Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[Flaky] mx.np.linalg.inv #16776

Open
reminisce opened this issue Nov 11, 2019 · 2 comments
Open

[Flaky] mx.np.linalg.inv #16776

reminisce opened this issue Nov 11, 2019 · 2 comments

Comments

@reminisce
Copy link
Contributor

$ MXNET_TEST_SEED=639317673 nosetests --verbose --nocapture test_numpy_op:test_np_linalg_inv
test_numpy_op.test_np_linalg_inv ... [INFO] Setting test np/mx/python random seeds, use MXNET_TEST_SEED=639317673 to reproduce.

*** Maximum errors for vector of size 54:  rtol=0.01, atol=0.01

  1: Error 1.057003  Location of error: (1, 2, 2, 0), a=1078269824.00000000, b=1089788928.00000000
  2: Error 1.056994  Location of error: (1, 2, 2, 1), a=451034368.00000000, b=455852704.00000000
  3: Error 1.056913  Location of error: (1, 2, 1, 0), a=-15699981312.00000000, b=-15867688960.00000000
  4: Error 1.056913  Location of error: (1, 2, 1, 1), a=-6567216128.00000000, b=-6637367296.00000000
  5: Error 1.056899  Location of error: (1, 2, 0, 0), a=-16766963712.00000000, b=-16946066432.00000000
  6: Error 1.056894  Location of error: (1, 2, 0, 1), a=-7013528576.00000000, b=-7088445952.00000000
  7: Error 1.056602  Location of error: (1, 2, 2, 2), a=8499509.00000000, b=8590274.00000000
  8: Error 1.056518  Location of error: (1, 2, 1, 2), a=-123755792.00000000, b=-125077256.00000000
  9: Error 1.056495  Location of error: (1, 2, 0, 2), a=-132166328.00000000, b=-133577568.00000000
FAIL

======================================================================
FAIL: test_numpy_op.test_np_linalg_inv
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/nose/case.py", line 197, in runTest
    self.test(*self.arg)
  File "/home/ubuntu/unison/mxnet4/cpu/tests/python/unittest/common.py", line 177, in test_new
    orig_test(*args, **kwargs)
  File "/home/ubuntu/unison/mxnet4/cpu/python/mxnet/util.py", line 315, in _with_np_shape
    return func(*args, **kwargs)
  File "/home/ubuntu/unison/mxnet4/cpu/python/mxnet/util.py", line 499, in _with_np_array
    return func(*args, **kwargs)
  File "/home/ubuntu/unison/mxnet4/cpu/tests/python/unittest/test_numpy_op.py", line 3176, in test_np_linalg_inv
    assert_almost_equal(data.grad.asnumpy(), backward_expected, rtol=rtol, atol=atol)
  File "/home/ubuntu/unison/mxnet4/cpu/python/mxnet/test_utils.py", line 627, in assert_almost_equal
    raise AssertionError(msg)
AssertionError: 
Items are not equal:
Error 1.057003 exceeds tolerance rtol=1.000000e-02, atol=1.000000e-02 (mismatch 16.666667%).
Location of maximum error: (1, 2, 2, 0), a=1078269824.00000000, b=1089788928.00000000
 ACTUAL: array([[[[ 5.3463602e-03, -8.9685610e-03,  8.1861289e-03],
         [-2.5475242e-03,  4.2734919e-03, -3.9006653e-03],
         [-4.5920177e-03,  7.7031455e-03, -7.0311106e-03]],...
 DESIRED: array([[[[ 5.34636294e-03, -8.96856468e-03,  8.18613265e-03],
         [-2.54752557e-03,  4.27349377e-03, -3.90066742e-03],
         [-4.59202053e-03,  7.70314969e-03, -7.03111431e-03]],...
-------------------- >> begin captured logging << --------------------
common: INFO: Setting test np/mx/python random seeds, use MXNET_TEST_SEED=639317673 to reproduce.
root: INFO: NumPy-shape semantics has been activated in your code. This is required for creating and manipulating scalar and zero-size tensors, which were not supported in MXNet before, as in the official NumPy library. Please DO NOT manually deactivate this semantics while using `mxnet.numpy` and `mxnet.numpy_extension` modules.
--------------------- >> end captured logging << ---------------------

----------------------------------------------------------------------
Ran 1 test in 0.120s

FAILED (failures=1)

@vexilligera

@vexilligera
Copy link
Contributor

WIP #16782

@szha szha reopened this Apr 30, 2020
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Projects
None yet
Development

No branches or pull requests

3 participants