From 74fb433702b676225097e1d4d2c2b170915a5d19 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Tue, 10 Mar 2015 17:25:04 -0700 Subject: [PATCH 01/43] Minor doc: Remove the extra blank line in data types javadoc. The extra blank line is preventing the first lines from showing up in the package summary page. Author: Reynold Xin Closes #4955 from rxin/datatype-docs and squashes the following commits: 1621114 [Reynold Xin] Minor doc: Remove the extra blank line in data types javadoc. --- .../apache/spark/sql/types/dataTypes.scala | 24 +++++-------------- 1 file changed, 6 insertions(+), 18 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala index 92d322845f5c5..bf39603d13bd5 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala @@ -240,7 +240,6 @@ object DataType { /** * :: DeveloperApi :: - * * The base type of all Spark SQL data types. * * @group dataType @@ -282,7 +281,6 @@ abstract class DataType { /** * :: DeveloperApi :: - * * The data type representing `NULL` values. Please use the singleton [[DataTypes.NullType]]. * * @group dataType @@ -342,7 +340,6 @@ protected[sql] abstract class NativeType extends DataType { /** * :: DeveloperApi :: - * * The data type representing `String` values. Please use the singleton [[DataTypes.StringType]]. * * @group dataType @@ -369,7 +366,6 @@ case object StringType extends StringType /** * :: DeveloperApi :: - * * The data type representing `Array[Byte]` values. * Please use the singleton [[DataTypes.BinaryType]]. * @@ -405,7 +401,6 @@ case object BinaryType extends BinaryType /** * :: DeveloperApi :: - * * The data type representing `Boolean` values. Please use the singleton [[DataTypes.BooleanType]]. * *@group dataType @@ -432,7 +427,6 @@ case object BooleanType extends BooleanType /** * :: DeveloperApi :: - * * The data type representing `java.sql.Timestamp` values. * Please use the singleton [[DataTypes.TimestampType]]. * @@ -464,7 +458,6 @@ case object TimestampType extends TimestampType /** * :: DeveloperApi :: - * * The data type representing `java.sql.Date` values. * Please use the singleton [[DataTypes.DateType]]. * @@ -492,6 +485,12 @@ class DateType private() extends NativeType { case object DateType extends DateType +/** + * :: DeveloperApi :: + * Numeric data types. + * + * @group dataType + */ abstract class NumericType extends NativeType with PrimitiveType { // Unfortunately we can't get this implicitly as that breaks Spark Serialization. In order for // implicitly[Numeric[JvmType]] to be valid, we have to change JvmType from a type variable to a @@ -523,7 +522,6 @@ protected[sql] sealed abstract class IntegralType extends NumericType { /** * :: DeveloperApi :: - * * The data type representing `Long` values. Please use the singleton [[DataTypes.LongType]]. * * @group dataType @@ -554,7 +552,6 @@ case object LongType extends LongType /** * :: DeveloperApi :: - * * The data type representing `Int` values. Please use the singleton [[DataTypes.IntegerType]]. * * @group dataType @@ -585,7 +582,6 @@ case object IntegerType extends IntegerType /** * :: DeveloperApi :: - * * The data type representing `Short` values. Please use the singleton [[DataTypes.ShortType]]. * * @group dataType @@ -616,7 +612,6 @@ case object ShortType extends ShortType /** * :: DeveloperApi :: - * * The data type representing `Byte` values. Please use the singleton [[DataTypes.ByteType]]. * * @group dataType @@ -666,7 +661,6 @@ case class PrecisionInfo(precision: Int, scale: Int) /** * :: DeveloperApi :: - * * The data type representing `java.math.BigDecimal` values. * A Decimal that might have fixed precision and scale, or unlimited values for these. * @@ -745,7 +739,6 @@ object DecimalType { /** * :: DeveloperApi :: - * * The data type representing `Double` values. Please use the singleton [[DataTypes.DoubleType]]. * * @group dataType @@ -775,7 +768,6 @@ case object DoubleType extends DoubleType /** * :: DeveloperApi :: - * * The data type representing `Float` values. Please use the singleton [[DataTypes.FloatType]]. * * @group dataType @@ -811,7 +803,6 @@ object ArrayType { /** * :: DeveloperApi :: - * * The data type for collections of multiple values. * Internally these are represented as columns that contain a ``scala.collection.Seq``. * @@ -854,7 +845,6 @@ case class ArrayType(elementType: DataType, containsNull: Boolean) extends DataT /** * A field inside a StructType. - * * @param name The name of this field. * @param dataType The data type of this field. * @param nullable Indicates if values of this field can be `null` values. @@ -949,7 +939,6 @@ object StructType { /** * :: DeveloperApi :: - * * A [[StructType]] object can be constructed by * {{{ * StructType(fields: Seq[StructField]) @@ -1118,7 +1107,6 @@ object MapType { /** * :: DeveloperApi :: - * * The data type for Maps. Keys in a map are not allowed to have `null` values. * * Please use [[DataTypes.createMapType()]] to create a specific instance. From 2672374110d58e45ffae2408e74b96613deddda3 Mon Sep 17 00:00:00 2001 From: Michael Armbrust Date: Tue, 10 Mar 2015 18:13:09 -0700 Subject: [PATCH 02/43] [SPARK-5183][SQL] Update SQL Docs with JDBC and Migration Guide Author: Michael Armbrust Closes #4958 from marmbrus/sqlDocs and squashes the following commits: 9351dbc [Michael Armbrust] fix parquet example 6877e13 [Michael Armbrust] add sql examples d81b7e7 [Michael Armbrust] rxins comments e393528 [Michael Armbrust] fix order 19c2735 [Michael Armbrust] more on data source load/store 00d5914 [Michael Armbrust] Update SQL Docs with JDBC and Migration Guide --- docs/sql-programming-guide.md | 382 ++++++++++++++++++++++++++++++++-- 1 file changed, 370 insertions(+), 12 deletions(-) diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 4fbdca7397951..9c363bc87e890 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -9,7 +9,7 @@ title: Spark SQL and DataFrames # Overview -Spark SQL is a Spark module for structured data processing. It provides a programming abstraction called DataFrames and can also act as a distributed query engine. +Spark SQL is a Spark module for structured data processing. It provides a programming abstraction called DataFrames and can also act as distributed SQL query engine. # DataFrames @@ -662,8 +662,146 @@ for name in names.collect(): Spark SQL supports operating on a variety of data sources through the `DataFrame` interface. A DataFrame can be operated on as normal RDDs and can also be registered as a temporary table. Registering a DataFrame as a table allows you to run SQL queries over its data. This section -describes the various methods for loading data into a DataFrame. +describes the general methods for loading and saving data using the Spark Data Sources and then +goes into specific options that are available for the built-in data sources. +## Generic Load/Save Functions + +In the simplest form, the default data source (`parquet` unless otherwise configured by +`spark.sql.sources.default`) will be used for all operations. + +
+
+ +{% highlight scala %} +val df = sqlContext.load("people.parquet") +df.select("name", "age").save("namesAndAges.parquet") +{% endhighlight %} + +
+ +
+ +{% highlight java %} + +DataFrame df = sqlContext.load("people.parquet"); +df.select("name", "age").save("namesAndAges.parquet"); + +{% endhighlight %} + +
+ +
+ +{% highlight python %} + +df = sqlContext.load("people.parquet") +df.select("name", "age").save("namesAndAges.parquet") + +{% endhighlight %} + +
+
+ +### Manually Specifying Options + +You can also manually specify the data source that will be used along with any extra options +that you would like to pass to the data source. Data sources are specified by their fully qualified +name (i.e., `org.apache.spark.sql.parquet`), but for built-in sources you can also use the shorted +name (`json`, `parquet`, `jdbc`). DataFrames of any type can be converted into other types +using this syntax. + +
+
+ +{% highlight scala %} +val df = sqlContext.load("people.json", "json") +df.select("name", "age").save("namesAndAges.parquet", "parquet") +{% endhighlight %} + +
+ +
+ +{% highlight java %} + +DataFrame df = sqlContext.load("people.json", "json"); +df.select("name", "age").save("namesAndAges.parquet", "parquet"); + +{% endhighlight %} + +
+ +
+ +{% highlight python %} + +df = sqlContext.load("people.json", "json") +df.select("name", "age").save("namesAndAges.parquet", "parquet") + +{% endhighlight %} + +
+
+ +### Save Modes + +Save operations can optionally take a `SaveMode`, that specifies how to handle existing data if +present. It is important to realize that these save modes do not utilize any locking and are not +atomic. Thus, it is not safe to have multiple writers attempting to write to the same location. +Additionally, when performing a `Overwrite`, the data will be deleted before writing out the +new data. + + + + + + + + + + + + + + + + + + + + + + + +
Scala/JavaPythonMeaning
SaveMode.ErrorIfExists (default)"error" (default) + When saving a DataFrame to a data source, if data already exists, + an exception is expected to be thrown. +
SaveMode.Append"append" + When saving a DataFrame to a data source, if data/table already exists, + contents of the DataFrame are expected to be appended to existing data. +
SaveMode.Overwrite"overwrite" + Overwrite mode means that when saving a DataFrame to a data source, + if data/table already exists, existing data is expected to be overwritten by the contents of + the DataFrame. +
SaveMode.Ignore"ignore" + Ignore mode means that when saving a DataFrame to a data source, if data already exists, + the save operation is expected to not save the contents of the DataFrame and to not + change the existing data. This is similar to a `CREATE TABLE IF NOT EXISTS` in SQL. +
+ +### Saving to Persistent Tables + +When working with a `HiveContext`, `DataFrames` can also be saved as persistent tables using the +`saveAsTable` command. Unlike the `registerTempTable` command, `saveAsTable` will materialize the +contents of the dataframe and create a pointer to the data in the HiveMetastore. Persistent tables +will still exist even after your Spark program has restarted, as long as you maintain your connection +to the same metastore. A DataFrame for a persistent table can be created by calling the `table` +method on a SQLContext with the name of the table. + +By default `saveAsTable` will create a "managed table", meaning that the location of the data will +be controlled by the metastore. Managed tables will also have their data deleted automatically +when a table is dropped. ## Parquet Files @@ -751,6 +889,22 @@ for teenName in teenNames.collect(): +
+ +{% highlight sql %} + +CREATE TEMPORARY TABLE parquetTable +USING org.apache.spark.sql.parquet +OPTIONS ( + path "examples/src/main/resources/people.parquet" +) + +SELECT * FROM parquetTable + +{% endhighlight %} + +
+ ### Configuration @@ -942,6 +1096,22 @@ anotherPeople = sqlContext.jsonRDD(anotherPeopleRDD) {% endhighlight %} +
+ +{% highlight sql %} + +CREATE TEMPORARY TABLE jsonTable +USING org.apache.spark.sql.json +OPTIONS ( + path "examples/src/main/resources/people.json" +) + +SELECT * FROM jsonTable + +{% endhighlight %} + +
+ ## Hive Tables @@ -1022,6 +1192,121 @@ results = sqlContext.sql("FROM src SELECT key, value").collect() +## JDBC To Other Databases + +Spark SQL also includes a data source that can read data from other databases using JDBC. This +functionality should be preferred over using [JdbcRDD](api/scala/index.html#org.apache.spark.rdd.JdbcRDD). +This is because the results are returned +as a DataFrame and they can easily be processed in Spark SQL or joined with other data sources. +The JDBC data source is also easier to use from Java or Python as it does not require the user to +provide a ClassTag. +(Note that this is different than the Spark SQL JDBC server, which allows other applications to +run queries using Spark SQL). + +To get started you will need to include the JDBC driver for you particular database on the +spark classpath. For example, to connect to postgres from the Spark Shell you would run the +following command: + +{% highlight bash %} +SPARK_CLASSPATH=postgresql-9.3-1102-jdbc41.jar bin/spark-shell +{% endhighlight %} + +Tables from the remote database can be loaded as a DataFrame or Spark SQL Temporary table using +the Data Sources API. The following options are supported: + + + + + + + + + + + + + + + + + + + + +
