From bcb46b58d1461424d86e890c12975d21c8d8a959 Mon Sep 17 00:00:00 2001 From: Hao Jin Date: Mon, 18 Nov 2019 22:26:01 +0000 Subject: [PATCH 1/2] bump up einsum test atol --- tests/python/unittest/test_numpy_op.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/python/unittest/test_numpy_op.py b/tests/python/unittest/test_numpy_op.py index 1e1b53e88c92..dfc1ec79a9c0 100644 --- a/tests/python/unittest/test_numpy_op.py +++ b/tests/python/unittest/test_numpy_op.py @@ -4112,7 +4112,7 @@ def dbg(name, data): for config in configs: (subscripts, operands) = config rtol = 1e-2 if dtype == 'float16' else 1e-3 - atol = 1e-4 if dtype == 'float16' else 1e-5 + atol = 1e-3 if dtype == 'float16' else 1e-4 grad = [] x_np = [] for shape in operands: From 0f9287c80f3bb3a62149d4d2bb7a289767e55060 Mon Sep 17 00:00:00 2001 From: Hao Jin Date: Tue, 19 Nov 2019 05:00:03 +0000 Subject: [PATCH 2/2] fix several numpy issues --- python/mxnet/ndarray/numpy/_op.py | 44 ++++++++++- python/mxnet/numpy/multiarray.py | 73 +++++++++++++++---- python/mxnet/numpy_dispatch_protocol.py | 1 + python/mxnet/util.py | 29 +++++--- .../unittest/test_numpy_interoperability.py | 47 +++++++----- tests/python/unittest/test_numpy_op.py | 27 ++++++- 6 files changed, 167 insertions(+), 54 deletions(-) diff --git a/python/mxnet/ndarray/numpy/_op.py b/python/mxnet/ndarray/numpy/_op.py index a8179c2b70cf..3cc5b85c8384 100644 --- a/python/mxnet/ndarray/numpy/_op.py +++ b/python/mxnet/ndarray/numpy/_op.py @@ -28,7 +28,7 @@ from . import _internal as _npi from ..ndarray import NDArray -__all__ = ['zeros', 'ones', 'full', 'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', +__all__ = ['shape', 'zeros', 'ones', 'full', 'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor', @@ -43,7 +43,41 @@ @set_module('mxnet.ndarray.numpy') -def zeros(shape, dtype=_np.float32, order='C', ctx=None): +def shape(a): + """ + Return the shape of an array. + + Parameters + ---------- + a : array_like + Input array. + + Returns + ------- + shape : tuple of ints + The elements of the shape tuple give the lengths of the + corresponding array dimensions. + + See Also + -------- + ndarray.shape : Equivalent array method. + + Examples + -------- + >>> np.shape(np.eye(3)) + (3, 3) + >>> np.shape([[1, 2]]) + (1, 2) + >>> np.shape([0]) + (1,) + >>> np.shape(0) + () + """ + return a.shape + + +@set_module('mxnet.ndarray.numpy') +def zeros(shape, dtype=_np.float32, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, filled with zeros. This function currently only supports storing multi-dimensional data in row-major (C-style). @@ -77,7 +111,7 @@ def zeros(shape, dtype=_np.float32, order='C', ctx=None): @set_module('mxnet.ndarray.numpy') -def ones(shape, dtype=_np.float32, order='C', ctx=None): +def ones(shape, dtype=_np.float32, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, filled with ones. This function currently only supports storing multi-dimensional data in row-major (C-style). @@ -110,8 +144,9 @@ def ones(shape, dtype=_np.float32, order='C', ctx=None): return _npi.ones(shape=shape, ctx=ctx, dtype=dtype) +# pylint: disable=too-many-arguments, redefined-outer-name @set_module('mxnet.ndarray.numpy') -def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): # pylint: disable=too-many-arguments +def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): """ Return a new array of given shape and type, filled with `fill_value`. Parameters @@ -163,6 +198,7 @@ def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): # pylin ctx = current_context() dtype = _np.float32 if dtype is None else dtype return _npi.full(shape=shape, value=fill_value, ctx=ctx, dtype=dtype, out=out) +# pylint: enable=too-many-arguments, redefined-outer-name @set_module('mxnet.ndarray.numpy') diff --git a/python/mxnet/numpy/multiarray.py b/python/mxnet/numpy/multiarray.py index bbbb0fd2fd6f..e94d4c8341b4 100644 --- a/python/mxnet/numpy/multiarray.py +++ b/python/mxnet/numpy/multiarray.py @@ -46,7 +46,7 @@ from ..ndarray.numpy import _internal as _npi from ..ndarray.ndarray import _storage_type -__all__ = ['ndarray', 'empty', 'array', 'zeros', 'ones', 'full', 'add', 'subtract', 'multiply', 'divide', +__all__ = ['ndarray', 'empty', 'array', 'shape', 'zeros', 'ones', 'full', 'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', @@ -67,7 +67,7 @@ # This function is copied from ndarray.py since pylint # keeps giving false alarm error of undefined-all-variable -def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): +def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): # pylint: disable=redefined-outer-name """Return a new handle with specified shape and context. Empty handle is only used to hold results. @@ -89,7 +89,7 @@ def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): return hdl -def _reshape_view(a, *shape): +def _reshape_view(a, *shape): # pylint: disable=redefined-outer-name """Returns a **view** of this array with a new shape without altering any data. Parameters @@ -462,7 +462,7 @@ def __getitem__(self, key): """ # handling possible boolean indexing first ndim = self.ndim - shape = self.shape + shape = self.shape # pylint: disable=redefined-outer-name if isinstance(key, list): try: @@ -804,7 +804,7 @@ def __int__(self): def __len__(self): """Number of elements along the first axis.""" - shape = self.shape + shape = self.shape # pylint: disable=redefined-outer-name if len(shape) == 0: raise TypeError('len() of unsized object') return self.shape[0] @@ -1165,7 +1165,7 @@ def reshape_like(self, *args, **kwargs): """ raise AttributeError('mxnet.numpy.ndarray object has no attribute reshape_like') - def reshape_view(self, *shape, **kwargs): + def reshape_view(self, *shape, **kwargs): # pylint: disable=redefined-outer-name """Returns a **view** of this array with a new shape without altering any data. Inheritated from NDArray.reshape. """ @@ -1519,13 +1519,15 @@ def mean(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disa """Returns the average of the array elements along given axis.""" return mean(self, axis=axis, dtype=dtype, out=out, keepdims=keepdims) - def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=arguments-differ + # pylint: disable=too-many-arguments, arguments-differ + def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """Returns the standard deviation of the array elements along given axis.""" return std(self, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) - def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=arguments-differ + def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """Returns the variance of the array elements, along given axis.""" return var(self, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) + # pylint: enable=too-many-arguments, arguments-differ def cumsum(self, axis=None, dtype=None, out=None): """Return the cumulative sum of the elements along the given axis.""" @@ -1854,7 +1856,7 @@ def squeeze(self, axis=None): # pylint: disable=arguments-differ """Remove single-dimensional entries from the shape of a.""" return _mx_np_op.squeeze(self, axis=axis) - def broadcast_to(self, shape): + def broadcast_to(self, shape): # pylint: disable=redefined-outer-name return _mx_np_op.broadcast_to(self, shape) def broadcast_like(self, other): @@ -1916,7 +1918,7 @@ def tostype(self, stype): @set_module('mxnet.numpy') -def empty(shape, dtype=_np.float32, order='C', ctx=None): +def empty(shape, dtype=_np.float32, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, without initializing entries. Parameters @@ -2020,7 +2022,41 @@ def array(object, dtype=None, ctx=None): @set_module('mxnet.numpy') -def zeros(shape, dtype=_np.float32, order='C', ctx=None): +def shape(a): + """ + Return the shape of an array. + + Parameters + ---------- + a : array_like + Input array. + + Returns + ------- + shape : tuple of ints + The elements of the shape tuple give the lengths of the + corresponding array dimensions. + + See Also + -------- + ndarray.shape : Equivalent array method. + + Examples + -------- + >>> np.shape(np.eye(3)) + (3, 3) + >>> np.shape([[1, 2]]) + (1, 2) + >>> np.shape([0]) + (1,) + >>> np.shape(0) + () + """ + return _mx_nd_np.shape(a) + + +@set_module('mxnet.numpy') +def zeros(shape, dtype=_np.float32, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, filled with zeros. This function currently only supports storing multi-dimensional data in row-major (C-style). @@ -2061,7 +2097,7 @@ def zeros(shape, dtype=_np.float32, order='C', ctx=None): @set_module('mxnet.numpy') -def ones(shape, dtype=_np.float32, order='C', ctx=None): +def ones(shape, dtype=_np.float32, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, filled with ones. This function currently only supports storing multi-dimensional data in row-major (C-style). @@ -2106,8 +2142,9 @@ def ones(shape, dtype=_np.float32, order='C', ctx=None): return _mx_nd_np.ones(shape, dtype, order, ctx) +# pylint: disable=too-many-arguments, redefined-outer-name @set_module('mxnet.numpy') -def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): # pylint: disable=too-many-arguments +def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): """ Return a new array of given shape and type, filled with `fill_value`. @@ -2160,6 +2197,7 @@ def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): # pylin [2, 2]], dtype=int32) """ return _mx_nd_np.full(shape, fill_value, order=order, ctx=ctx, dtype=dtype, out=out) +# pylint: enable=too-many-arguments, redefined-outer-name @set_module('mxnet.numpy') @@ -4224,7 +4262,7 @@ def tensordot(a, b, axes=2): @set_module('mxnet.numpy') -def histogram(a, bins=10, range=None, normed=None, weights=None, density=None): # pylint-disable=too-many-arguments +def histogram(a, bins=10, range=None, normed=None, weights=None, density=None): # pylint: disable=too-many-arguments """ Compute the histogram of a set of data. @@ -4383,6 +4421,7 @@ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis return _mx_nd_np.linspace(start, stop, num, endpoint, retstep, dtype, axis, ctx) +# pylint: disable=too-many-arguments @set_module('mxnet.numpy') def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0, ctx=None): r"""Return numbers spaced evenly on a log scale. @@ -4457,6 +4496,7 @@ def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0, array([ 100. , 215.44347, 464.15887, 1000. ], ctx=gpu(0)) """ return _mx_nd_np.logspace(start, stop, num, endpoint, base, dtype, axis, ctx=ctx) +# pylint: enable=too-many-arguments @set_module('mxnet.numpy') @@ -5421,8 +5461,9 @@ def mean(a, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable return _npi.mean(a, axis=axis, dtype=dtype, keepdims=keepdims, out=out) + @set_module('mxnet.numpy') -def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): +def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=too-many-arguments """ Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, @@ -5489,7 +5530,7 @@ def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): @set_module('mxnet.numpy') -def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): +def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=too-many-arguments """ Compute the variance along the specified axis. Returns the variance of the array elements, a measure of the spread of a diff --git