diff --git a/tests/nightly/test_large_array.py b/tests/nightly/test_large_array.py index 74ac179a7e60..2780b0d45d62 100644 --- a/tests/nightly/test_large_array.py +++ b/tests/nightly/test_large_array.py @@ -212,8 +212,15 @@ def test_dot(): def test_FullyConnected(): a = nd.ones(shape=(LARGE_X, SMALL_Y)) b = nd.ones(shape=(SMALL_Y, SMALL_Y)) - res = nd.FullyConnected(a, b, num_hidden=b.shape[1], no_bias=True) - assert np.sum(res[-1].asnumpy() == SMALL_Y) == b.shape[1] + c = nd.ones(shape=(b.shape[0],)) + + # w/o bias + res = nd.FullyConnected(a, b, num_hidden=b.shape[0], no_bias=True) + assert np.sum(res[-1].asnumpy() == a.shape[1]) == b.shape[0] + + # w/ bias + res = nd.FullyConnected(a, b, c, num_hidden=b.shape[0], no_bias=False) + assert np.sum(res[-1].asnumpy() == a.shape[1] + 1) == b.shape[0] def test_broadcast(): @@ -272,6 +279,7 @@ def test_slice_assign(): def test_expand_dims(): a = nd.ones(shape=(LARGE_X, SMALL_Y)) res = nd.expand_dims(a, axis=1) + res.wait_to_read() assert a[0][0][0] == 1 assert res.shape == (a.shape[0], 1, a.shape[1]) @@ -401,10 +409,14 @@ def test_unravel_index(): def test_transpose(): - b = create_2d_tensor(rows=LARGE_X, columns=SMALL_Y) - t = b.T - assert np.sum(t[:, -1].asnumpy() == (LARGE_X - 1)) == b.shape[1] - assert t.shape == (SMALL_Y, LARGE_X) + test_dtypes = [np.float32, np.int64] + for dtype in test_dtypes: + b = create_2d_tensor(rows=LARGE_X, columns=SMALL_Y, dtype=dtype) + t = b.T + assert t.shape == (SMALL_Y, LARGE_X) + ref_out = np.transpose(b.asnumpy()) + assert_almost_equal(t.asnumpy(), ref_out, rtol=1e-10) + def test_swapaxes(): @@ -423,9 +435,10 @@ def test_flip(): def test_softmax(): input_data = mx.nd.ones((SMALL_Y, LARGE_X)) - true_output = np.full((SMALL_Y, LARGE_X), (1 / SMALL_Y)) - output = nd.softmax(input_data, axis=0) - assert_almost_equal(output.asnumpy(), true_output, rtol=1e-5, atol=1e-5) + for axis in [0, 1]: + true_output = np.full((SMALL_Y, LARGE_X), (1 / input_data.shape[axis])) + output = nd.softmax(input_data, axis=axis) + assert_almost_equal(output.asnumpy(), true_output, rtol=1e-5, atol=1e-5) def test_argsort(): @@ -619,12 +632,19 @@ def testSoftmaxOutput(): sym = mx.sym.SoftmaxOutput(data=x, label=label, ignore_label=0, use_ignore=False) + ex = sym.bind(ctx=default_context(), args={'x': x_nd, 'label': label_nd}, - args_grad={'x': grad_x}) + args_grad=None) + ex.forward(is_train=False) + softmax_out = ex.outputs[0][0].asnumpy() + expected_softmax_out = (1 / SMALL_Y) * mx.nd.ones((SMALL_Y)).asnumpy() + assert np.isclose(softmax_out, expected_softmax_out).all() + ex = sym.bind(ctx=default_context(), args={'x': x_nd, 'label': label_nd}, + args_grad={'x': grad_x}) ex.forward(is_train=True) softmax_out = ex.outputs[0][0].asnumpy() - expected_softmax_out = (1/SMALL_Y)*mx.nd.ones((SMALL_Y)).asnumpy() + expected_softmax_out = (1 / SMALL_Y) * mx.nd.ones((SMALL_Y)).asnumpy() assert np.isclose(softmax_out, expected_softmax_out).all() ex.backward(is_train=True) @@ -782,8 +802,29 @@ def test_activation(): # in future, we could test if mean, var of output # matches target output's mean, var def test_batchnorm(): - shape = (LARGE_X, SMALL_Y) + def get_np_mean_var(data, running_mean, running_var, eps, use_global_status=True): + if not use_global_status: + # train mode, calculate the real mean and var + mean = np.mean(data, axis=(0, 2, 3)) + mean_broad = np.expand_dims(mean, axis=0) + mean_broad = np.expand_dims(mean_broad, axis=2) + mean_broad = np.expand_dims(mean_broad, axis=3) + mean_broad = np.broadcast_to(mean_broad, data.shape) + var = np.square(data - mean_broad) + var = np.mean(var, axis=(0, 2, 3)) + else: + # inference mode, use running_mean and running_var instead + mean = np.full((data.shape[1],), running_mean) + var = np.full((data.shape[1],), running_var) + + # calculate the inverse of standard variance + invstdvar = 1. / np.sqrt(var + eps) + return mean, invstdvar + + # Here use 4D input to cover mkldnn BN and non-mkldnn BN + shape = (1, 2, LARGE_X, SMALL_Y) axis = 1 # default + eps = 1e-3 nch = shape[axis] data = mx.nd.ones(shape=shape) @@ -793,8 +834,21 @@ def test_batchnorm(): bn_running_var = mx.nd.ones(nch) output = mx.nd.BatchNorm(data, bn_gamma, bn_beta, - bn_running_mean, bn_running_var) - assert output.shape == shape + bn_running_mean, bn_running_var, output_mean_var=True) + assert output[0].shape == shape + mean, invstdvar = output[1], output[2] + + np_mean, np_invstdvar = get_np_mean_var(data.asnumpy(), bn_running_mean.asnumpy(), bn_running_var.asnumpy(), + eps, use_global_status=True) + assert_almost_equal(mean.asnumpy(), np_mean) + assert_almost_equal(invstdvar.asnumpy(), np_invstdvar) + + +def test_elemwise_add(): + a = nd.ones(shape=(LARGE_X, SMALL_Y)) + b = nd.ones(shape=(LARGE_X, SMALL_Y)) + res = nd.elemwise_add(a, b) + assert np.sum(res[-1].asnumpy() == 2) == a.shape[1] def test_add(): @@ -944,19 +998,25 @@ def test_reshape_like(): def test_flatten(): - a = create_2d_tensor(rows=LARGE_X, columns=SMALL_Y).reshape((LARGE_X//2, 2, SMALL_Y)) - b = nd.flatten(a) - assert b[-1][-1] == (LARGE_X-1) - assert b[-1][0] == (LARGE_X-2) - assert b.shape == (LARGE_X//2, SMALL_Y*2) + test_dtypes = [np.float32, np.int64] + for dtype in test_dtypes: + a = create_2d_tensor(rows=LARGE_X, columns=SMALL_Y, dtype=dtype).reshape((LARGE_X//2, 2, SMALL_Y)) + b = nd.flatten(a) + # Here we removed the value asserts due to different precision of `int64` and `float32`. + # For `float32`, it will lose some precision when `LARGE_X` is too large, that is `LARGE_X-1` + # and `LARGE_X-2` can not represent the accurate value in the current situation. + assert b.shape == (LARGE_X//2, SMALL_Y*2) + assert_almost_equal(b[-1,-1].asnumpy(), a[-1,-1,-1].asnumpy(), rtol=1e-8) def test_concat(): a = nd.array(np.ones((SMALL_Y, LARGE_X))) b = nd.array(np.zeros((SMALL_Y, LARGE_X))) - c = nd.concat(a, b, dim=0) - assert c.shape == (b.shape[0]*2, LARGE_X) - + for axis in [0, 1]: + c = nd.concat(a, b, dim=axis) + c.wait_to_read() + assert c.shape[axis] == b.shape[axis] * 2 + assert c.shape[1-axis] == b.shape[1-axis] def test_stack(): a = nd.array(np.ones((SMALL_Y, LARGE_X)))