Property NameMeaning
url + The JDBC URL to connect to. +
dbtable + The JDBC table that should be read. Note that anything that is valid in a `FROM` clause of + a SQL query can be used. For example, instead of a full table you could also use a + subquery in parentheses. +
driver + The class name of the JDBC driver needed to connect to this URL. This class with be loaded + on the master and workers before running an JDBC commands to allow the driver to + register itself with the JDBC subsystem. +
partitionColumn, lowerBound, upperBound, numPartitions + These options must all be specified if any of them is specified. They describe how to + partition the table when reading in parallel from multiple workers. + partitionColumn must be a numeric column from the table in question. +
+ +
+ +
+ +{% highlight scala %} +val jdbcDF = sqlContext.load("jdbc", Map( + "url" -> "jdbc:postgresql:dbserver", + "dbtable" -> "schema.tablename")) +{% endhighlight %} + +
+ +
+ +{% highlight java %} + +Map options = new HashMap(); +options.put("url", "jdbc:postgresql:dbserver"); +options.put("dbtable", "schema.tablename"); + +DataFrame jdbcDF = sqlContext.load("jdbc", options) +{% endhighlight %} + + +
+ +
+ +{% highlight python %} + +df = sqlContext.load("jdbc", url="jdbc:postgresql:dbserver", dbtable="schema.tablename") + +{% endhighlight %} + +
+ +
+ +{% highlight sql %} + +CREATE TEMPORARY TABLE jdbcTable +USING org.apache.spark.sql.jdbc +OPTIONS ( + url "jdbc:postgresql:dbserver", + dbtable "schema.tablename" +) + +{% endhighlight %} + +
+
+ +## Troubleshooting + + * The JDBC driver class must be visible to the primordial class loader on the client session and on all executors. This is because Java's DriverManager class does a security check that results in it ignoring all drivers not visible to the primordial class loader when one goes to open a connection. One convenient way to do this is to modify compute_classpath.sh on all worker nodes to include your driver JARs. + * Some databases, such as H2, convert all names to upper case. You'll need to use upper case to refer to those names in Spark SQL. + + # Performance Tuning For some workloads it is possible to improve performance by either caching data in memory, or by @@ -1092,7 +1377,7 @@ that these options will be deprecated in future release as more optimizations ar -# Distributed Query Engine +# Distributed SQL Engine Spark SQL can also act as a distributed query engine using its JDBC/ODBC or command-line interface. In this mode, end-users or applications can interact with Spark SQL directly to run SQL queries, without the need to write any code. @@ -1171,6 +1456,87 @@ options. # Migration Guide +## Upgrading from Spark SQL 1.0-1.2 to 1.3 + +In Spark 1.3 we removed the "Alpha" label from Spark SQL and as part of this did a cleanup of the +available APIs. From Spark 1.3 onwards, Spark SQL will provide binary compatibility with other +releases in the 1.X series. This compatibility guarantee excludes APIs that are explicitly marked +as unstable (i.e., DeveloperAPI or Experimental). + +#### Rename of SchemaRDD to DataFrame + +The largest change that users will notice when upgrading to Spark SQL 1.3 is that `SchemaRDD` has +been renamed to `DataFrame`. This is primarily because DataFrames no longer inherit from RDD +directly, but instead provide most of the functionality that RDDs provide though their own +implementation. DataFrames can still be converted to RDDs by calling the `.rdd` method. + +In Scala there is a type alias from `SchemaRDD` to `DataFrame` to provide source compatibility for +some use cases. It is still recommended that users update their code to use `DataFrame` instead. +Java and Python users will need to update their code. + +#### Unification of the Java and Scala APIs + +Prior to Spark 1.3 there were separate Java compatible classes (`JavaSQLContext` and `JavaSchemaRDD`) +that mirrored the Scala API. In Spark 1.3 the Java API and Scala API have been unified. Users +of either language should use `SQLContext` and `DataFrame`. In general theses classes try to +use types that are usable from both languages (i.e. `Array` instead of language specific collections). +In some cases where no common type exists (e.g., for passing in closures or Maps) function overloading +is used instead. + +Additionally the Java specific types API has been removed. Users of both Scala and Java should +use the classes present in `org.apache.spark.sql.types` to describe schema programmatically. + + +#### Isolation of Implicit Conversions and Removal of dsl Package (Scala-only) + +Many of the code examples prior to Spark 1.3 started with `import sqlContext._`, which brought +all of the functions from sqlContext into scope. In Spark 1.3 we have isolated the implicit +conversions for converting `RDD`s into `DataFrame`s into an object inside of the `SQLContext`. +Users should now write `import sqlContext.implicits._`. + +Additionally, the implicit conversions now only augment RDDs that are composed of `Product`s (i.e., +case classes or tuples) with a method `toDF`, instead of applying automatically. + +When using function inside of the DSL (now replaced with the `DataFrame` API) users used to import +`org.apache.spark.sql.catalyst.dsl`. Instead the public dataframe functions API should be used: +`import org.apache.spark.sql.functions._`. + +#### Removal of the type aliases in org.apache.spark.sql for DataType (Scala-only) + +Spark 1.3 removes the type aliases that were present in the base sql package for `DataType`. Users +should instead import the classes in `org.apache.spark.sql.types` + +#### UDF Registration Moved to sqlContext.udf (Java & Scala) + +Functions that are used to register UDFs, either for use in the DataFrame DSL or SQL, have been +moved into the udf object in `SQLContext`. + +
+
+{% highlight java %} + +sqlCtx.udf.register("strLen", (s: String) => s.length()) + +{% endhighlight %} +
+ +
+{% highlight java %} + +sqlCtx.udf().register("strLen", (String s) -> { s.length(); }); + +{% endhighlight %} +
+ +
+ +Python UDF registration is unchanged. + +#### Python DataTypes No Longer Singletons + +When using DataTypes in Python you will need to construct them (i.e. `StringType()`) instead of +referencing a singleton. + ## Migration Guide for Shark User ### Scheduling @@ -1289,15 +1655,10 @@ in Hive deployments. * Tables with buckets: bucket is the hash partitioning within a Hive table partition. Spark SQL doesn't support buckets yet. -**Esoteric Hive Features** -* Tables with partitions using different input formats: In Spark SQL, all table partitions need to - have the same input format. -* Non-equi outer join: For the uncommon use case of using outer joins with non-equi join conditions - (e.g. condition "`key < 10`"), Spark SQL will output wrong result for the `NULL` tuple. +**Esoteric Hive Features** * `UNION` type * Unique join -* Single query multi insert * Column statistics collecting: Spark SQL does not piggyback scans to collect column statistics at the moment and only supports populating the sizeInBytes field of the hive metastore. @@ -1313,9 +1674,6 @@ less important due to Spark SQL's in-memory computational model. Others are slot releases of Spark SQL. * Block level bitmap indexes and virtual columns (used to build indexes) -* Automatically convert a join to map join: For joining a large table with multiple small tables, - Hive automatically converts the join into a map join. We are adding this auto conversion in the - next release. * Automatically determine the number of reducers for joins and groupbys: Currently in Spark SQL, you need to control the degree of parallelism post-shuffle using "`SET spark.sql.shuffle.partitions=[num_tasks];`". * Meta-data only query: For queries that can be answered by using only meta data, Spark SQL still From 2d4e00efe2cf179935ae108a68f28edf6e5a1628 Mon Sep 17 00:00:00 2001 From: Xusen Yin Date: Wed, 11 Mar 2015 00:24:55 -0700 Subject: [PATCH 03/43] [SPARK-5986][MLLib] Add save/load for k-means This PR adds save/load for K-means as described in SPARK-5986. Python version will be added in another PR. Author: Xusen Yin Closes #4951 from yinxusen/SPARK-5986 and squashes the following commits: 6dd74a0 [Xusen Yin] rewrite some functions and classes cd390fd [Xusen Yin] add indexed point b144216 [Xusen Yin] remove invalid comments dce7055 [Xusen Yin] add save/load for k-means for SPARK-5986 --- .../spark/mllib/clustering/KMeansModel.scala | 68 ++++++++++++++++++- .../spark/mllib/clustering/KMeansSuite.scala | 44 +++++++++++- 2 files changed, 108 insertions(+), 4 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeansModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeansModel.scala index 3b95a9e6936e8..707da537d238f 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeansModel.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeansModel.scala @@ -17,15 +17,22 @@ package org.apache.spark.mllib.clustering +import org.json4s._ +import org.json4s.JsonDSL._ +import org.json4s.jackson.JsonMethods._ + import org.apache.spark.api.java.JavaRDD -import org.apache.spark.rdd.RDD -import org.apache.spark.SparkContext._ import org.apache.spark.mllib.linalg.Vector +import org.apache.spark.mllib.util.{Loader, Saveable} +import org.apache.spark.rdd.RDD +import org.apache.spark.SparkContext +import org.apache.spark.sql.SQLContext +import org.apache.spark.sql.Row /** * A clustering model for K-means. Each point belongs to the cluster with the closest center. */ -class KMeansModel (val clusterCenters: Array[Vector]) extends Serializable { +class KMeansModel (val clusterCenters: Array[Vector]) extends Saveable with Serializable { /** Total number of clusters. */ def k: Int = clusterCenters.length @@ -58,4 +65,59 @@ class KMeansModel (val clusterCenters: Array[Vector]) extends Serializable { private def clusterCentersWithNorm: Iterable[VectorWithNorm] = clusterCenters.map(new VectorWithNorm(_)) + + override def save(sc: SparkContext, path: String): Unit = { + KMeansModel.SaveLoadV1_0.save(sc, this, path) + } + + override protected def formatVersion: String = "1.0" +} + +object KMeansModel extends Loader[KMeansModel] { + override def load(sc: SparkContext, path: String): KMeansModel = { + KMeansModel.SaveLoadV1_0.load(sc, path) + } + + private case class Cluster(id: Int, point: Vector) + + private object Cluster { + def apply(r: Row): Cluster = { + Cluster(r.getInt(0), r.getAs[Vector](1)) + } + } + + private[clustering] + object SaveLoadV1_0 { + + private val thisFormatVersion = "1.0" + + private[clustering] + val thisClassName = "org.apache.spark.mllib.clustering.KMeansModel" + + def save(sc: SparkContext, model: KMeansModel, path: String): Unit = { + val sqlContext = new SQLContext(sc) + import sqlContext.implicits._ + val metadata = compact(render( + ("class" -> thisClassName) ~ ("version" -> thisFormatVersion) ~ ("k" -> model.k))) + sc.parallelize(Seq(metadata), 1).saveAsTextFile(Loader.metadataPath(path)) + val dataRDD = sc.parallelize(model.clusterCenters.zipWithIndex).map { case (point, id) => + Cluster(id, point) + }.toDF() + dataRDD.saveAsParquetFile(Loader.dataPath(path)) + } + + def load(sc: SparkContext, path: String): KMeansModel = { + implicit val formats = DefaultFormats + val sqlContext = new SQLContext(sc) + val (className, formatVersion, metadata) = Loader.loadMetadata(sc, path) + assert(className == thisClassName) + assert(formatVersion == thisFormatVersion) + val k = (metadata \ "k").extract[Int] + val centriods = sqlContext.parquetFile(Loader.dataPath(path)) + Loader.checkSchema[Cluster](centriods.schema) + val localCentriods = centriods.map(Cluster.apply).collect() + assert(k == localCentriods.size) + new KMeansModel(localCentriods.sortBy(_.id).map(_.point)) + } + } } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/clustering/KMeansSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/clustering/KMeansSuite.scala index caee5917000aa..7bf250eb5a383 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/clustering/KMeansSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/clustering/KMeansSuite.scala @@ -21,9 +21,10 @@ import scala.util.Random import org.scalatest.FunSuite -import org.apache.spark.mllib.linalg.{Vector, Vectors} +import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, Vectors} import org.apache.spark.mllib.util.