrapped_nested_accessors);
}
_ => {
// Accessors don't get built for Map or List types
}
}
}
results
}
fn validate_identifier_ids(
r#struct: &StructType,
id_to_field: &HashMap<i32, NestedFieldRef>,
identifier_field_ids: impl Iterator<Item = i32>,
) -> Result<()> {
let id_to_parent = index_parents(r#struct)?;
for identifier_field_id in identifier_field_ids {
let field = id_to_field.get(&identifier_field_id).ok_or_else(|| {
Error::new(
ErrorKind::DataInvalid,
format!(
"Cannot add identifier field {identifier_field_id}: field does not exist"
),
)
})?;
ensure_data_valid!(
field.required,
"Cannot add identifier field: {} is an optional field",
field.name
);
if let Type::Primitive(p) = field.field_type.as_ref() {
ensure_data_valid!(
!matches!(p, PrimitiveType::Double | PrimitiveType::Float),
"Cannot add identifier field {}: cannot be a float or double type",
field.name
);
} else {
return Err(Error::new(
ErrorKind::DataInvalid,
format!(
"Cannot add field {} as an identifier field: not a primitive type field",
field.name
),
));
}
let mut cur_field_id = identifier_field_id;
while let Some(parent) = id_to_parent.get(&cur_field_id) {
let parent_field = id_to_field
.get(parent)
.expect("Field id should not disappear.");
ensure_data_valid!(
parent_field.field_type.is_struct(),
"Cannot add field {} as an identifier field: must not be nested in {:?}",
field.name,
parent_field
);
ensure_data_valid!(parent_field.required, "Cannot add field {} as an identifier field: must not be nested in an optional field {}", field.name, parent_field);
cur_field_id = *parent;
}
}
Ok(())
}
}
impl Schema {
/// Create a schema builder.
pub fn builder() -> SchemaBuilder {
SchemaBuilder {
schema_id: DEFAULT_SCHEMA_ID,
fields: vec![],
identifier_field_ids: HashSet::default(),
alias_to_id: BiHashMap::default(),
}
}
/// Create a new schema builder from a schema.
pub fn into_builder(self) -> SchemaBuilder {
SchemaBuilder {
schema_id: self.schema_id,
fields: self.r#struct.fields().to_vec(),
alias_to_id: self.alias_to_id,
identifier_field_ids: self.identifier_field_ids,
}
}
/// Get field by field id.
pub fn field_by_id(&self, field_id: i32) -> Option<&NestedFieldRef> {
self.id_to_field.get(&field_id)
}
/// Get field by field name.
///
/// Both full name and short name could work here.
pub fn field_by_name(&self, field_name: &str) -> Option<&NestedFieldRef> {
self.name_to_id
.get(field_name)
.and_then(|id| self.field_by_id(*id))
}
/// Get field by field name, but in case-insensitive way.
///
/// Both full name and short name could work here.
pub fn field_by_name_case_insensitive(&self, field_name: &str) -> Option<&NestedFieldRef> {
self.lowercase_name_to_id
.get(&field_name.to_lowercase())
.and_then(|id| self.field_by_id(*id))
}
/// Get field by alias.
pub fn field_by_alias(&self, alias: &str) -> Option<&NestedFieldRef> {
self.alias_to_id
.get_by_left(alias)
.and_then(|id| self.field_by_id(*id))
}
/// Returns [`highest_field_id`].
#[inline]
pub fn highest_field_id(&self) -> i32 {
self.highest_field_id
}
/// Returns [`schema_id`].
#[inline]
pub fn schema_id(&self) -> i32 {
self.schema_id
}
/// Returns [`r#struct`].
#[inline]
pub fn as_struct(&self) -> &StructType {
&self.r#struct
}
/// Returns [`identifier_field_ids`].
