Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Latest commit

 

History

History
90 lines (73 loc) · 6.47 KB

operator_list.md

File metadata and controls

90 lines (73 loc) · 6.47 KB

MKL-DNN Operator list

MXNet MKL-DNN backend provides optimized implementations for various operators covering a broad range of applications including image classification, object detection, natural language processing.

To help users understanding MKL-DNN backend better, the following table summarizes the list of supported operators, data types and functionalities. A subset of operators support faster training and inference by using a lower precision version. Refer to the following table's INT8 Inference column to see which operators are supported.

Operator Function FP32 Training (backward) FP32 Inference INT8 Inference
Convolution 1D Convolution Y Y N
2D Convolution Y Y Y
3D Convolution Y Y N
Deconvolution 2D Deconvolution Y Y N
3D Deconvolution Y Y N
FullyConnected 1D-4D input, flatten=True N Y Y
1D-4D input, flatten=False N Y Y
Pooling 2D max Pooling Y Y Y
2D avg pooling Y Y Y
BatchNorm 2D BatchNorm Y Y N
LRN 2D LRN Y Y N
Activation ReLU Y Y Y
Tanh Y Y N
SoftReLU Y Y N
Sigmoid Y Y N
softmax 1D-4D input Y Y N
Softmax_output 1D-4D input N Y N
Transpose 1D-4D input N Y N
elemwise_add 1D-4D input Y Y Y
Concat 1D-4D input Y Y Y
slice 1D-4D input N Y N
Reshape 1D-4D input N Y N
Flatten 1D-4D input N Y N
Quantization 1D-4D input N N Y
Dequantization 1D-4D input N N Y
Requantization 1D-4D input N N Y

Besides direct operator optimizations, we also provide graph fusion passes listed in the table below. Users can choose to enable or disable these fusion patterns through environmental variables.

For example, you can enable all FP32 fusion passes in the following table by:

export MXNET_SUBGRAPH_BACKEND=MKLDNN

And disable Convolution + Activation fusion by:

export MXNET_DISABLE_MKLDNN_FUSE_CONV_RELU=1

When generating the corresponding INT8 symbol, users can enable INT8 operator fusion passes as following:

# get qsym after model quantization
qsym = qsym.get_backend_symbol('MKLDNN_QUANTIZE')
qsym.save(symbol_name) # fused INT8 operators will be save into the symbol JSON file
Fusion pattern Disable
Convolution + Activation MXNET_DISABLE_MKLDNN_FUSE_CONV_RELU
Convolution + elemwise_add MXNET_DISABLE_MKLDNN_FUSE_CONV_SUM
Convolution + BatchNorm MXNET_DISABLE_MKLDNN_FUSE_CONV_BN
Convolution + Activation + elemwise_add
Convolution + BatchNorm + Activation + elemwise_add
FullyConnected + Activation(ReLU) MXNET_DISABLE_MKLDNN_FUSE_FC_RELU
Convolution (INT8) + re-quantization
FullyConnected (INT8) + re-quantization
FullyConnected (INT8) + re-quantization + de-quantization

To install MXNet MKL-DNN backend, please refer to MKL-DNN backend readme

For performance numbers, please refer to performance on Intel CPU