{LocalClusterSparkContext, MLlibTestSparkContext} import org.apache.spark.mllib.util.TestingUtils._ +import org.apache.spark.util.Utils class KMeansSuite extends FunSuite with MLlibTestSparkContext { @@ -257,6 +258,47 @@ class KMeansSuite extends FunSuite with MLlibTestSparkContext { assert(predicts(0) != predicts(3)) } } + + test("model save/load") { + val tempDir = Utils.createTempDir() + val path = tempDir.toURI.toString + + Array(true, false).foreach { case selector => + val model = KMeansSuite.createModel(10, 3, selector) + // Save model, load it back, and compare. + try { + model.save(sc, path) + val sameModel = KMeansModel.load(sc, path) + KMeansSuite.checkEqual(model, sameModel) + } finally { + Utils.deleteRecursively(tempDir) + } + } + } +} + +object KMeansSuite extends FunSuite { + def createModel(dim: Int, k: Int, isSparse: Boolean): KMeansModel = { + val singlePoint = isSparse match { + case true => + Vectors.sparse(dim, Array.empty[Int], Array.empty[Double]) + case _ => + Vectors.dense(Array.fill[Double](dim)(0.0)) + } + new KMeansModel(Array.fill[Vector](k)(singlePoint)) + } + + def checkEqual(a: KMeansModel, b: KMeansModel): Unit = { + assert(a.k === b.k) + a.clusterCenters.zip(b.clusterCenters).foreach { + case (ca: SparseVector, cb: SparseVector) => + assert(ca === cb) + case (ca: DenseVector, cb: DenseVector) => + assert(ca === cb) + case _ => + throw new AssertionError("checkEqual failed since the two clusters were not identical.\n") + } + } } class KMeansClusterSuite extends FunSuite with LocalClusterSparkContext { From 517975d89d40a77c7186f488547eed11f79c1e97 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Wed, 11 Mar 2015 01:03:01 -0700 Subject: [PATCH 04/43] [SPARK-4924] Add a library for launching Spark jobs programmatically. This change encapsulates all the logic involved in launching a Spark job into a small Java library that can be easily embedded into other applications. The overall goal of this change is twofold, as described in the bug: - Provide a public API for launching Spark processes. This is a common request from users and currently there's no good answer for it. - Remove a lot of the duplicated code and other coupling that exists in the different parts of Spark that deal with launching processes. A lot of the duplication was due to different code needed to build an application's classpath (and the bootstrapper needed to run the driver in certain situations), and also different code needed to parse spark-submit command line options in different contexts. The change centralizes those as much as possible so that all code paths can rely on the library for handling those appropriately. Author: Marcelo Vanzin Closes #3916 from vanzin/SPARK-4924 and squashes the following commits: 18c7e4d [Marcelo Vanzin] Fix make-distribution.sh. 2ce741f [Marcelo Vanzin] Add lots of quotes. 3b28a75 [Marcelo Vanzin] Update new pom. a1b8af1 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 897141f [Marcelo Vanzin] Review feedback. e2367d2 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 28cd35e [Marcelo Vanzin] Remove stale comment. b1d86b0 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 00505f9 [Marcelo Vanzin] Add blurb about new API in the programming guide. 5f4ddcc [Marcelo Vanzin] Better usage messages. 92a9cfb [Marcelo Vanzin] Fix Win32 launcher, usage. 6184c07 [Marcelo Vanzin] Rename field. 4c19196 [Marcelo Vanzin] Update comment. 7e66c18 [Marcelo Vanzin] Fix pyspark tests. 0031a8e [Marcelo Vanzin] Review feedback. c12d84b [Marcelo Vanzin] Review feedback. And fix spark-submit on Windows. e2d4d71 [Marcelo Vanzin] Simplify some code used to launch pyspark. 43008a7 [Marcelo Vanzin] Don't make builder extend SparkLauncher. b4d6912 [Marcelo Vanzin] Use spark-submit script in SparkLauncher. 28b1434 [Marcelo Vanzin] Add a comment. 304333a [Marcelo Vanzin] Fix propagation of properties file arg. bb67b93 [Marcelo Vanzin] Remove unrelated Yarn change (that is also wrong). 8ec0243 [Marcelo Vanzin] Add missing newline. 95ddfa8 [Marcelo Vanzin] Fix handling of --help for spark-class command builder. 72da7ec [Marcelo Vanzin] Rename SparkClassLauncher. 62978e4 [Marcelo Vanzin] Minor cleanup of Windows code path. 9cd5b44 [Marcelo Vanzin] Make all non-public APIs package-private. e4c80b6 [Marcelo Vanzin] Reorganize the code so that only SparkLauncher is public. e50dc5e [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 de81da2 [Marcelo Vanzin] Fix CommandUtils. 86a87bf [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 2061967 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 46d46da [Marcelo Vanzin] Clean up a test and make it more future-proof. b93692a [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 ad03c48 [Marcelo Vanzin] Revert "Fix a thread-safety issue in "local" mode." 0b509d0 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 23aa2a9 [Marcelo Vanzin] Read java-opts from conf dir, not spark home. 7cff919 [Marcelo Vanzin] Javadoc updates. eae4d8e [Marcelo Vanzin] Fix new unit tests on Windows. e570fb5 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 44cd5f7 [Marcelo Vanzin] Add package-info.java, clean up javadocs. f7cacff [Marcelo Vanzin] Remove "launch Spark in new thread" feature. 7ed8859 [Marcelo Vanzin] Some more feedback. 54cd4fd [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 61919df [Marcelo Vanzin] Clean leftover debug statement. aae5897 [Marcelo Vanzin] Use launcher classes instead of jars in non-release mode. e584fc3 [Marcelo Vanzin] Rework command building a little bit. 525ef5b [Marcelo Vanzin] Rework Unix spark-class to handle argument with newlines. 8ac4e92 [Marcelo Vanzin] Minor test cleanup. e946a99 [Marcelo Vanzin] Merge PySparkLauncher into SparkSubmitCliLauncher. c617539 [Marcelo Vanzin] Review feedback round 1. fc6a3e2 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 f26556b [Marcelo Vanzin] Fix a thread-safety issue in "local" mode. 2f4e8b4 [Marcelo Vanzin] Changes needed to make this work with SPARK-4048. 799fc20 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 bb5d324 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 53faef1 [Marcelo Vanzin] Merge branch 'master' into SPARK-4924 a7936ef [Marcelo Vanzin] Fix pyspark tests. 656374e [Marcelo Vanzin] Mima fixes. 4d511e7 [Marcelo Vanzin] Fix tools search code. 7a01e4a [Marcelo Vanzin] Fix pyspark on Yarn. 1b3f6e9 [Marcelo Vanzin] Call SparkSubmit from spark-class launcher for unknown classes. 25c5ae6 [Marcelo Vanzin] Centralize SparkSubmit command line parsing. 27be98a [Marcelo Vanzin] Modify Spark to use launcher lib. 6f70eea [Marcelo Vanzin] [SPARK-4924] Add a library for launching Spark jobs programatically. --- .gitignore | 1 + bin/compute-classpath.cmd | 124 ------ bin/compute-classpath.sh | 161 -------- bin/load-spark-env.sh | 8 +- bin/pyspark | 59 +-- bin/pyspark2.cmd | 57 +-- bin/run-example | 2 +- bin/spark-class | 180 ++------- bin/spark-class2.cmd | 141 ++----- bin/spark-shell | 23 +- bin/spark-shell2.cmd | 27 +- bin/spark-sql | 20 +- bin/spark-submit | 66 +--- bin/spark-submit2.cmd | 71 +--- bin/utils.sh | 60 --- bin/windows-utils.cmd | 60 --- core/pom.xml | 5 + .../spark/deploy/SparkSubmitArguments.scala | 157 ++++---- .../SparkSubmitDriverBootstrapper.scala | 170 -------- .../spark/deploy/worker/CommandUtils.scala | 46 +-- .../org/apache/spark/executor/Executor.scala | 1 - .../launcher/SparkSubmitArgumentsParser.scala | 25 ++ .../spark/launcher/WorkerCommandBuilder.scala | 50 +++ docs/programming-guide.md | 5 + launcher/pom.xml | 83 ++++ .../launcher/AbstractCommandBuilder.java | 362 ++++++++++++++++++ .../spark/launcher/CommandBuilderUtils.java | 296 ++++++++++++++ .../java/org/apache/spark/launcher/Main.java | 173 +++++++++ .../launcher/SparkClassCommandBuilder.java | 108 ++++++ .../apache/spark/launcher/SparkLauncher.java | 279 ++++++++++++++ .../launcher/SparkSubmitCommandBuilder.java | 327 ++++++++++++++++ .../launcher/SparkSubmitOptionParser.java | 224 +++++++++++ .../apache/spark/launcher/package-info.java | 45 +++ .../launcher/CommandBuilderUtilsSuite.java | 101 +++++ .../spark/launcher/SparkLauncherSuite.java | 94 +++++ .../SparkSubmitCommandBuilderSuite.java | 278 ++++++++++++++ .../SparkSubmitOptionParserSuite.java | 108 ++++++ launcher/src/test/resources/log4j.properties | 31 ++ make-distribution.sh | 2 + pom.xml | 3 +- project/SparkBuild.scala | 7 +- python/pyspark/java_gateway.py | 3 +- sbin/spark-daemon.sh | 84 ++-- sbin/start-thriftserver.sh | 2 +- 44 files changed, 2891 insertions(+), 1238 deletions(-) delete mode 100644 bin/compute-classpath.cmd delete mode 100755 bin/compute-classpath.sh delete mode 100755 bin/utils.sh delete mode 100644 bin/windows-utils.cmd delete mode 100644 core/src/main/scala/org/apache/spark/deploy/SparkSubmitDriverBootstrapper.scala create mode 100644 core/src/main/scala/org/apache/spark/launcher/SparkSubmitArgumentsParser.scala create mode 100644 core/src/main/scala/org/apache/spark/launcher/WorkerCommandBuilder.scala create mode 100644 launcher/pom.xml create mode 100644 launcher/src/main/java/org/apache/spark/launcher/AbstractCommandBuilder.java create mode 100644 launcher/src/main/java/org/apache/spark/launcher/CommandBuilderUtils.java create mode 100644 launcher/src/main/java/org/apache/spark/launcher/Main.java create mode 100644 launcher/src/main/java/org/apache/spark/launcher/SparkClassCommandBuilder.java create mode 100644 launcher/src/main/java/org/apache/spark/launcher/SparkLauncher.java create mode 100644 launcher/src/main/java/org/apache/spark/launcher/SparkSubmitCommandBuilder.java create mode 100644 launcher/src/main/java/org/apache/spark/launcher/SparkSubmitOptionParser.java create mode 100644 launcher/src/main/java/org/apache/spark/launcher/package-info.java create mode 100644 launcher/src/test/java/org/apache/spark/launcher/CommandBuilderUtilsSuite.java create mode 100644 launcher/src/test/java/org/apache/spark/launcher/SparkLauncherSuite.java create mode 100644 launcher/src/test/java/org/apache/spark/launcher/SparkSubmitCommandBuilderSuite.java create mode 100644 launcher/src/test/java/org/apache/spark/launcher/SparkSubmitOptionParserSuite.java create mode 100644 launcher/src/test/resources/log4j.properties diff --git a/.gitignore b/.gitignore index 9757054a50f9e..d162fa9cca994 100644 --- a/.gitignore +++ b/.gitignore @@ -6,6 +6,7 @@ *.iml *.iws *.pyc +*.pyo .idea/ .idea_modules/ build/*.jar diff --git a/bin/compute-classpath.cmd b/bin/compute-classpath.cmd deleted file mode 100644 index 088f993954d9e..0000000000000 --- a/bin/compute-classpath.cmd +++ /dev/null @@ -1,124 +0,0 @@ -@echo off - -rem -rem Licensed to the Apache Software Foundation (ASF) under one or more -rem contributor license agreements. See the NOTICE file distributed with -rem this work for additional information regarding copyright ownership. -rem The ASF licenses this file to You under the Apache License, Version 2.0 -rem (the "License"); you may not use this file except in compliance with -rem the License. You may obtain a copy of the License at -rem -rem http://www.apache.org/licenses/LICENSE-2.0 -rem -rem Unless required by applicable law or agreed to in writing, software -rem distributed under the License is distributed on an "AS IS" BASIS, -rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -rem See the License for the specific language governing permissions and -rem limitations under the License. -rem - -rem This script computes Spark's classpath and prints it to stdout; it's used by both the "run" -rem script and the ExecutorRunner in standalone cluster mode. - -rem If we're called from spark-class2.cmd, it already set enabledelayedexpansion and setting -rem it here would stop us from affecting its copy of the CLASSPATH variable; otherwise we -rem need to set it here because we use !datanucleus_jars! below. -if "%DONT_PRINT_CLASSPATH%"=="1" goto skip_delayed_expansion -setlocal enabledelayedexpansion -:skip_delayed_expansion - -set SCALA_VERSION=2.10 - -rem Figure out where the Spark framework is installed -set FWDIR=%~dp0..