#[inline]
pub fn identifier_field_ids(&self) -> impl Iterator<Item = i32> + '_ {
self.identifier_field_ids.iter().copied()
}
/// Get field id by full name.
pub fn field_id_by_name(&self, name: &str) -> Option<i32> {
self.name_to_id.get(name).copied()
}
/// Get field id by full name.
pub fn name_by_field_id(&self, field_id: i32) -> Option<&str> {
self.id_to_name.get(&field_id).map(String::as_str)
}
/// Get an accessor for retrieving data in a struct
pub fn accessor_by_field_id(&self, field_id: i32) -> Option<Arc<StructAccessor>> {
self.field_id_to_accessor.get(&field_id).cloned()
}
}
impl Display for Schema {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
writeln!(f, "table {{")?;
for field in self.as_struct().fields() {
writeln!(f, " {}", field)?;
}
writeln!(f, "}}")
}
}
/// A post order schema visitor.
///
/// For order of methods called, please refer to [`visit_schema`].
pub trait SchemaVisitor {
/// Return type of this visitor.
type T;
/// Called before struct field.
fn before_struct_field(&mut self, _field: &NestedFieldRef) -> Result<()> {
Ok(())
}
/// Called after struct field.
fn after_struct_field(&mut self, _field: &NestedFieldRef) -> Result<()> {
Ok(())
}
/// Called before list field.
fn before_list_element(&mut self, _field: &NestedFieldRef) -> Result<()> {
Ok(())
}
/// Called after list field.
fn after_list_element(&mut self, _field: &NestedFieldRef) -> Result<()> {
Ok(())
}
/// Called before map key field.
fn before_map_key(&mut self, _field: &NestedFieldRef) -> Result<()> {
Ok(())
}
/// Called after map key field.
fn after_map_key(&mut self, _field: &NestedFieldRef) -> Result<()> {
Ok(())
}
/// Called before map value field.
fn before_map_value(&mut self, _field: &NestedFieldRef) -> Result<()> {
Ok(())
}
/// Called after map value field.
fn after_map_value(&mut self, _field: &NestedFieldRef) -> Result<()> {
Ok(())
}
/// Called after schema's type visited.
fn schema(&mut self, schema: &Schema, value: Self::T) -> Result<Self::T>;
/// Called after struct's field type visited.
fn field(&mut self, field: &NestedFieldRef, value: Self::T) -> Result<Self::T>;
/// Called after struct's fields visited.
fn r#struct(&mut self, r#struct: &StructType, results: Vec<Self::T>) -> Result<Self::T>;
/// Called after list fields visited.
fn list(&mut self, list: &ListType, value: Self::T) -> Result<Self::T>;
/// Called after map's key and value fields visited.
fn map(&mut self, map: &MapType, key_value: Self::T, value: Self::T) -> Result<Self::T>;
/// Called when see a primitive type.
fn primitive(&mut self, p: &PrimitiveType) -> Result<Self::T>;
}
/// Visiting a type in post order.
pub fn visit_type<V: SchemaVisitor>(r#type: &Type, visitor: &mut V) -> Result<V::T> {
match r#type {
Type::Primitive(p) => visitor.primitive(p),
Type::List(list) => {
visitor.before_list_element(&list.element_field)?;
let value = visit_type(&list.element_field.field_type, visitor)?;
visitor.after_list_element(&list.element_field)?;
visitor.list(list, value)
}
Type::Map(map) => {
let key_result = {
visitor.before_map_key(&map.key_field)?;
let ret = visit_type(&map.key_field.field_type, visitor)?;
visitor.after_map_key(&map.key_field)?;
ret
};
let value_result = {
visitor.before_map_value(&map.value_field)?;
let ret = visit_type(&map.value_field.field_type, visitor)?;
visitor.after_map_value(&map.value_field)?;
ret
};
visitor.map(map, key_result, value_result)
}
Type::Struct(s) => visit_struct(s, visitor),
}
}
/// Visit struct type in post order.
pub fn visit_struct<V: SchemaVisitor>(s: &StructType, visitor: &mut V) -> Result<V::T> {
let mut results = Vec::with_capacity(s.fields().len());
for field in s.fields() {
visitor.before_struct_field(field)?;
let result = visit_type(&field.field_type, visitor)?;
visitor.after_struct_field(field)?;
let result = visitor.field(field, result)?;
results.push(result);
}
visitor.r#struct(s, results)
}
/// Visit schema in post order.