a/python/mxnet/numpy_dispatch_protocol.py b/python/mxnet/numpy_dispatch_protocol.py index e233c9702c11..f58159303d0f 100644 --- a/python/mxnet/numpy_dispatch_protocol.py +++ b/python/mxnet/numpy_dispatch_protocol.py @@ -128,6 +128,7 @@ def _run_with_array_ufunc_proto(*args, **kwargs): 'linalg.norm', 'linalg.cholesky', 'linalg.inv', + 'shape', 'trace', 'tril', 'meshgrid', diff --git a/python/mxnet/util.py b/python/mxnet/util.py index 3a85e31e7e43..aa9f5241cd5f 100644 --- a/python/mxnet/util.py +++ b/python/mxnet/util.py @@ -35,6 +35,9 @@ 'subok': True, } +_set_np_shape_logged = False +_set_np_array_logged = False + def makedirs(d): """Create directories recursively if they don't exist. os.makedirs(exist_ok=True) is not @@ -87,13 +90,16 @@ def set_np_shape(active): >>> print(mx.is_np_shape()) True """ + global _set_np_shape_logged if active: - import logging - logging.info('NumPy-shape semantics has been activated in your code. ' - 'This is required for creating and manipulating scalar and zero-size ' - 'tensors, which were not supported in MXNet before, as in the official ' - 'NumPy library. Please DO NOT manually deactivate this semantics while ' - 'using `mxnet.numpy` and `mxnet.numpy_extension` modules.') + if not _set_np_shape_logged: + import logging + logging.info('NumPy-shape semantics has been activated in your code. ' + 'This is required for creating and manipulating scalar and zero-size ' + 'tensors, which were not supported in MXNet before, as in the official ' + 'NumPy library. Please DO NOT manually deactivate this semantics while ' + 'using `mxnet.numpy` and `mxnet.numpy_extension` modules.') + _set_np_shape_logged = True elif is_np_array(): raise ValueError('Deactivating NumPy shape semantics while NumPy array semantics is still' ' active is not allowed. Please consider calling `npx.reset_np()` to' @@ -678,11 +684,14 @@ def _set_np_array(active): ------- A bool value indicating the previous state of NumPy array semantics. """ + global _set_np_array_logged if active: - import logging - logging.info('NumPy array semantics has been activated in your code. This allows you' - ' to use operators from MXNet NumPy and NumPy Extension modules as well' - ' as MXNet NumPy `ndarray`s.') + if not _set_np_array_logged: + import logging + logging.info('NumPy array semantics has been activated in your code. This allows you' + ' to use operators from MXNet NumPy and NumPy Extension modules as well' + ' as MXNet NumPy `ndarray`s.') + _set_np_array_logged = True cur_state = is_np_array() _NumpyArrayScope._current.value = _NumpyArrayScope(active) return cur_state diff --git a/tests/python/unittest/test_numpy_interoperability.py b/tests/python/unittest/test_numpy_interoperability.py index 7584564bf387..e52d25239d22 100644 --- a/tests/python/unittest/test_numpy_interoperability.py +++ b/tests/python/unittest/test_numpy_interoperability.py @@ -66,24 +66,24 @@ def get_mat(n): A = np.array([[1, 2], [3, 4], [5, 6]]) vals = (100 * np.arange(5)).astype('l') vals_c = (100 * np.array(get_mat(5)) + 1).astype('l') - vals_f = _np.array((100 * get_mat(5) + 1), order ='F', dtype ='l') + vals_f = _np.array((100 * get_mat(5) + 1), order='F', dtype='l') vals_f = np.array(vals_f) - OpArgMngr.add_workload('diag', A, k= 2) - OpArgMngr.add_workload('diag', A, k= 1) - OpArgMngr.add_workload('diag', A, k= 0) - OpArgMngr.add_workload('diag', A, k= -1) - OpArgMngr.add_workload('diag', A, k= -2) - OpArgMngr.add_workload('diag', A, k= -3) - OpArgMngr.add_workload('diag', vals, k= 0) - OpArgMngr.add_workload('diag', vals, k= 2) - OpArgMngr.add_workload('diag', vals, k= -2) - OpArgMngr.add_workload('diag', vals_c, k= 0) - OpArgMngr.add_workload('diag', vals_c, k= 2) - OpArgMngr.add_workload('diag', vals_c, k= -2) - OpArgMngr.add_workload('diag', vals_f, k= 