\ - -rem Load environment variables from conf\spark-env.cmd, if it exists -if exist "%FWDIR%conf\spark-env.cmd" call "%FWDIR%conf\spark-env.cmd" - -rem Build up classpath -set CLASSPATH=%SPARK_CLASSPATH%;%SPARK_SUBMIT_CLASSPATH% - -if not "x%SPARK_CONF_DIR%"=="x" ( - set CLASSPATH=%CLASSPATH%;%SPARK_CONF_DIR% -) else ( - set CLASSPATH=%CLASSPATH%;%FWDIR%conf -) - -if exist "%FWDIR%RELEASE" ( - for %%d in ("%FWDIR%lib\spark-assembly*.jar") do ( - set ASSEMBLY_JAR=%%d - ) -) else ( - for %%d in ("%FWDIR%assembly\target\scala-%SCALA_VERSION%\spark-assembly*hadoop*.jar") do ( - set ASSEMBLY_JAR=%%d - ) -) - -set CLASSPATH=%CLASSPATH%;%ASSEMBLY_JAR% - -rem When Hive support is needed, Datanucleus jars must be included on the classpath. -rem Datanucleus jars do not work if only included in the uber jar as plugin.xml metadata is lost. -rem Both sbt and maven will populate "lib_managed/jars/" with the datanucleus jars when Spark is -rem built with Hive, so look for them there. -if exist "%FWDIR%RELEASE" ( - set datanucleus_dir=%FWDIR%lib -) else ( - set datanucleus_dir=%FWDIR%lib_managed\jars -) -set "datanucleus_jars=" -for %%d in ("%datanucleus_dir%\datanucleus-*.jar") do ( - set datanucleus_jars=!datanucleus_jars!;%%d -) -set CLASSPATH=%CLASSPATH%;%datanucleus_jars% - -set SPARK_CLASSES=%FWDIR%core\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%repl\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%mllib\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%bagel\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%graphx\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%streaming\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%tools\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%sql\catalyst\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%sql\core\target\scala-%SCALA_VERSION%\classes -set SPARK_CLASSES=%SPARK_CLASSES%;%FWDIR%sql\hive\target\scala-%SCALA_VERSION%\classes - -set SPARK_TEST_CLASSES=%FWDIR%core\target\scala-%SCALA_VERSION%\test-classes -set SPARK_TEST_CLASSES=%SPARK_TEST_CLASSES%;%FWDIR%repl\target\scala-%SCALA_VERSION%\test-classes -set SPARK_TEST_CLASSES=%SPARK_TEST_CLASSES%;%FWDIR%mllib\target\scala-%SCALA_VERSION%\test-classes -set SPARK_TEST_CLASSES=%SPARK_TEST_CLASSES%;%FWDIR%bagel\target\scala-%SCALA_VERSION%\test-classes -set SPARK_TEST_CLASSES=%SPARK_TEST_CLASSES%;%FWDIR%graphx\target\scala-%SCALA_VERSION%\test-classes -set SPARK_TEST_CLASSES=%SPARK_TEST_CLASSES%;%FWDIR%streaming\target\scala-%SCALA_VERSION%\test-classes -set SPARK_TEST_CLASSES=%SPARK_TEST_CLASSES%;%FWDIR%sql\catalyst\target\scala-%SCALA_VERSION%\test-classes -set SPARK_TEST_CLASSES=%SPARK_TEST_CLASSES%;%FWDIR%sql\core\target\scala-%SCALA_VERSION%\test-classes -set SPARK_TEST_CLASSES=%SPARK_TEST_CLASSES%;%FWDIR%sql\hive\target\scala-%SCALA_VERSION%\test-classes - -if "x%SPARK_TESTING%"=="x1" ( - rem Add test clases to path - note, add SPARK_CLASSES and SPARK_TEST_CLASSES before CLASSPATH - rem so that local compilation takes precedence over assembled jar - set CLASSPATH=%SPARK_CLASSES%;%SPARK_TEST_CLASSES%;%CLASSPATH% -) - -rem Add hadoop conf dir - else FileSystem.*, etc fail -rem Note, this assumes that there is either a HADOOP_CONF_DIR or YARN_CONF_DIR which hosts -rem the configurtion files. -if "x%HADOOP_CONF_DIR%"=="x" goto no_hadoop_conf_dir - set CLASSPATH=%CLASSPATH%;%HADOOP_CONF_DIR% -:no_hadoop_conf_dir - -if "x%YARN_CONF_DIR%"=="x" goto no_yarn_conf_dir - set CLASSPATH=%CLASSPATH%;%YARN_CONF_DIR% -:no_yarn_conf_dir - -rem To allow for distributions to append needed libraries to the classpath (e.g. when -rem using the "hadoop-provided" profile to build Spark), check SPARK_DIST_CLASSPATH and -rem append it to tbe final classpath. -if not "x%$SPARK_DIST_CLASSPATH%"=="x" ( - set CLASSPATH=%CLASSPATH%;%SPARK_DIST_CLASSPATH% -) - -rem A bit of a hack to allow calling this script within run2.cmd without seeing output -if "%DONT_PRINT_CLASSPATH%"=="1" goto exit - -echo %CLASSPATH% - -:exit diff --git a/bin/compute-classpath.sh b/bin/compute-classpath.sh deleted file mode 100755 index f4f6b7b909490..0000000000000 --- a/bin/compute-classpath.sh +++ /dev/null @@ -1,161 +0,0 @@ -#!/usr/bin/env bash - -# -# Licensed to the Apache Software Foundation (ASF) under one or more -# contributor license agreements. See the NOTICE file distributed with -# this work for additional information regarding copyright ownership. -# The ASF licenses this file to You under the Apache License, Version 2.0 -# (the "License"); you may not use this file except in compliance with -# the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# - -# This script computes Spark's classpath and prints it to stdout; it's used by both the "run" -# script and the ExecutorRunner in standalone cluster mode. - -# Figure out where Spark is installed -FWDIR="$(cd "`dirname "$0"`"/..; pwd)" - -. "$FWDIR"/bin/load-spark-env.sh - -if [ -n "$SPARK_CLASSPATH" ]; then - CLASSPATH="$SPARK_CLASSPATH:$SPARK_SUBMIT_CLASSPATH" -else - CLASSPATH="$SPARK_SUBMIT_CLASSPATH" -fi - -# Build up classpath -if [ -n "$SPARK_CONF_DIR" ]; then - CLASSPATH="$CLASSPATH:$SPARK_CONF_DIR" -else - CLASSPATH="$CLASSPATH:$FWDIR/conf" -fi - -ASSEMBLY_DIR="$FWDIR/assembly/target/scala-$SPARK_SCALA_VERSION" - -if [ -n "$JAVA_HOME" ]; then - JAR_CMD="$JAVA_HOME/bin/jar" -else - JAR_CMD="jar" -fi - -# A developer option to prepend more recently compiled Spark classes -if [ -n "$SPARK_PREPEND_CLASSES" ]; then - echo "NOTE: SPARK_PREPEND_CLASSES is set, placing locally compiled Spark"\ - "classes ahead of assembly." >&2 - # Spark classes - CLASSPATH="$CLASSPATH:$FWDIR/core/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/repl/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/mllib/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/bagel/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/graphx/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/streaming/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/tools/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/sql/catalyst/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/sql/core/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/sql/hive/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/sql/hive-thriftserver/target/scala-$SPARK_SCALA_VERSION/classes" - CLASSPATH="$CLASSPATH:$FWDIR/yarn/stable/target/scala-$SPARK_SCALA_VERSION/classes" - # Jars for shaded deps in their original form (copied here during build) - CLASSPATH="$CLASSPATH:$FWDIR/core/target/jars/*" -fi - -# Use spark-assembly jar from either RELEASE or assembly directory -if [ -f "$FWDIR/RELEASE" ]; then - assembly_folder="$FWDIR"/lib -else - assembly_folder="$ASSEMBLY_DIR" -fi - -num_jars=0 - -for f in "${assembly_folder}"/spark-assembly*hadoop*.jar; do - if [[ ! -e "$f" ]]; then - echo "Failed to find Spark assembly in $assembly_folder" 1>&2 - echo "You need to build Spark before running this program." 1>&2 - exit 1 - fi - ASSEMBLY_JAR="$f" - num_jars=$((num_jars+1)) -done - -if [ "$num_jars" -gt "1" ]; then - echo "Found multiple Spark assembly jars in $assembly_folder:" 1>&2 - ls "${assembly_folder}"/spark-assembly*hadoop*.jar 1>&2 - echo "Please remove all but one jar." 1>&2 - exit 1 -fi - -# Verify that versions of java used to build the jars and run Spark are compatible -jar_error_check=$("$JAR_CMD" -tf "$ASSEMBLY_JAR" nonexistent/class/path 2>&1) -if [[ "$jar_error_check" =~ "invalid CEN header" ]]; then - echo "Loading Spark jar with '$JAR_CMD' failed. " 1>&2 - echo "This is likely because Spark was compiled with Java 7 and run " 1>&2 - echo "with Java 6. (see SPARK-1703). Please use Java 7 to run Spark " 1>&2 - echo "or build Spark with Java 6." 1>&2 - exit 1 -fi - -CLASSPATH="$CLASSPATH:$ASSEMBLY_JAR" - -# When Hive support is needed, Datanucleus jars must be included on the classpath. -# Datanucleus jars do not work if only included in the uber jar as plugin.xml metadata is lost. -# Both sbt and maven will populate "lib_managed/jars/" with the datanucleus jars when Spark is -# built with Hive, so first check if the datanucleus jars exist, and then ensure the current Spark -# assembly is built for Hive, before actually populating the CLASSPATH with the jars. -# Note that this check order is faster (by up to half a second) in the case where Hive is not used. -if [ -f "$FWDIR/RELEASE" ]; then - datanucleus_dir="$FWDIR"/lib -else - datanucleus_dir="$FWDIR"/lib_managed/jars -fi - -datanucleus_jars="$(find "$datanucleus_dir" 2>/dev/null | grep "datanucleus-.*\\.jar$")" -datanucleus_jars="$(echo "$datanucleus_jars" | tr "\n" : | sed s/:$//g)" - -if [ -n "$datanucleus_jars" ]; then - hive_files=$("$JAR_CMD" -tf "$ASSEMBLY_JAR" org/apache/hadoop/hive/ql/exec 2>/dev/null) - if [ -n "$hive_files" ]; then - echo "Spark assembly has been built with Hive, including Datanucleus jars on classpath" 1>&2 - CLASSPATH="$CLASSPATH:$datanucleus_jars" - fi -fi - -# Add test classes if we're running from SBT or Maven with SPARK_TESTING set to 1 -if [[ $SPARK_TESTING == 1 ]]; then - CLASSPATH="$CLASSPATH:$FWDIR/core/target/scala-$SPARK_SCALA_VERSION/test-classes" - CLASSPATH="$CLASSPATH:$FWDIR/repl/target/scala-$SPARK_SCALA_VERSION/test-classes" - CLASSPATH="$CLASSPATH:$FWDIR/mllib/target/scala-$SPARK_SCALA_VERSION/test-classes" - CLASSPATH="$CLASSPATH:$FWDIR/bagel/target/scala-$SPARK_SCALA_VERSION/test-classes" - CLASSPATH="$CLASSPATH:$FWDIR/graphx/target/scala-$SPARK_SCALA_VERSION/test-classes" - CLASSPATH="$CLASSPATH:$FWDIR/streaming/target/scala-$SPARK_SCALA_VERSION/test-classes" - CLASSPATH="$CLASSPATH:$FWDIR/sql/catalyst/target/scala-$SPARK_SCALA_VERSION/test-classes" - CLASSPATH="$CLASSPATH:$FWDIR/sql/core/target/scala-$SPARK_SCALA_VERSION/test-classes" - CLASSPATH="$CLASSPATH:$FWDIR/sql/hive/target/scala-$SPARK_SCALA_VERSION/test-classes" -fi - -# Add hadoop conf dir if given -- otherwise FileSystem.*, etc fail ! -# Note, this assumes that there is either a HADOOP_CONF_DIR or YARN_CONF_DIR which hosts -# the configurtion files. -if [ -n "$HADOOP_CONF_DIR" ]; then - CLASSPATH="$CLASSPATH:$HADOOP_CONF_DIR" -fi -if [ -n "$YARN_CONF_DIR" ]; then - CLASSPATH="$CLASSPATH:$YARN_CONF_DIR" -fi - -# To allow for distributions to append needed libraries to the classpath (e.g. when -# using the "hadoop-provided" profile to build Spark), check SPARK_DIST_CLASSPATH and -# append it to tbe final classpath. -if [ -n "$SPARK_DIST_CLASSPATH" ]; then - CLASSPATH="$CLASSPATH:$SPARK_DIST_CLASSPATH" -fi - -echo "$CLASSPATH" diff --git a/bin/load-spark-env.sh b/bin/load-spark-env.sh index 356b3d49b2ffe..2d7070c25d328 100644 --- a/bin/load-spark-env.sh +++ b/bin/load-spark-env.sh @@ -41,9 +41,9 @@ fi if [ -z "$SPARK_SCALA_VERSION" ]; then - ASSEMBLY_DIR2="$FWDIR/assembly/target/scala-2.11" - ASSEMBLY_DIR1="$FWDIR/assembly/target/scala-2.10" - + ASSEMBLY_DIR2="$SPARK_HOME/assembly/target/scala-2.11" + ASSEMBLY_DIR1="$SPARK_HOME/assembly/target/scala-2.10" + if [[ -d "$ASSEMBLY_DIR2" && -d "$ASSEMBLY_DIR1" ]]; then echo -e "Presence of build for both scala versions(SCALA 2.10 and SCALA 2.11) detected." 1>&2 echo -e 'Either clean one of them or, export SPARK_SCALA_VERSION=2.11 in spark-env.sh.' 1>&2 @@ -54,5 +54,5 @@ if [ -z "$SPARK_SCALA_VERSION" ]; then export SPARK_SCALA_VERSION="2.11" else export SPARK_SCALA_VERSION="2.10" - fi + fi fi diff --git a/bin/pyspark b/bin/pyspark index 0b4f695dd06dd..e7f6a1a072c2a 100755 --- a/bin/pyspark +++ b/bin/pyspark @@ -18,36 +18,24 @@ # # Figure out where Spark is installed -FWDIR="$(cd "`dirname "$0"`"/..; pwd)" +export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)" -# Export this as SPARK_HOME -export SPARK_HOME="$FWDIR" - -source "$FWDIR/bin/utils.sh" - -source "$FWDIR"/bin/load-spark-env.sh +source "$SPARK_HOME"/bin/load-spark-env.sh function usage() { + if [ -n "$1" ]; then + echo $1 + fi echo "Usage: ./bin/pyspark [options]" 1>&2 - "$FWDIR"/bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 - exit 0 + "$SPARK_HOME"/bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 + exit $2 } +export -f usage if [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; then usage fi -# Exit if the user hasn't compiled Spark -if [ ! -f "$FWDIR/RELEASE" ]; then - # Exit if the user hasn't compiled Spark - ls "$FWDIR"/assembly/target/scala-$SPARK_SCALA_VERSION/spark-assembly*hadoop*.jar >& /dev/null - if [[ $? != 0 ]]; then - echo "Failed to find Spark assembly in $FWDIR/assembly/target" 1>&2 - echo "You need to build Spark before running this program" 1>&2 - exit 1 - fi -fi - # In Spark <= 1.1, setting IPYTHON=1 would cause the driver to be launched using the `ipython` # executable, while the worker would still be launched using PYSPARK_PYTHON. # @@ -95,26 +83,13 @@ export PYTHONPATH="$SPARK_HOME/python/lib/py4j-0.8.2.1-src.zip:$PYTHONPATH" # Load the PySpark shell.py script when ./pyspark is used interactively: export OLD_PYTHONSTARTUP="$PYTHONSTARTUP" -export PYTHONSTARTUP="$FWDIR/python/pyspark/shell.py" - -# Build up arguments list manually to preserve quotes and backslashes. -# We export Spark submit arguments as an environment variable because shell.py must run as a -# PYTHONSTARTUP script, which does not take in arguments. This is required for IPython notebooks. -SUBMIT_USAGE_FUNCTION=usage -gatherSparkSubmitOpts "$@" -PYSPARK_SUBMIT_ARGS="" -whitespace="[[:space:]]" -for i in "${SUBMISSION_OPTS[@]}"; do - if [[ $i =~ \" ]]; then i=$(echo $i | sed 's/\"/\\\"/g'); fi - if [[ $i =~ $whitespace ]]; then i=\"$i\"; fi - PYSPARK_SUBMIT_ARGS="$PYSPARK_SUBMIT_ARGS $i" -done -export PYSPARK_SUBMIT_ARGS +export PYTHONSTARTUP="$SPARK_HOME/python/pyspark/shell.py" # For pyspark tests if [[ -n "$SPARK_TESTING" ]]; then unset YARN_CONF_DIR unset HADOOP_CONF_DIR + export PYSPARK_SUBMIT_ARGS=pyspark-shell if [[ -n "$PYSPARK_DOC_TEST" ]]; then exec "$PYSPARK_DRIVER_PYTHON" -m doctest $1 else @@ -123,14 +98,6 @@ if [[ -n "$SPARK_TESTING" ]]; then exit fi -# If a python file is provided, directly run spark-submit. -if [[ "$1" =~ \.py$ ]]; then - echo -e "\nWARNING: Running python applications through ./bin/pyspark is deprecated as of Spark 1.0." 