pub fn visit_schema<V: SchemaVisitor>(schema: &Schema, visitor: &mut V) -> Result<V::T> {
let result = visit_struct(&schema.r#struct, visitor)?;
visitor.schema(schema, result)
}
/// Creates a field id to field map.
pub fn index_by_id(r#struct: &StructType) -> Result<HashMap<i32, NestedFieldRef>> {
struct IndexById(HashMap<i32, NestedFieldRef>);
impl SchemaVisitor for IndexById {
type T = ();
fn schema(&mut self, _schema: &Schema, _value: ()) -> Result<()> {
Ok(())
}
fn field(&mut self, field: &NestedFieldRef, _value: ()) -> Result<()> {
self.0.insert(field.id, field.clone());
Ok(())
}
fn r#struct(&mut self, _struct: &StructType, _results: Vec<Self::T>) -> Result<Self::T> {
Ok(())
}
fn list(&mut self, list: &ListType, _value: Self::T) -> Result<Self::T> {
self.0
.insert(list.element_field.id, list.element_field.clone());
Ok(())
}
fn map(&mut self, map: &MapType, _key_value: Self::T, _value: Self::T) -> Result<Self::T> {
self.0.insert(map.key_field.id, map.key_field.clone());
self.0.insert(map.value_field.id, map.value_field.clone());
Ok(())
}
fn primitive(&mut self, _: &PrimitiveType) -> Result<Self::T> {
Ok(())
}
}
let mut index = IndexById(HashMap::new());
visit_struct(r#struct, &mut index)?;
Ok(index.0)
}
/// Creates a field id to parent field id map.
pub fn index_parents(r#struct: &StructType) -> Result<HashMap<i32, i32>> {
struct IndexByParent {
parents: Vec<i32>,
result: HashMap<i32, i32>,
}
impl SchemaVisitor for IndexByParent {
type T = ();
fn before_struct_field(&mut self, field: &NestedFieldRef) -> Result<()> {
self.parents.push(field.id);
Ok(())
}
fn after_struct_field(&mut self, _field: &NestedFieldRef) -> Result<()> {
self.parents.pop();
Ok(())
}
fn before_list_element(&mut self, field: &NestedFieldRef) -> Result<()> {
self.parents.push(field.id);
Ok(())
}
fn after_list_element(&mut self, _field: &NestedFieldRef) -> Result<()> {
self.parents.pop();
Ok(())
}
fn before_map_key(&mut self, field: &NestedFieldRef) -> Result<()> {
self.parents.push(field.id);
Ok(())
}
fn after_map_key(&mut self, _field: &NestedFieldRef) -> Result<()> {
self.parents.pop();
Ok(())
}
fn before_map_value(&mut self, field: &NestedFieldRef) -> Result<()> {
self.parents.push(field.id);
Ok(())
}
fn after_map_value(&mut self, _field: &NestedFieldRef) -> Result<()> {
self.parents.pop();
Ok(())
}
fn schema(&mut self, _schema: &Schema, _value: Self::T) -> Result<Self::T> {
Ok(())
}
fn field(&mut self, field: &NestedFieldRef, _value: Self::T) -> Result<Self::T> {
if let Some(parent) = self.parents.last().copied() {
self.result.insert(field.id, parent);
}
Ok(())
}
fn r#struct(&mut self, _struct: &StructType, _results: Vec<Self::T>) -> Result<Self::T> {
Ok(())
}
fn list(&mut self, _list: &ListType, _value: Self::T) -> Result<Self::T> {
Ok(())
}
fn map(&mut self, _map: &MapType, _key_value: Self::T, _value: Self::T) -> Result<Self::T> {
Ok(())
}
fn primitive(&mut self, _p: &PrimitiveType) -> Result<Self::T> {
Ok(())
}
}
let mut index = IndexByParent {
parents: vec![],
result: HashMap::new(),
};
visit_struct(r#struct, &mut index)?;
Ok(index.result)
}
#[derive(Default)]
struct IndexByName {
// Maybe radix tree is better here?