0) - OpArgMngr.add_workload('diag', vals_f, k= 2) - OpArgMngr.add_workload('diag', vals_f, k= -2) + OpArgMngr.add_workload('diag', A, k=2) + OpArgMngr.add_workload('diag', A, k=1) + OpArgMngr.add_workload('diag', A, k=0) + OpArgMngr.add_workload('diag', A, k=-1) + OpArgMngr.add_workload('diag', A, k=-2) + OpArgMngr.add_workload('diag', A, k=-3) + OpArgMngr.add_workload('diag', vals, k=0) + OpArgMngr.add_workload('diag', vals, k=2) + OpArgMngr.add_workload('diag', vals, k=-2) + OpArgMngr.add_workload('diag', vals_c, k=0) + OpArgMngr.add_workload('diag', vals_c, k=2) + OpArgMngr.add_workload('diag', vals_c, k=-2) + OpArgMngr.add_workload('diag', vals_f, k=0) + OpArgMngr.add_workload('diag', vals_f, k=2) + OpArgMngr.add_workload('diag', vals_f, k=-2) def _add_workload_concatenate(array_pool): @@ -1202,6 +1202,12 @@ def _add_workload_nonzero(): OpArgMngr.add_workload('nonzero', np.array([True, False, False], dtype=np.bool_)) +def _add_workload_shape(): + OpArgMngr.add_workload('shape', np.random.uniform(size=())) + OpArgMngr.add_workload('shape', np.random.uniform(size=(0, 1))) + OpArgMngr.add_workload('shape', np.random.uniform(size=(2, 3))) + + def _add_workload_diff(): x = np.array([1, 4, 6, 7, 12]) OpArgMngr.add_workload('diff', x) @@ -1349,6 +1355,7 @@ def _prepare_workloads(): _add_workload_less(array_pool) _add_workload_less_equal(array_pool) _add_workload_where() + _add_workload_shape() _add_workload_diff() _add_workload_resize() @@ -1381,11 +1388,11 @@ def _check_interoperability_helper(op_name, *args, **kwargs): expected_out = _get_numpy_op_output(onp_op, *args, **kwargs) if isinstance(out, (tuple, list)): assert type(out) == type(expected_out) - for arr in out: - assert isinstance(arr, np.ndarray) for arr, expected_arr in zip(out, expected_out): - assert isinstance(arr, np.ndarray) - assert_almost_equal(arr.asnumpy(), expected_arr, rtol=1e-3, atol=1e-4, use_broadcast=False, equal_nan=True) + if isinstance(arr, np.ndarray): + assert_almost_equal(arr.asnumpy(), expected_arr, rtol=1e-3, atol=1e-4, use_broadcast=False, equal_nan=True) + else: + _np.testing.assert_equal(arr, expected_arr) else: assert isinstance(out, np.ndarray) assert_almost_equal(out.asnumpy(), expected_out, rtol=1e-3, atol=1e-4, use_broadcast=False, equal_nan=True) diff --git a/tests/python/unittest/test_numpy_op.py b/tests/python/unittest/test_numpy_op.py index dfc1ec79a9c0..eaaaac995c19 100644 --- a/tests/python/unittest/test_numpy_op.py +++ b/tests/python/unittest/test_numpy_op.py @@ -758,6 +758,26 @@ def legalize_shape(shape): assert_almost_equal(mx_out.asnumpy(), np_out, rtol=rtol, atol=atol, use_broadcast=False, equal_nan=True) +@with_seed() +@use_np +def test_np_shape(): + shapes = [ + (), + (0, 1), + (2, 3), + (2, 3, 4), + ] + + for shape in shapes: + mx_a = np.random.uniform(size=shape) + np_a = _np.random.uniform(size=shape) + + mx_shape = np.shape(mx_a) + np_shape = _np.shape(np_a) + + assert mx_shape == np_shape + + @with_seed() @use_np def test_np_linspace(): @@ -4539,7 +4559,7 @@ def __init__(self, k=0): def hybrid_forward(self, F, a): return F.np.diag(a, k=self._k) - + shapes = [(), (2,), (1, 5), (2, 2), (2, 5), (3, 3), (4, 3)] dtypes = [np.int8, np.uint8, np.int32, np.int64, np.float16, np.float32, np.float64] range_k = 6 @@ -4559,8 +4579,8 @@ def hybrid_forward(self, F, a): mx_out = test_diag(x) assert mx_out.shape == np_out.shape assert_almost_equal(mx_out.asnumpy(), np_out, rtol=rtol, atol=atol) - - # check backward function + + # check backward function mx_out.backward() if len(shape) == 0: np_backward = np.array(()) @@ -4593,7 +4613,6 @@ def hybrid_forward(self, F, a): @with_seed() @use_np def test_np_nan_to_num(): - def take_ele_grad(ele): if _np.isinf(ele) or _np.isnan(ele): return 0