1>&2 - echo -e "Use ./bin/spark-submit \n" 1>&2 - primary="$1" - shift - gatherSparkSubmitOpts "$@" - exec "$FWDIR"/bin/spark-submit "${SUBMISSION_OPTS[@]}" "$primary" "${APPLICATION_OPTS[@]}" -else - exec "$PYSPARK_DRIVER_PYTHON" $PYSPARK_DRIVER_PYTHON_OPTS -fi +export PYSPARK_DRIVER_PYTHON +export PYSPARK_DRIVER_PYTHON_OPTS +exec "$SPARK_HOME"/bin/spark-submit pyspark-shell-main "$@" diff --git a/bin/pyspark2.cmd b/bin/pyspark2.cmd index a542ec80b49d6..4f5eb5e20614d 100644 --- a/bin/pyspark2.cmd +++ b/bin/pyspark2.cmd @@ -17,59 +17,22 @@ rem See the License for the specific language governing permissions and rem limitations under the License. rem -set SCALA_VERSION=2.10 - rem Figure out where the Spark framework is installed -set FWDIR=%~dp0..\ - -rem Export this as SPARK_HOME -set SPARK_HOME=%FWDIR% - -rem Test whether the user has built Spark -if exist "%FWDIR%RELEASE" goto skip_build_test -set FOUND_JAR=0 -for %%d in ("%FWDIR%assembly\target\scala-%SCALA_VERSION%\spark-assembly*hadoop*.jar") do ( - set FOUND_JAR=1 -) -if [%FOUND_JAR%] == [0] ( - echo Failed to find Spark assembly JAR. - echo You need to build Spark before running this program. - goto exit -) -:skip_build_test +set SPARK_HOME=%~dp0.. rem Load environment variables from conf\spark-env.cmd, if it exists -if exist "%FWDIR%conf\spark-env.cmd" call "%FWDIR%conf\spark-env.cmd" +if exist "%SPARK_HOME%\conf\spark-env.cmd" call "%SPARK_HOME%\conf\spark-env.cmd" rem Figure out which Python to use. -if [%PYSPARK_PYTHON%] == [] set PYSPARK_PYTHON=python +if "x%PYSPARK_DRIVER_PYTHON%"=="x" ( + set PYSPARK_DRIVER_PYTHON=python + if not [%PYSPARK_PYTHON%] == [] set PYSPARK_DRIVER_PYTHON=%PYSPARK_PYTHON% +) -set PYTHONPATH=%FWDIR%python;%PYTHONPATH% -set PYTHONPATH=%FWDIR%python\lib\py4j-0.8.2.1-src.zip;%PYTHONPATH% +set PYTHONPATH=%SPARK_HOME%\python;%PYTHONPATH% +set PYTHONPATH=%SPARK_HOME%\python\lib\py4j-0.8.2.1-src.zip;%PYTHONPATH% set OLD_PYTHONSTARTUP=%PYTHONSTARTUP% -set PYTHONSTARTUP=%FWDIR%python\pyspark\shell.py -set PYSPARK_SUBMIT_ARGS=%* - -echo Running %PYSPARK_PYTHON% with PYTHONPATH=%PYTHONPATH% - -rem Check whether the argument is a file -for /f %%i in ('echo %1^| findstr /R "\.py"') do ( - set PYTHON_FILE=%%i -) - -if [%PYTHON_FILE%] == [] ( - if [%IPYTHON%] == [1] ( - ipython %IPYTHON_OPTS% - ) else ( - %PYSPARK_PYTHON% - ) -) else ( - echo. - echo WARNING: Running python applications through ./bin/pyspark.cmd is deprecated as of Spark 1.0. - echo Use ./bin/spark-submit ^ - echo. - "%FWDIR%\bin\spark-submit.cmd" %PYSPARK_SUBMIT_ARGS% -) +set PYTHONSTARTUP=%SPARK_HOME%\python\pyspark\shell.py -:exit +call %SPARK_HOME%\bin\spark-submit2.cmd pyspark-shell-main %* diff --git a/bin/run-example b/bin/run-example index a106411392e06..798e2caeb88ce 100755 --- a/bin/run-example +++ b/bin/run-example @@ -67,7 +67,7 @@ if [[ ! $EXAMPLE_CLASS == org.apache.spark.examples* ]]; then EXAMPLE_CLASS="org.apache.spark.examples.$EXAMPLE_CLASS" fi -"$FWDIR"/bin/spark-submit \ +exec "$FWDIR"/bin/spark-submit \ --master $EXAMPLE_MASTER \ --class $EXAMPLE_CLASS \ "$SPARK_EXAMPLES_JAR" \ diff --git a/bin/spark-class b/bin/spark-class index 2f0441bb3c1c2..e29b234afaf96 100755 --- a/bin/spark-class +++ b/bin/spark-class @@ -16,89 +16,18 @@ # See the License for the specific language governing permissions and # limitations under the License. # - -# NOTE: Any changes to this file must be reflected in SparkSubmitDriverBootstrapper.scala! - -cygwin=false -case "`uname`" in - CYGWIN*) cygwin=true;; -esac +set -e # Figure out where Spark is installed -FWDIR="$(cd "`dirname "$0"`"/..; pwd)" +export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)" -# Export this as SPARK_HOME -export SPARK_HOME="$FWDIR" -export SPARK_CONF_DIR="${SPARK_CONF_DIR:-"$SPARK_HOME/conf"}" - -. "$FWDIR"/bin/load-spark-env.sh +. "$SPARK_HOME"/bin/load-spark-env.sh if [ -z "$1" ]; then echo "Usage: spark-class []" 1>&2 exit 1 fi -if [ -n "$SPARK_MEM" ]; then - echo -e "Warning: SPARK_MEM is deprecated, please use a more specific config option" 1>&2 - echo -e "(e.g., spark.executor.memory or spark.driver.memory)." 1>&2 -fi - -# Use SPARK_MEM or 512m as the default memory, to be overridden by specific options -DEFAULT_MEM=${SPARK_MEM:-512m} - -SPARK_DAEMON_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS -Dspark.akka.logLifecycleEvents=true" - -# Add java opts and memory settings for master, worker, history server, executors, and repl. -case "$1" in - # Master, Worker, and HistoryServer use SPARK_DAEMON_JAVA_OPTS (and specific opts) + SPARK_DAEMON_MEMORY. - 'org.apache.spark.deploy.master.Master') - OUR_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS $SPARK_MASTER_OPTS" - OUR_JAVA_MEM=${SPARK_DAEMON_MEMORY:-$DEFAULT_MEM} - ;; - 'org.apache.spark.deploy.worker.Worker') - OUR_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS $SPARK_WORKER_OPTS" - OUR_JAVA_MEM=${SPARK_DAEMON_MEMORY:-$DEFAULT_MEM} - ;; - 'org.apache.spark.deploy.history.HistoryServer') - OUR_JAVA_OPTS="$SPARK_DAEMON_JAVA_OPTS $SPARK_HISTORY_OPTS" - OUR_JAVA_MEM=${SPARK_DAEMON_MEMORY:-$DEFAULT_MEM} - ;; - - # Executors use SPARK_JAVA_OPTS + SPARK_EXECUTOR_MEMORY. - 'org.apache.spark.executor.CoarseGrainedExecutorBackend') - OUR_JAVA_OPTS="$SPARK_JAVA_OPTS $SPARK_EXECUTOR_OPTS" - OUR_JAVA_MEM=${SPARK_EXECUTOR_MEMORY:-$DEFAULT_MEM} - ;; - 'org.apache.spark.executor.MesosExecutorBackend') - OUR_JAVA_OPTS="$SPARK_JAVA_OPTS $SPARK_EXECUTOR_OPTS" - OUR_JAVA_MEM=${SPARK_EXECUTOR_MEMORY:-$DEFAULT_MEM} - export PYTHONPATH="$FWDIR/python:$PYTHONPATH" - export PYTHONPATH="$FWDIR/python/lib/py4j-0.8.2.1-src.zip:$PYTHONPATH" - ;; - - # Spark submit uses SPARK_JAVA_OPTS + SPARK_SUBMIT_OPTS + - # SPARK_DRIVER_MEMORY + SPARK_SUBMIT_DRIVER_MEMORY. - 'org.apache.spark.deploy.SparkSubmit') - OUR_JAVA_OPTS="$SPARK_JAVA_OPTS $SPARK_SUBMIT_OPTS" - OUR_JAVA_MEM=${SPARK_DRIVER_MEMORY:-$DEFAULT_MEM} - if [ -n "$SPARK_SUBMIT_LIBRARY_PATH" ]; then - if [[ $OSTYPE == darwin* ]]; then - export DYLD_LIBRARY_PATH="$SPARK_SUBMIT_LIBRARY_PATH:$DYLD_LIBRARY_PATH" - else - export LD_LIBRARY_PATH="$SPARK_SUBMIT_LIBRARY_PATH:$LD_LIBRARY_PATH" - fi - fi - if [ -n "$SPARK_SUBMIT_DRIVER_MEMORY" ]; then - OUR_JAVA_MEM="$SPARK_SUBMIT_DRIVER_MEMORY" - fi - ;; - - *) - OUR_JAVA_OPTS="$SPARK_JAVA_OPTS" - OUR_JAVA_MEM=${SPARK_DRIVER_MEMORY:-$DEFAULT_MEM} - ;; -esac - # Find the java binary if [ -n "${JAVA_HOME}" ]; then RUNNER="${JAVA_HOME}/bin/java" @@ -110,83 +39,48 @@ else exit 1 fi fi -JAVA_VERSION=$("$RUNNER" -version 2>&1 | grep 'version' | sed 's/.* version "\(.*\)\.\(.*\)\..*"/\1\2/; 1q') - -# Set JAVA_OPTS to be able to load native libraries and to set heap size -if [ "$JAVA_VERSION" -ge 18 ]; then - JAVA_OPTS="$OUR_JAVA_OPTS" -else - JAVA_OPTS="-XX:MaxPermSize=128m $OUR_JAVA_OPTS" -fi -JAVA_OPTS="$JAVA_OPTS -Xms$OUR_JAVA_MEM -Xmx$OUR_JAVA_MEM" - -# Load extra JAVA_OPTS from conf/java-opts, if it exists -if [ -e "$SPARK_CONF_DIR/java-opts" ] ; then - JAVA_OPTS="$JAVA_OPTS `cat "$SPARK_CONF_DIR"/java-opts`" -fi - -# Attention: when changing the way the JAVA_OPTS are assembled, the change must be reflected in CommandUtils.scala! - -TOOLS_DIR="$FWDIR"/tools -SPARK_TOOLS_JAR="" -if [ -e "$TOOLS_DIR"/target/scala-$SPARK_SCALA_VERSION/spark-tools*[0-9Tg].jar ]; then - # Use the JAR from the SBT build - export SPARK_TOOLS_JAR="`ls "$TOOLS_DIR"/target/scala-$SPARK_SCALA_VERSION/spark-tools*[0-9Tg].jar`" -fi -if [ -e "$TOOLS_DIR"/target/spark-tools*[0-9Tg].jar ]; then - # Use the JAR from the Maven build - # TODO: this also needs to become an assembly! - export SPARK_TOOLS_JAR="`ls "$TOOLS_DIR"/target/spark-tools*[0-9Tg].jar`" -fi -# Compute classpath using external script -classpath_output=$("$FWDIR"/bin/compute-classpath.sh) -if [[ "$?" != "0" ]]; then - echo "$classpath_output" - exit 1 -else - CLASSPATH="$classpath_output" -fi +# Look for the launcher. In non-release mode, add the compiled classes directly to the classpath +# instead of looking for a jar file. +SPARK_LAUNCHER_CP= +if [ -f $SPARK_HOME/RELEASE ]; then + LAUNCHER_DIR="$SPARK_HOME/lib" + num_jars="$(ls -1 "$LAUNCHER_DIR" | grep "^spark-launcher.*\.jar$" | wc -l)" + if [ "$num_jars" -eq "0" -a -z "$SPARK_LAUNCHER_CP" ]; then + echo "Failed to find Spark launcher in $LAUNCHER_DIR." 1>&2 + echo "You need to build Spark before running this program." 1>&2 + exit 1 + fi -if [[ "$1" =~ org.apache.spark.tools.* ]]; then - if test -z "$SPARK_TOOLS_JAR"; then - echo "Failed to find Spark Tools Jar in $FWDIR/tools/target/scala-$SPARK_SCALA_VERSION/" 1>&2 - echo "You need to run \"build/sbt tools/package\" before running $1." 1>&2 + LAUNCHER_JARS="$(ls -1 "$LAUNCHER_DIR" | grep "^spark-launcher.*\.jar$" || true)" + if [ "$num_jars" -gt "1" ]; then + echo "Found multiple Spark launcher jars in $LAUNCHER_DIR:" 1>&2 + echo "$LAUNCHER_JARS" 1>&2 + echo "Please remove all but one jar." 1>&2 exit 1 fi - CLASSPATH="$CLASSPATH:$SPARK_TOOLS_JAR" -fi -if $cygwin; then - CLASSPATH="`cygpath -wp "$CLASSPATH"`" - if [ "$1" == "org.apache.spark.tools.JavaAPICompletenessChecker" ]; then - export SPARK_TOOLS_JAR="`cygpath -w "$SPARK_TOOLS_JAR"`" + SPARK_LAUNCHER_CP="${LAUNCHER_DIR}/${LAUNCHER_JARS}" +else + LAUNCHER_DIR="$SPARK_HOME/launcher/target/scala-$SPARK_SCALA_VERSION" + if [ ! -d "$LAUNCHER_DIR/classes" ]; then + echo "Failed to find Spark launcher classes in $LAUNCHER_DIR." 1>&2 + echo "You need to build Spark before running this program." 1>&2 + exit 1 fi + SPARK_LAUNCHER_CP="$LAUNCHER_DIR/classes" fi -export CLASSPATH -# In Spark submit client mode, the driver is launched in the same JVM as Spark submit itself. -# Here we must parse the properties file for relevant "spark.driver.*" configs before launching -# the driver JVM itself. Instead of handling this complexity in Bash, we launch a separate JVM -# to prepare the launch environment of this driver JVM. +# The launcher library will print arguments separated by a NULL character, to allow arguments with +# characters that would be otherwise interpreted by the shell. Read that in a while loop, populating +# an array that will be used to exec the final command. +CMD=() +while IFS= read -d '' -r ARG; do + CMD+=("$ARG") +done < <("$RUNNER" -cp "$SPARK_LAUNCHER_CP" org.apache.spark.launcher.Main "$@") -if [ -n "$SPARK_SUBMIT_BOOTSTRAP_DRIVER" ]; then - # This is used only if the properties file actually contains these special configs - # Export the environment variables needed by SparkSubmitDriverBootstrapper - export RUNNER - export CLASSPATH - export JAVA_OPTS - export OUR_JAVA_MEM - export SPARK_CLASS=1 - shift # Ignore main class (org.apache.spark.deploy.SparkSubmit) and use our own - exec "$RUNNER" org.apache.spark.deploy.SparkSubmitDriverBootstrapper "$@" +if [ "${CMD[0]}" = "usage" ]; then + "${CMD[@]}" else - # Note: The format of this command is closely echoed in SparkSubmitDriverBootstrapper.scala - if [ -n "$SPARK_PRINT_LAUNCH_COMMAND" ]; then - echo -n "Spark Command: " 1>&2 - echo "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@" 1>&2 - echo -e "========================================\n" 1>&2 - fi - exec "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@" + exec "${CMD[@]}" fi - diff --git a/bin/spark-class2.cmd b/bin/spark-class2.cmd index da46543647efd..37d22215a0e7e 100644 --- a/bin/spark-class2.cmd +++ b/bin/spark-class2.cmd @@ -17,135 +17,54 @@ rem See the License for the specific language governing permissions and rem limitations under the License. rem -rem Any changes to this file must be reflected in SparkSubmitDriverBootstrapper.scala! - -setlocal enabledelayedexpansion - -set SCALA_VERSION=2.10 - rem Figure out where the Spark framework is installed -set FWDIR=%~dp0..