name_to_id: HashMap<String, i32>,
short_name_to_id: HashMap<String, i32>,
field_names: Vec<String>,
short_field_names: Vec<String>,
}
impl IndexByName {
fn add_field(&mut self, name: &str, field_id: i32) -> Result<()> {
let full_name = self
.field_names
.iter()
.map(String::as_str)
.chain(vec![name])
.join(".");
if let Some(existing_field_id) = self.name_to_id.get(full_name.as_str()) {
return Err(Error::new(ErrorKind::DataInvalid, format!("Invalid schema: multiple fields for name {full_name}: {field_id} and {existing_field_id}")));
} else {
self.name_to_id.insert(full_name, field_id);
}
let full_short_name = self
.short_field_names
.iter()
.map(String::as_str)
.chain(vec![name])
.join(".");
self.short_name_to_id
.entry(full_short_name)
.or_insert_with(|| field_id);
Ok(())
}
/// Returns two indexes: full name to field id, and id to full name.
///
/// In the first index, short names are returned.
/// In second index, short names are not returned.
pub fn indexes(mut self) -> (HashMap<String, i32>, HashMap<i32, String>) {
self.short_name_to_id.reserve(self.name_to_id.len());
for (name, id) in &self.name_to_id {
self.short_name_to_id.insert(name.clone(), *id);
}
let id_to_name = self.name_to_id.into_iter().map(|e| (e.1, e.0)).collect();
(self.short_name_to_id, id_to_name)
}
}
impl SchemaVisitor for IndexByName {
type T = ();
fn before_struct_field(&mut self, field: &NestedFieldRef) -> Result<()> {
self.field_names.push(field.name.to_string());
self.short_field_names.push(field.name.to_string());
Ok(())
}
fn after_struct_field(&mut self, _field: &NestedFieldRef) -> Result<()> {
self.field_names.pop();
self.short_field_names.pop();
Ok(())
}
fn before_list_element(&mut self, field: &NestedFieldRef) -> Result<()> {
self.field_names.push(field.name.clone());
if !field.field_type.is_struct() {
self.short_field_names.push(field.name.to_string());
}
Ok(())
}
fn after_list_element(&mut self, field: &NestedFieldRef) -> Result<()> {
self.field_names.pop();
if !field.field_type.is_struct() {
self.short_field_names.pop();
}
Ok(())
}
fn before_map_key(&mut self, field: &NestedFieldRef) -> Result<()> {
self.before_struct_field(field)
}
fn after_map_key(&mut self, field: &NestedFieldRef) -> Result<()> {
self.after_struct_field(field)
}
fn before_map_value(&mut self, field: &NestedFieldRef) -> Result<()> {
self.field_names.push(field.name.to_string());
if !field.field_type.is_struct() {
self.short_field_names.push(field.name.to_string());
}
Ok(())
}
fn after_map_value(&mut self, field: &NestedFieldRef) -> Result<()> {
self.field_names.pop();
if !field.field_type.is_struct() {
self.short_field_names.pop();
}
Ok(())
}
fn schema(&mut self, _schema: &Schema, _value: Self::T) -> Result<Self::T> {
Ok(())
}
fn field(&mut self, field: &NestedFieldRef, _value: Self::T) -> Result<Self::T> {
self.add_field(field.name.as_str(), field.id)
}
fn r#struct(&mut self, _struct: &StructType, _results: Vec<Self::T>) -> Result<Self::T> {
Ok(())
}
fn list(&mut self, list: &ListType, _value: Self::T) -> Result<Self::T> {
self.add_field(LIST_FILED_NAME, list.element_field.id)
}
fn map(&mut self, map: &MapType, _key_value: Self::T, _value: Self::T) -> Result<Self::T> {
self.add_field(MAP_KEY_FIELD_NAME, map.key_field.id)?;
self.add_field(MAP_VALUE_FIELD_NAME, map.value_field.id)
}
fn primitive(&mut self, _p: &PrimitiveType) -> Result<Self::T> {
Ok(())
}
}
struct PruneColumn {
selected: HashSet<i32>,
select_full_types: bool,
}
/// Visit a schema and returns only the fields selected by id set
pub fn prune_columns(
schema: &Schema,
selected: impl IntoIterator<Item = i32>,
select_full_types: bool,
) -> Result<Type> {
let mut visitor = PruneColumn::new(HashSet::from_iter(selected), select_full_types);
let result = visit_schema(schema, &mut visitor);
match result {
Ok(s) => {
if let Some(struct_type) = s {
Ok(struct_type)
} else {
Ok(Type::Struct(StructType::default()))
}
}
Err(e) => Err(e),
}
}
impl PruneColumn {
fn new(selected: HashSet<i32>, select_full_types: bool) -> Self {
Self {
selected,
select_full_types,
}
}
fn project_selected_struct(projected_field: Option<Type>) -> Result<StructType> {