\ - -rem Export this as SPARK_HOME -set SPARK_HOME=%FWDIR% +set SPARK_HOME=%~dp0.. rem Load environment variables from conf\spark-env.cmd, if it exists -if exist "%FWDIR%conf\spark-env.cmd" call "%FWDIR%conf\spark-env.cmd" +if exist "%SPARK_HOME%\conf\spark-env.cmd" call "%SPARK_HOME%\conf\spark-env.cmd" rem Test that an argument was given -if not "x%1"=="x" goto arg_given +if "x%1"=="x" ( echo Usage: spark-class ^ [^] - goto exit -:arg_given - -if not "x%SPARK_MEM%"=="x" ( - echo Warning: SPARK_MEM is deprecated, please use a more specific config option - echo e.g., spark.executor.memory or spark.driver.memory. + exit /b 1 ) -rem Use SPARK_MEM or 512m as the default memory, to be overridden by specific options -set OUR_JAVA_MEM=%SPARK_MEM% -if "x%OUR_JAVA_MEM%"=="x" set OUR_JAVA_MEM=512m - -set SPARK_DAEMON_JAVA_OPTS=%SPARK_DAEMON_JAVA_OPTS% -Dspark.akka.logLifecycleEvents=true - -rem Add java opts and memory settings for master, worker, history server, executors, and repl. -rem Master, Worker and HistoryServer use SPARK_DAEMON_JAVA_OPTS (and specific opts) + SPARK_DAEMON_MEMORY. -if "%1"=="org.apache.spark.deploy.master.Master" ( - set OUR_JAVA_OPTS=%SPARK_DAEMON_JAVA_OPTS% %SPARK_MASTER_OPTS% - if not "x%SPARK_DAEMON_MEMORY%"=="x" set OUR_JAVA_MEM=%SPARK_DAEMON_MEMORY% -) else if "%1"=="org.apache.spark.deploy.worker.Worker" ( - set OUR_JAVA_OPTS=%SPARK_DAEMON_JAVA_OPTS% %SPARK_WORKER_OPTS% - if not "x%SPARK_DAEMON_MEMORY%"=="x" set OUR_JAVA_MEM=%SPARK_DAEMON_MEMORY% -) else if "%1"=="org.apache.spark.deploy.history.HistoryServer" ( - set OUR_JAVA_OPTS=%SPARK_DAEMON_JAVA_OPTS% %SPARK_HISTORY_OPTS% - if not "x%SPARK_DAEMON_MEMORY%"=="x" set OUR_JAVA_MEM=%SPARK_DAEMON_MEMORY% - -rem Executors use SPARK_JAVA_OPTS + SPARK_EXECUTOR_MEMORY. -) else if "%1"=="org.apache.spark.executor.CoarseGrainedExecutorBackend" ( - set OUR_JAVA_OPTS=%SPARK_JAVA_OPTS% %SPARK_EXECUTOR_OPTS% - if not "x%SPARK_EXECUTOR_MEMORY%"=="x" set OUR_JAVA_MEM=%SPARK_EXECUTOR_MEMORY% -) else if "%1"=="org.apache.spark.executor.MesosExecutorBackend" ( - set OUR_JAVA_OPTS=%SPARK_JAVA_OPTS% %SPARK_EXECUTOR_OPTS% - if not "x%SPARK_EXECUTOR_MEMORY%"=="x" set OUR_JAVA_MEM=%SPARK_EXECUTOR_MEMORY% +set LAUNCHER_CP=0 +if exist %SPARK_HOME%\RELEASE goto find_release_launcher -rem Spark submit uses SPARK_JAVA_OPTS + SPARK_SUBMIT_OPTS + -rem SPARK_DRIVER_MEMORY + SPARK_SUBMIT_DRIVER_MEMORY. -rem The repl also uses SPARK_REPL_OPTS. -) else if "%1"=="org.apache.spark.deploy.SparkSubmit" ( - set OUR_JAVA_OPTS=%SPARK_JAVA_OPTS% %SPARK_SUBMIT_OPTS% %SPARK_REPL_OPTS% - if not "x%SPARK_SUBMIT_LIBRARY_PATH%"=="x" ( - set OUR_JAVA_OPTS=!OUR_JAVA_OPTS! -Djava.library.path=%SPARK_SUBMIT_LIBRARY_PATH% - ) else if not "x%SPARK_LIBRARY_PATH%"=="x" ( - set OUR_JAVA_OPTS=!OUR_JAVA_OPTS! -Djava.library.path=%SPARK_LIBRARY_PATH% - ) - if not "x%SPARK_DRIVER_MEMORY%"=="x" set OUR_JAVA_MEM=%SPARK_DRIVER_MEMORY% - if not "x%SPARK_SUBMIT_DRIVER_MEMORY%"=="x" set OUR_JAVA_MEM=%SPARK_SUBMIT_DRIVER_MEMORY% -) else ( - set OUR_JAVA_OPTS=%SPARK_JAVA_OPTS% - if not "x%SPARK_DRIVER_MEMORY%"=="x" set OUR_JAVA_MEM=%SPARK_DRIVER_MEMORY% +rem Look for the Spark launcher in both Scala build directories. The launcher doesn't use Scala so +rem it doesn't really matter which one is picked up. Add the compiled classes directly to the +rem classpath instead of looking for a jar file, since it's very common for people using sbt to use +rem the "assembly" target instead of "package". +set LAUNCHER_CLASSES=%SPARK_HOME%\launcher\target\scala-2.10\classes +if exist %LAUNCHER_CLASSES% ( + set LAUNCHER_CP=%LAUNCHER_CLASSES% ) - -rem Set JAVA_OPTS to be able to load native libraries and to set heap size -for /f "tokens=3" %%i in ('java -version 2^>^&1 ^| find "version"') do set jversion=%%i -for /f "tokens=1 delims=_" %%i in ("%jversion:~1,-1%") do set jversion=%%i -if "%jversion%" geq "1.8.0" ( - set JAVA_OPTS=%OUR_JAVA_OPTS% -Xms%OUR_JAVA_MEM% -Xmx%OUR_JAVA_MEM% -) else ( - set JAVA_OPTS=-XX:MaxPermSize=128m %OUR_JAVA_OPTS% -Xms%OUR_JAVA_MEM% -Xmx%OUR_JAVA_MEM% +set LAUNCHER_CLASSES=%SPARK_HOME%\launcher\target\scala-2.11\classes +if exist %LAUNCHER_CLASSES% ( + set LAUNCHER_CP=%LAUNCHER_CLASSES% ) -rem Attention: when changing the way the JAVA_OPTS are assembled, the change must be reflected in CommandUtils.scala! +goto check_launcher -rem Test whether the user has built Spark -if exist "%FWDIR%RELEASE" goto skip_build_test -set FOUND_JAR=0 -for %%d in ("%FWDIR%assembly\target\scala-%SCALA_VERSION%\spark-assembly*hadoop*.jar") do ( - set FOUND_JAR=1 -) -if "%FOUND_JAR%"=="0" ( - echo Failed to find Spark assembly JAR. - echo You need to build Spark before running this program. - goto exit +:find_release_launcher +for %%d in (%SPARK_HOME%\lib\spark-launcher*.jar) do ( + set LAUNCHER_CP=%%d ) -:skip_build_test -set TOOLS_DIR=%FWDIR%tools -set SPARK_TOOLS_JAR= -for %%d in ("%TOOLS_DIR%\target\scala-%SCALA_VERSION%\spark-tools*assembly*.jar") do ( - set SPARK_TOOLS_JAR=%%d +:check_launcher +if "%LAUNCHER_CP%"=="0" ( + echo Failed to find Spark launcher JAR. + echo You need to build Spark before running this program. + exit /b 1 ) -rem Compute classpath using external script -set DONT_PRINT_CLASSPATH=1 -call "%FWDIR%bin\compute-classpath.cmd" -set DONT_PRINT_CLASSPATH=0 -set CLASSPATH=%CLASSPATH%;%SPARK_TOOLS_JAR% - rem Figure out where java is. set RUNNER=java if not "x%JAVA_HOME%"=="x" set RUNNER=%JAVA_HOME%\bin\java -rem In Spark submit client mode, the driver is launched in the same JVM as Spark submit itself. -rem Here we must parse the properties file for relevant "spark.driver.*" configs before launching -rem the driver JVM itself. Instead of handling this complexity here, we launch a separate JVM -rem to prepare the launch environment of this driver JVM. - -rem In this case, leave out the main class (org.apache.spark.deploy.SparkSubmit) and use our own. -rem Leaving out the first argument is surprisingly difficult to do in Windows. Note that this must -rem be done here because the Windows "shift" command does not work in a conditional block. -set BOOTSTRAP_ARGS= -shift -:start_parse -if "%~1" == "" goto end_parse -set BOOTSTRAP_ARGS=%BOOTSTRAP_ARGS% %~1 -shift -goto start_parse -:end_parse - -if not [%SPARK_SUBMIT_BOOTSTRAP_DRIVER%] == [] ( - set SPARK_CLASS=1 - "%RUNNER%" org.apache.spark.deploy.SparkSubmitDriverBootstrapper %BOOTSTRAP_ARGS% -) else ( - "%RUNNER%" -cp "%CLASSPATH%" %JAVA_OPTS% %* +rem The launcher library prints the command to be executed in a single line suitable for being +rem executed by the batch interpreter. So read all the output of the launcher into a variable. +for /f "tokens=*" %%i in ('cmd /C ""%RUNNER%" -cp %LAUNCHER_CP% org.apache.spark.launcher.Main %*"') do ( + set SPARK_CMD=%%i ) -:exit +%SPARK_CMD% diff --git a/bin/spark-shell b/bin/spark-shell index cca5aa0676123..b3761b5e1375b 100755 --- a/bin/spark-shell +++ b/bin/spark-shell @@ -28,25 +28,24 @@ esac # Enter posix mode for bash set -o posix -## Global script variables -FWDIR="$(cd "`dirname "$0"`"/..; pwd)" +export FWDIR="$(cd "`dirname "$0"`"/..; pwd)" -function usage() { +usage() { + if [ -n "$1" ]; then + echo "$1" + fi echo "Usage: ./bin/spark-shell [options]" "$FWDIR"/bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 - exit 0 + exit "$2" } +export -f usage if [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; then - usage + usage "" 0 fi -source "$FWDIR"/bin/utils.sh -SUBMIT_USAGE_FUNCTION=usage -gatherSparkSubmitOpts "$@" - # SPARK-4161: scala does not assume use of the java classpath, -# so we need to add the "-Dscala.usejavacp=true" flag mnually. We +# so we need to add the "-Dscala.usejavacp=true" flag manually. We # do this specifically for the Spark shell because the scala REPL # has its own class loader, and any additional classpath specified # through spark.driver.extraClassPath is not automatically propagated. @@ -61,11 +60,11 @@ function main() { # (see https://github.com/sbt/sbt/issues/562). stty -icanon min 1 -echo > /dev/null 2>&1 export SPARK_SUBMIT_OPTS="$SPARK_SUBMIT_OPTS -Djline.terminal=unix" - "$FWDIR"/bin/spark-submit --class org.apache.spark.repl.Main "${SUBMISSION_OPTS[@]}" spark-shell "${APPLICATION_OPTS[@]}" + "$FWDIR"/bin/spark-submit --class org.apache.spark.repl.Main "$@" stty icanon echo > /dev/null 2>&1 else export SPARK_SUBMIT_OPTS - "$FWDIR"/bin/spark-submit --class org.apache.spark.repl.Main "${SUBMISSION_OPTS[@]}" spark-shell "${APPLICATION_OPTS[@]}" + "$FWDIR"/bin/spark-submit --class org.apache.spark.repl.Main "$@" fi } diff --git a/bin/spark-shell2.cmd b/bin/spark-shell2.cmd index 1d1a40da315eb..02f51fe59a911 100644 --- a/bin/spark-shell2.cmd +++ b/bin/spark-shell2.cmd @@ -25,17 +25,28 @@ if %ERRORLEVEL% equ 0 ( exit /b 0 ) -call %SPARK_HOME%\bin\windows-utils.cmd %* -if %ERRORLEVEL% equ 1 ( +rem SPARK-4161: scala does not assume use of the java classpath, +rem so we need to add the "-Dscala.usejavacp=true" flag manually. We +rem do this specifically for the Spark shell because the scala REPL +rem has its own class loader, and any additional classpath specified +rem through spark.driver.extraClassPath is not automatically propagated. +if "x%SPARK_SUBMIT_OPTS%"=="x" ( + set SPARK_SUBMIT_OPTS=-Dscala.usejavacp=true + goto run_shell +) +set SPARK_SUBMIT_OPTS="%SPARK_SUBMIT_OPTS% -Dscala.usejavacp=true" + +:run_shell +call %SPARK_HOME%\bin\spark-submit2.cmd --class org.apache.spark.repl.Main %* +set SPARK_ERROR_LEVEL=%ERRORLEVEL% +if not "x%SPARK_LAUNCHER_USAGE_ERROR%"=="x" ( call :usage exit /b 1 ) - -cmd /V /E /C %SPARK_HOME%\bin\spark-submit.cmd --class org.apache.spark.repl.Main %SUBMISSION_OPTS% spark-shell %APPLICATION_OPTS% - -exit /b 0 +exit /b %SPARK_ERROR_LEVEL% :usage +echo %SPARK_LAUNCHER_USAGE_ERROR% echo "Usage: .\bin\spark-shell.cmd [options]" >&2 -%SPARK_HOME%\bin\spark-submit --help 2>&1 | findstr /V "Usage" 1>&2 -exit /b 0 +call %SPARK_HOME%\bin\spark-submit2.cmd --help 2>&1 | findstr /V "Usage" 1>&2 +goto :eof diff --git a/bin/spark-sql b/bin/spark-sql index 3b6cc420fea81..ca1729f4cfcb4 100755 --- a/bin/spark-sql +++ b/bin/spark-sql @@ -25,12 +25,15 @@ set -o posix # NOTE: This exact class name is matched downstream by SparkSubmit. # Any changes need to be reflected there. -CLASS="org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver" +export CLASS="org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver" # Figure out where Spark is installed -FWDIR="$(cd "`dirname "$0"`"/..; pwd)" +export FWDIR="$(cd "`dirname "$0"`"/..; pwd)" function usage { + if [ -n "$1" ]; then + echo "$1" + fi echo "Usage: ./bin/spark-sql [options] [cli option]" pattern="usage" pattern+="\|Spark assembly has been built with Hive" @@ -42,16 +45,13 @@ function usage { "$FWDIR"/bin/spark-submit --help 2>&1 | grep -v Usage 1>&2 echo echo "CLI options:" - "$FWDIR"/bin/spark-class $CLASS --help 2>&1 | grep -v "$pattern" 1>&2 + "$FWDIR"/bin/spark-class "$CLASS" --help 2>&1 | grep -v "$pattern" 1>&2 + exit "$2" } +export -f usage if [[ "$@" = *--help ]] || [[ "$@" = *-h ]]; then - usage - exit 0 + usage "" 0 fi -source "$FWDIR"/bin/utils.sh -SUBMIT_USAGE_FUNCTION=usage -gatherSparkSubmitOpts "$@" - -exec "$FWDIR"/bin/spark-submit --class $CLASS "${SUBMISSION_OPTS[@]}" spark-internal "${APPLICATION_OPTS[@]}" +exec "$FWDIR"/bin/spark-submit --class "$CLASS" "$@" diff --git a/bin/spark-submit b/bin/spark-submit index 3e5cbdbb24394..bcff78edd51ca 100755 --- a/bin/spark-submit +++ b/bin/spark-submit @@ -17,58 +17,18 @@ # limitations under the License. # -# NOTE: Any changes in this file must be reflected in SparkSubmitDriverBootstrapper.scala! - -export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)" -ORIG_ARGS=("$@") - -# Set COLUMNS for progress bar -export COLUMNS=`tput cols` - -while (($#)); do - if [ "$1" = "--deploy-mode" ]; then - SPARK_SUBMIT_DEPLOY_MODE=$2 - elif [ "$1" = "--properties-file" ]; then - SPARK_SUBMIT_PROPERTIES_FILE=$2 - elif [ "$1" = "--driver-memory" ]; then - export SPARK_SUBMIT_DRIVER_MEMORY=$2 - elif [ "$1" = "--driver-library-path" ]; then - export SPARK_SUBMIT_LIBRARY_PATH=$2 - elif [ "$1" = "--driver-class-path" ]; then - export SPARK_SUBMIT_CLASSPATH=$2 - elif [ "$1" = "--driver-java-options" ]; then - export SPARK_SUBMIT_OPTS=$2 - elif [ "$1" = "--master" ]; then - export MASTER=$2 - fi - shift -done - -if [ -z "$SPARK_CONF_DIR" ]; then - export SPARK_CONF_DIR="$SPARK_HOME/conf" -fi -DEFAULT_PROPERTIES_FILE="$SPARK_CONF_DIR/spark-defaults.conf" -if [ "$MASTER" == "yarn-cluster" ]; then - SPARK_SUBMIT_DEPLOY_MODE=cluster +SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)" + +# Only define a usage function if an upstream script hasn't done so. +if ! type -t usage >/dev/null 2>&1; then + usage() { + if [ -n "$1" ]; then + echo "$1" + fi + "$SPARK_HOME"/bin/spark-class org.apache.spark.deploy.SparkSubmit --help + exit "$2" + } + export -f usage fi -export SPARK_SUBMIT_DEPLOY_MODE=${SPARK_SUBMIT_DEPLOY_MODE:-"client"} -export SPARK_SUBMIT_PROPERTIES_FILE=${SPARK_SUBMIT_PROPERTIES_FILE:-"$DEFAULT_PROPERTIES_FILE"} - -# For client mode, the driver will be launched in the same JVM that launches -# SparkSubmit, so we may need to read the properties file for any extra class -# paths, library paths, java options and memory early on. Otherwise, it will -# be too late by the time the driver JVM has started. - -if [[ "$SPARK_SUBMIT_DEPLOY_MODE" == "client" && -f "$SPARK_SUBMIT_PROPERTIES_FILE" ]]; then - # Parse the properties file only if the special configs exist - contains_special_configs=$( - grep -e "spark.driver.extra*\|spark.driver.memory" "$SPARK_SUBMIT_PROPERTIES_FILE" | \ - grep -v "^[[:space:]]*#" - ) - if [ -n "$contains_special_configs" ]; then - export SPARK_SUBMIT_BOOTSTRAP_DRIVER=1 - fi -fi - -exec "$SPARK_HOME"/bin/spark-class org.apache.spark.deploy.SparkSubmit "${ORIG_ARGS[@]}" +exec "$SPARK_HOME"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@" diff --git a/bin/spark-submit2.cmd b/bin/spark-submit2.cmd index 446cbc74b74f9..08ddb185742d2 100644 --- a/bin/spark-submit2.cmd +++ b/bin/spark-submit2.cmd @@ -17,62 +17,19 @@ rem See the License for the specific language governing permissions and rem limitations under the License. rem -rem NOTE: Any changes in this file must be reflected in SparkSubmitDriverBootstrapper.scala! - -set SPARK_HOME=%~dp0.. -set ORIG_ARGS=%* - -rem Reset the values of all variables used -set SPARK_SUBMIT_DEPLOY_MODE=client - -if [%SPARK_CONF_DIR%] == [] ( - set SPARK_CONF_DIR=%SPARK_HOME%\conf -) -set SPARK_SUBMIT_PROPERTIES_FILE=%SPARK_CONF_DIR%\spark-defaults.conf -set SPARK_SUBMIT_DRIVER_MEMORY= -set SPARK_SUBMIT_LIBRARY_PATH= -set SPARK_SUBMIT_CLASSPATH= -set SPARK_SUBMIT_OPTS= -set SPARK_SUBMIT_BOOTSTRAP_DRIVER= - -:loop -if [%1] == [] goto continue - if [%1] == [--deploy-mode] ( - set SPARK_SUBMIT_DEPLOY_MODE=%2 - ) else if [%1] == [--properties-file] ( - set SPARK_SUBMIT_PROPERTIES_FILE=%2 - ) else if [%1] == [--driver-memory] ( - set SPARK_SUBMIT_DRIVER_MEMORY=%2 - ) else if [%1] == [--driver-library-path] ( - set SPARK_SUBMIT_LIBRARY_PATH=%2 - ) else if [%1] == [--driver-class-path] ( - set SPARK_SUBMIT_CLASSPATH=%2 - ) else if [%1] == [--driver-java-options] ( - set SPARK_SUBMIT_OPTS=%2 - ) else if [%1] == [--master] ( - set MASTER=%2 - ) - shift -goto loop -:continue - -if [%MASTER%] == [yarn-cluster] ( - set SPARK_SUBMIT_DEPLOY_MODE=cluster -) - -rem For client mode, the driver will be launched in the same JVM that launches -rem SparkSubmit, so we may need to read the properties file for any extra class -rem paths, library paths, java options and memory early on. Otherwise, it will -rem be too late by the time the driver JVM has started. - -if [%SPARK_SUBMIT_DEPLOY_MODE%] == [client] ( - if exist %SPARK_SUBMIT_PROPERTIES_FILE% ( - rem Parse the properties file only if the special configs exist - for /f %%i in ('findstr /r /c:"^[\t ]*spark.driver.memory" /c:"^[\t ]*spark.driver.extra" ^ - %SPARK_SUBMIT_PROPERTIES_FILE%') do ( - set SPARK_SUBMIT_BOOTSTRAP_DRIVER=1 - ) - ) +rem This is the entry point for running Spark submit. To avoid polluting the +rem environment, it just launches a new cmd to do the real work. + +set CLASS=org.apache.spark.deploy.SparkSubmit +call %~dp0spark-class2.cmd %CLASS% %* +set SPARK_ERROR_LEVEL=%ERRORLEVEL% +if not "x%SPARK_LAUNCHER_USAGE_ERROR%"=="x" ( + call :usage + exit /b 1 ) +exit /b %SPARK_ERROR_LEVEL% -cmd /V /E /C %SPARK_HOME%\bin\spark-class.cmd org.apache.spark.deploy.SparkSubmit %ORIG_ARGS% +:usage +echo %SPARK_LAUNCHER_USAGE_ERROR% +call %SPARK_HOME%\bin\spark-class2.cmd %CLASS% --help +goto :eof diff --git a/bin/utils.sh b/bin/utils.sh deleted file mode 100755 index 748dbe345a74c..0000000000000 --- a/bin/utils.sh +++ /dev/null @@ -1,60 +0,0 @@ -#!/usr/bin/env bash - -# -# Licensed to the Apache Software Foundation (ASF) under one or more -# contributor license agreements. See the NOTICE file distributed with -# this work for additional information regarding copyright ownership. -# The ASF licenses this file to You under the Apache License, Version 2.0 -# (the "License"); you may not use this file except in compliance with -# the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# - -# Gather all spark-submit options into SUBMISSION_OPTS -function gatherSparkSubmitOpts() { - - if [ -z "$SUBMIT_USAGE_FUNCTION" ]; then - echo "Function for printing usage of $0 is not set." 1>&2 - echo "Please set usage function to shell variable 'SUBMIT_USAGE_FUNCTION' in $0" 1>&2 - exit 1 - fi - - # NOTE: If you add or remove spark-submit options, - # modify NOT ONLY this script but also SparkSubmitArgument.scala - SUBMISSION_OPTS=() - APPLICATION_OPTS=() - while (($#)); do - case "$1" in - --master | --deploy-mode | --class | --name | --jars | --packages | --py-files | --files | \ - --conf | --repositories | --properties-file | --driver-memory | --driver-java-options | \ - --driver-library-path | --driver-class-path | --executor-memory | --driver-cores | \ - --total-executor-cores | --executor-cores | --queue | --num-executors | --archives | \ - --proxy-user) - if [[ $# -lt 2 ]]; then - "$SUBMIT_USAGE_FUNCTION" - exit 1; - fi - SUBMISSION_OPTS+=("$1"); shift - SUBMISSION_OPTS+=("$1"); shift - ;; - - --verbose | -v | --supervise) - SUBMISSION_OPTS+=("$1"); shift - ;; - - *) - APPLICATION_OPTS+=("$1"); shift - ;; - esac - done - - export SUBMISSION_OPTS - export APPLICATION_OPTS -} diff --git a/bin/windows-utils.cmd b/bin/windows-utils.cmd deleted file mode 100644 index 0cf9e87ca554b..0000000000000 --- a/bin/windows-utils.cmd +++ /dev/null @@ -1,60 +0,0 @@ -rem -rem Licensed to the Apache Software Foundation (ASF) under one or more -rem contributor license agreements. See the NOTICE file distributed with -rem this work for additional information regarding copyright ownership. -rem The ASF licenses this file to You under the Apache License, Version 2.0 -rem (the "License"); you may not use this file except in compliance with -rem the License. You may obtain a copy of the License at -rem -rem http://www.apache.org/licenses/LICENSE-2.0 -rem -rem Unless required by applicable law or agreed to in writing, software -rem distributed under the License is distributed on an "AS IS" BASIS, -rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -rem See the License for the specific language governing permissions and -rem limitations under the License. -rem - -rem Gather all spark-submit options into SUBMISSION_OPTS - -set SUBMISSION_OPTS= -set APPLICATION_OPTS= - -rem NOTE: If you add or remove spark-sumbmit options, -rem modify NOT ONLY this script but also SparkSubmitArgument.scala - -:OptsLoop -if "x%1"=="x" ( - goto :OptsLoopEnd -) - -SET opts="\<--master\> \<--deploy-mode\> \<--class\> \<--name\> \<--jars\> \<--py-files\> \<--files\>" -SET opts="%opts:~1,-1% \<--conf\> \<--properties-file\> \<--driver-memory\> \<--driver-java-options\>" -SET opts="%opts:~1,-1% \<--driver-library-path\> \<--driver-class-path\> \<--executor-memory\>" -SET opts="%opts:~1,-1% \<--driver-cores\> \<--total-executor-cores\> \<--executor-cores\> \<--queue\>" -SET opts="%opts:~1,-1% \<--num-executors\> \<--archives\> \<--packages\> \<--repositories\>" -SET opts="%opts:~1,-1% \<--proxy-user\>" - -echo %1 | findstr %opts% >nul -if %ERRORLEVEL% equ 0 ( - if "x%2"=="x" ( - echo "%1" requires an argument. >&2 - exit /b 1 - ) - set SUBMISSION_OPTS=%SUBMISSION_OPTS% %1 %2 - shift - shift - goto :OptsLoop -) -echo %1 | findstr "\<--verbose\> \<-v\> \<--supervise\>" >nul -if %ERRORLEVEL% equ 0 ( - set SUBMISSION_OPTS=%SUBMISSION_OPTS% %1 - shift - goto :OptsLoop -) -set APPLICATION_OPTS=%APPLICATION_OPTS% %1 -shift -goto :OptsLoop - -:OptsLoopEnd -exit /b 0 diff --git a/core/pom.xml b/core/pom.xml index dc0d07d806635..4164a3a7208d4 100644 --- a/core/pom.xml +++ b/core/pom.xml @@ -76,6 +76,11 @@ + + org.apache.spark + spark-launcher_${scala.binary.version} + ${project.version} + org.apache.spark spark-network-common_${scala.binary.version} diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala index 82e66a374249c..94e4bdbfb7d7b 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala @@ -18,18 +18,22 @@ package org.apache.spark.deploy import java.net.URI +import java.util.{List => JList} import java.util.jar.JarFile +import scala.collection.JavaConversions._ import scala.collection.mutable.{ArrayBuffer, HashMap} import org.apache.spark.deploy.SparkSubmitAction._ +import org.apache.spark.launcher.SparkSubmitArgumentsParser import org.apache.spark.util.Utils /** * Parses and encapsulates arguments from the spark-submit script. * The env argument is used for testing. */ -private[spark] class SparkSubmitArguments(args: Seq[String], env: Map[String, String] = sys.env) { +private[spark] class SparkSubmitArguments(args: Seq[String], env: Map[String, String] = sys.env) + extends SparkSubmitArgumentsParser { var master: String = null var deployMode: String = null var executorMemory: String = null @@ -84,7 +88,12 @@ private[spark] class SparkSubmitArguments(args: Seq[String], env: Map[String, St } // Set parameters from command line arguments - parseOpts(args.toList) + try { + parse(args.toList) + } catch { + case e: IllegalArgumentException => + SparkSubmit.printErrorAndExit(e.getMessage()) + } // Populate `sparkProperties` map from properties file mergeDefaultSparkProperties() // Use `sparkProperties` map along with env vars to fill in any missing parameters @@ -277,167 +286,139 @@ private[spark] class SparkSubmitArguments(args: Seq[String], env: Map[String, St """.stripMargin } - /** - * Fill in values by parsing user options. - * NOTE: Any changes here must be reflected in YarnClientSchedulerBackend. - */ - private def parseOpts(opts: Seq[String]): Unit = { - val EQ_SEPARATED_OPT="""(--[^=]+)=(.