match projected_field {
// If the field is a StructType, return it as such
Some(Type::Struct(s)) => Ok(s),
Some(_) => Err(Error::new(
ErrorKind::Unexpected,
"Projected field with struct type must be struct".to_string(),
)),
// If projected_field is None or not a StructType, return an empty StructType
None => Ok(StructType::default()),
}
}
fn project_list(list: &ListType, element_result: Type) -> Result<ListType> {
if *list.element_field.field_type == element_result {
return Ok(list.clone());
}
Ok(ListType {
element_field: Arc::new(NestedField {
id: list.element_field.id,
name: list.element_field.name.clone(),
required: list.element_field.required,
field_type: Box::new(element_result),
doc: list.element_field.doc.clone(),
initial_default: list.element_field.initial_default.clone(),
write_default: list.element_field.write_default.clone(),
}),
})
}
fn project_map(map: &MapType, value_result: Type) -> Result<MapType> {
if *map.value_field.field_type == value_result {
return Ok(map.clone());
}
Ok(MapType {
key_field: map.key_field.clone(),
value_field: Arc::new(NestedField {
id: map.value_field.id,
name: map.value_field.name.clone(),
required: map.value_field.required,
field_type: Box::new(value_result),
doc: map.value_field.doc.clone(),
initial_default: map.value_field.initial_default.clone(),
write_default: map.value_field.write_default.clone(),
}),
})
}
}
impl SchemaVisitor for PruneColumn {
type T = Option<Type>;
fn schema(&mut self, _schema: &Schema, value: Option<Type>) -> Result<Option<Type>> {
Ok(Some(value.unwrap()))
}
fn field(&mut self, field: &NestedFieldRef, value: Option<Type>) -> Result<Option<Type>> {
if self.selected.contains(&field.id) {
if self.select_full_types {
Ok(Some(*field.field_type.clone()))
} else if field.field_type.is_struct() {
return Ok(Some(Type::Struct(PruneColumn::project_selected_struct(
value,
)?)));
} else if !field.field_type.is_nested() {
return Ok(Some(*field.field_type.clone()));
} else {
return Err(Error::new(
ErrorKind::DataInvalid,
"Can't project list or map field directly when not selecting full type."
.to_string(),
)
.with_context("field_id", field.id.to_string())
.with_context("field_type", field.field_type.to_string()));
}
} else {
Ok(value)
}
}
fn r#struct(
&mut self,
r#struct: &StructType,
results: Vec<Option<Type>>,
) -> Result<Option<Type>> {
let fields = r#struct.fields();
let mut selected_field = Vec::with_capacity(fields.len());
let mut same_type = true;
for (field, projected_type) in zip_eq(fields.iter(), results.iter()) {
if let Some(projected_type) = projected_type {
if *field.field_type == *projected_type {
selected_field.push(field.clone());
} else {
same_type = false;
let new_field = NestedField {
id: field.id,
name: field.name.clone(),
required: field.required,
field_type: Box::new(projected_type.clone()),
doc: field.doc.clone(),
initial_default: field.initial_default.clone(),
write_default: field.write_default.clone(),
};
selected_field.push(Arc::new(new_field));
}
}
}
if !selected_field.is_empty() {
if selected_field.len() == fields.len() && same_type {
return Ok(Some(Type::Struct(r#struct.clone())));
} else {
return Ok(Some(Type::Struct(StructType::new(selected_field))));
}
}
Ok(None)
}
fn list(&mut self, list: &ListType, value: Option<Type>) -> Result<Option<Type>> {
if self.selected.contains(&list.element_field.id) {
if self.select_full_types {
Ok(Some(Type::List(list.clone())))
} else if list.element_field.field_type.is_struct() {
let projected_struct = PruneColumn::project_selected_struct(value).unwrap();
return Ok(Some(Type::List(PruneColumn::project_list(
list,
Type::Struct(projected_struct),
)?)));
} else if list.element_field.field_type.is_primitive() {
return Ok(Some(Type::List(list.clone())));
} else {
return Err(Error::new(
ErrorKind::DataInvalid,
format!("Cannot explicitly project List or Map types, List element {} of type {} was selected", list.element_field.id, list.element_field.field_type),
));
}
} else if let Some(result) = value {
Ok(Some(Type::List(PruneColumn::project_list(list, result)?)))
} else {
Ok(None)
}
}
fn map(
&mut self,
map: &MapType,
_key_value: Option<Type>,
value: Option<Type>,
) -> Result<Option<Type>> {
if self.selected.contains(&map.value_field.id) {
if self.select_full_types {
Ok(Some(Type::Map(map.clone())))
} else if map.value_field.field_type.is_struct() {
let projected_struct =
PruneColumn::project_selected_struct(Some(value.unwrap())).unwrap();
return Ok(Some(Type::Map(PruneColumn::project_map(
map,
Type::Struct(projected_struct),
)?)));
} else if map.value_field.field_type.is_primitive() {
return Ok(Some(Type::Map(map.clone())));
} else {
return Err(Error::new(
ErrorKind::DataInvalid,
format!("Cannot explicitly project List or Map types, Map value {} of type {} was selected", map.value_field.id, map.value_field.field_type),
));
}
} else if let Some(value_result) = value {
return Ok(Some(Type::Map(PruneColumn::project_map(
map,
value_result,
)?)));
} else if self.selected.contains(&map.key_field.id) {
Ok(Some(Type::Map(map.clone())))
} else {
Ok(None)
}
}
fn primitive(&mut self, _p: &PrimitiveType) -> Result<Option<Type>> {
Ok(None)
}
}
pub(super) mod _serde {
/// This is a helper module that defines types to help with serialization/deserialization.
/// For deserialization the input first gets read into either the [SchemaV1] or [SchemaV2] struct
/// and then converted into the [Schema] struct. Serialization works the other way around.
/// [SchemaV1] and [SchemaV2] are internal struct that are only used for serialization and deserialization.
use serde::{Deserialize, Serialize};
use crate::{spec::StructType, Error, Result};
use super::{Schema, DEFAULT_SCHEMA_ID};
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq)]
#[serde(untagged)]
/// Enum for Schema serialization/deserializaion
pub(super) enum SchemaEnum {
V2(SchemaV2),
V1(SchemaV1),
}
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq, Clone)]
#[serde(rename_all = "kebab-case")]
/// Defines the structure of a v2 schema for serialization/deserialization
pub(crate) struct SchemaV2 {
pub schema_id: i32,
#[serde(skip_serializing_if = "Option::is_none")]
pub identifier_field_ids: Option<Vec<i32>>,
#[serde(flatten)]
pub fields: StructType,
}
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq, Clone)]
#[serde(rename_all = "kebab-case")]
/// Defines the structure of a v1 schema for serialization/deserialization
pub(crate) struct SchemaV1 {
#[serde(skip_serializing_if = "Option::is_none")]
pub schema_id: Option<i32>,
#[serde(skip_serializing_if = "Option::is_none")]
pub identifier_field_ids: Option<Vec<i32>>,
#[serde(flatten)]
pub fields: StructType,
}
/// Helper to serialize/deserializa Schema
impl TryFrom<SchemaEnum> for Schema {
type Error = Error;
fn try_from(value: SchemaEnum) -> Result<Self> {
match value {
SchemaEnum::V2(value) => value.try_into(),
SchemaEnum::V1(value) => value.try_into(),
}
}
}
impl From<Schema> for SchemaEnum {