+)""".r - - // Delineates parsing of Spark options from parsing of user options. - parse(opts) - - /** - * NOTE: If you add or remove spark-submit options, - * modify NOT ONLY this file but also utils.sh - */ - def parse(opts: Seq[String]): Unit = opts match { - case ("--name") :: value :: tail => + /** Fill in values by parsing user options. */ + override protected def handle(opt: String, value: String): Boolean = { + opt match { + case NAME => name = value - parse(tail) - case ("--master") :: value :: tail => + case MASTER => master = value - parse(tail) - case ("--class") :: value :: tail => + case CLASS => mainClass = value - parse(tail) - case ("--deploy-mode") :: value :: tail => + case DEPLOY_MODE => if (value != "client" && value != "cluster") { SparkSubmit.printErrorAndExit("--deploy-mode must be either \"client\" or \"cluster\"") } deployMode = value - parse(tail) - case ("--num-executors") :: value :: tail => + case NUM_EXECUTORS => numExecutors = value - parse(tail) - case ("--total-executor-cores") :: value :: tail => + case TOTAL_EXECUTOR_CORES => totalExecutorCores = value - parse(tail) - case ("--executor-cores") :: value :: tail => + case EXECUTOR_CORES => executorCores = value - parse(tail) - case ("--executor-memory") :: value :: tail => + case EXECUTOR_MEMORY => executorMemory = value - parse(tail) - case ("--driver-memory") :: value :: tail => + case DRIVER_MEMORY => driverMemory = value - parse(tail) - case ("--driver-cores") :: value :: tail => + case DRIVER_CORES => driverCores = value - parse(tail) - case ("--driver-class-path") :: value :: tail => + case DRIVER_CLASS_PATH => driverExtraClassPath = value - parse(tail) - case ("--driver-java-options") :: value :: tail => + case DRIVER_JAVA_OPTIONS => driverExtraJavaOptions = value - parse(tail) - case ("--driver-library-path") :: value :: tail => + case DRIVER_LIBRARY_PATH => driverExtraLibraryPath = value - parse(tail) - case ("--properties-file") :: value :: tail => + case PROPERTIES_FILE => propertiesFile = value - parse(tail) - case ("--kill") :: value :: tail => + case KILL_SUBMISSION => submissionToKill = value if (action != null) { SparkSubmit.printErrorAndExit(s"Action cannot be both $action and $KILL.") } action = KILL - parse(tail) - case ("--status") :: value :: tail => + case STATUS => submissionToRequestStatusFor = value if (action != null) { SparkSubmit.printErrorAndExit(s"Action cannot be both $action and $REQUEST_STATUS.") } action = REQUEST_STATUS - parse(tail) - case ("--supervise") :: tail => + case SUPERVISE => supervise = true - parse(tail) - case ("--queue") :: value :: tail => + case QUEUE => queue = value - parse(tail) - case ("--files") :: value :: tail => + case FILES => files = Utils.resolveURIs(value) - parse(tail) - case ("--py-files") :: value :: tail => + case PY_FILES => pyFiles = Utils.resolveURIs(value) - parse(tail) - case ("--archives") :: value :: tail => + case ARCHIVES => archives = Utils.resolveURIs(value) - parse(tail) - case ("--jars") :: value :: tail => + case JARS => jars = Utils.resolveURIs(value) - parse(tail) - case ("--packages") :: value :: tail => + case PACKAGES => packages = value - parse(tail) - case ("--repositories") :: value :: tail => + case REPOSITORIES => repositories = value - parse(tail) - case ("--conf" | "-c") :: value :: tail => + case CONF => value.split("=", 2).toSeq match { case Seq(k, v) => sparkProperties(k) = v case _ => SparkSubmit.printErrorAndExit(s"Spark config without '=': $value") } - parse(tail) - case ("--proxy-user") :: value :: tail => + case PROXY_USER => proxyUser = value - parse(tail) - case ("--help" | "-h") :: tail => + case HELP => printUsageAndExit(0) - case ("--verbose" | "-v") :: tail => + case VERBOSE => verbose = true - parse(tail) - case ("--version") :: tail => + case VERSION => SparkSubmit.printVersionAndExit() - case EQ_SEPARATED_OPT(opt, value) :: tail => - parse(opt :: value :: tail) + case _ => + throw new IllegalArgumentException(s"Unexpected argument '$opt'.") + } + true + } - case value :: tail if value.startsWith("-") => - SparkSubmit.printErrorAndExit(s"Unrecognized option '$value'.") + /** + * Handle unrecognized command line options. + * + * The first unrecognized option is treated as the "primary resource". Everything else is + * treated as application arguments. + */ + override protected def handleUnknown(opt: String): Boolean = { + if (opt.startsWith("-")) { + SparkSubmit.printErrorAndExit(s"Unrecognized option '$opt'.") + } - case value :: tail => - primaryResource = - if (!SparkSubmit.isShell(value) && !SparkSubmit.isInternal(value)) { - Utils.resolveURI(value).toString - } else { - value - } - isPython = SparkSubmit.isPython(value) - childArgs ++= tail + primaryResource = + if (!SparkSubmit.isShell(opt) && !SparkSubmit.isInternal(opt)) { + Utils.resolveURI(opt).toString + } else { + opt + } + isPython = SparkSubmit.isPython(opt) + false + } - case Nil => - } + override protected def handleExtraArgs(extra: JList[String]): Unit = { + childArgs ++= extra } private def printUsageAndExit(exitCode: Int, unknownParam: Any = null): Unit = { diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitDriverBootstrapper.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitDriverBootstrapper.scala deleted file mode 100644 index 311048cdaa324..0000000000000 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitDriverBootstrapper.scala +++ /dev/null @@ -1,170 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.deploy - -import scala.collection.JavaConversions._ - -import org.apache.spark.util.{RedirectThread, Utils} - -/** - * Launch an application through Spark submit in client mode with the appropriate classpath, - * library paths, java options and memory. These properties of the JVM must be set before the - * driver JVM is launched. The sole purpose of this class is to avoid handling the complexity - * of parsing the properties file for such relevant configs in Bash. - * - * Usage: org.apache.spark.deploy.SparkSubmitDriverBootstrapper - */ -private[spark] object SparkSubmitDriverBootstrapper { - - // Note: This class depends on the behavior of `bin/spark-class` and `bin/spark-submit`. - // Any changes made there must be reflected in this file. - - def main(args: Array[String]): Unit = { - - // This should be called only from `bin/spark-class` - if (!sys.env.contains("SPARK_CLASS")) { - System.err.println("SparkSubmitDriverBootstrapper must be called from `bin/spark-class`!") - System.exit(1) - } - - val submitArgs = args - val runner = sys.env("RUNNER") - val classpath = sys.env("CLASSPATH") - val javaOpts = sys.env("JAVA_OPTS") - val defaultDriverMemory = sys.env("OUR_JAVA_MEM") - - // Spark submit specific environment variables - val deployMode = sys.env("SPARK_SUBMIT_DEPLOY_MODE") - val propertiesFile = sys.env("SPARK_SUBMIT_PROPERTIES_FILE") - val bootstrapDriver = sys.env("SPARK_SUBMIT_BOOTSTRAP_DRIVER") - val submitDriverMemory = sys.env.get("SPARK_SUBMIT_DRIVER_MEMORY") - val submitLibraryPath = sys.env.get("SPARK_SUBMIT_LIBRARY_PATH") - val submitClasspath = sys.env.get("SPARK_SUBMIT_CLASSPATH") - val submitJavaOpts = sys.env.get("SPARK_SUBMIT_OPTS") - - assume(runner != null, "RUNNER must be set") - assume(classpath != null, "CLASSPATH must be set") - assume(javaOpts != null, "JAVA_OPTS must be set") - assume(defaultDriverMemory != null, "OUR_JAVA_MEM must be set") - assume(deployMode == "client", "SPARK_SUBMIT_DEPLOY_MODE must be \"client\"!") - assume(propertiesFile != null, "SPARK_SUBMIT_PROPERTIES_FILE must be set") - assume(bootstrapDriver != null, "SPARK_SUBMIT_BOOTSTRAP_DRIVER must be set") - - // Parse the properties file for the equivalent spark.driver.* configs - val properties = Utils.getPropertiesFromFile(propertiesFile) - val confDriverMemory = properties.get("spark.driver.memory") - val confLibraryPath = properties.get("spark.driver.extraLibraryPath") - val confClasspath = properties.get("spark.driver.extraClassPath") - val confJavaOpts = properties.get("spark.driver.extraJavaOptions") - - // Favor Spark submit arguments over the equivalent configs in the properties file. - // Note that we do not actually use the Spark submit values for library path, classpath, - // and Java opts here, because we have already captured them in Bash. - - val newDriverMemory = submitDriverMemory - .orElse(confDriverMemory) - .getOrElse(defaultDriverMemory) - - val newClasspath = - if (submitClasspath.isDefined) { - classpath - } else { - classpath + confClasspath.map(sys.props("path.separator") + _).getOrElse("") - } - - val newJavaOpts = - if (submitJavaOpts.isDefined) { - // SPARK_SUBMIT_OPTS is already captured in JAVA_OPTS - javaOpts - } else { - javaOpts + confJavaOpts.map(" " + _).getOrElse("") - } - - val filteredJavaOpts = Utils.splitCommandString(newJavaOpts) - .filterNot(_.startsWith("-Xms")) - .filterNot(_.startsWith("-Xmx")) - - // Build up command - val command: Seq[String] = - Seq(runner) ++ - Seq("-cp", newClasspath) ++ - filteredJavaOpts ++ - Seq(s"-Xms$newDriverMemory", s"-Xmx$newDriverMemory") ++ - Seq("org.apache.spark.deploy.SparkSubmit") ++ - submitArgs - - // Print the launch command. This follows closely the format used in `bin/spark-class`. - if (sys.env.contains("SPARK_PRINT_LAUNCH_COMMAND")) { - System.err.print("Spark Command: ") - System.err.println(command.mkString(" ")) - System.err.println("========================================\n") - } - - // Start the driver JVM - val filteredCommand = command.filter(_.nonEmpty) - val builder = new ProcessBuilder(filteredCommand) - val env = builder.environment() - - if (submitLibraryPath.isEmpty && confLibraryPath.nonEmpty) { - val libraryPaths = confLibraryPath ++ sys.env.get(Utils.libraryPathEnvName) - env.put(Utils.libraryPathEnvName, libraryPaths.mkString(sys.props("path.separator"))) - } - - val process = builder.start() - - // If we kill an app while it's running, its sub-process should be killed too. - Runtime.getRuntime().addShutdownHook(new Thread() { - override def run() = { - if (process != null) { - process.destroy() - process.waitFor() - } - } - }) - - // Redirect stdout and stderr from the child JVM - val stdoutThread = new RedirectThread(process.getInputStream, System.out, "redirect stdout") - val stderrThread = new RedirectThread(process.getErrorStream, System.err, "redirect stderr") - stdoutThread.start() - stderrThread.start() - - // Redirect stdin to child JVM only if we're not running Windows. This is because the - // subprocess there already reads directly from our stdin, so we should avoid spawning a - // thread that contends with the subprocess in reading from System.in. - val isWindows = Utils.isWindows - val isSubprocess = sys.env.contains("IS_SUBPROCESS") - if (!isWindows) { - val stdinThread = new RedirectThread(System.in, process.getOutputStream, "redirect stdin", - propagateEof = true) - stdinThread.start() - // Spark submit (JVM) may run as a subprocess, and so this JVM should terminate on - // broken pipe, signaling that the parent process has exited. This is the case if the - // application is launched directly from python, as in the PySpark shell. In Windows, - // the termination logic is handled in java_gateway.py - if (isSubprocess) { - stdinThread.join() - process.destroy() - } - } - val returnCode = process.waitFor() - stdoutThread.join() - stderrThread.join() - sys.exit(returnCode) - } - -} diff --git a/core/src/main/scala/org/apache/spark/deploy/worker/CommandUtils.scala b/core/src/main/scala/org/apache/spark/deploy/worker/CommandUtils.scala index 3e013c32096c5..83f78cf47306c 100644 --- a/core/src/main/scala/org/apache/spark/deploy/worker/CommandUtils.scala +++ b/core/src/main/scala/org/apache/spark/deploy/worker/CommandUtils.scala @@ -20,10 +20,12 @@ package org.apache.spark.deploy.worker import java.io.{File, FileOutputStream, InputStream, IOException} import java.lang.System._ +import scala.collection.JavaConversions._ import scala.collection.Map import org.apache.spark.Logging import org.apache.spark.deploy.Command +import org.apache.spark.launcher.WorkerCommandBuilder import org.apache.spark.util.Utils /** @@ -54,12 +56,10 @@ object CommandUtils extends Logging { } private def buildCommandSeq(command: Command, memory: Int, sparkHome: String): Seq[String] = { - val runner = sys.env.get("JAVA_HOME").map(_ + "/bin/java").getOrElse("java") - // SPARK-698: do not call the run.cmd script, as process.destroy() // fails to kill a process tree on Windows - Seq(runner) ++ buildJavaOpts(command, memory, sparkHome) ++ Seq(command.mainClass) ++ - command.arguments + val cmd = new WorkerCommandBuilder(sparkHome, memory, command).buildCommand() + cmd.toSeq ++ Seq(command.mainClass) ++ command.arguments } /** @@ -92,44 +92,6 @@ object CommandUtils extends Logging { command.javaOpts) } - /** - * Attention: this must always be aligned with the environment variables in the run scripts and - * the way the JAVA_OPTS are assembled there. - */ - private def buildJavaOpts(command: Command, memory: Int, sparkHome: String): Seq[String] = { - val memoryOpts = Seq(s"-Xms${memory}M", s"-Xmx${memory}M") - - // Exists for backwards compatibility with older Spark versions - val workerLocalOpts = Option(getenv("SPARK_JAVA_OPTS")).map(Utils.splitCommandString) - .getOrElse(Nil) - if (workerLocalOpts.length > 0) { - logWarning("SPARK_JAVA_OPTS was set on the worker. It is deprecated in Spark 1.0.") - logWarning("Set SPARK_LOCAL_DIRS for node-specific storage locations.") - } - - // Figure out our classpath with the external compute-classpath script - val ext = if (System.getProperty("os.name").startsWith("Windows")) ".cmd" else ".sh" - val classPath = Utils.executeAndGetOutput( - Seq(sparkHome + "/bin/compute-classpath" + ext), - extraEnvironment = command.environment) - val userClassPath = command.classPathEntries ++ Seq(classPath) - - val javaVersion = System.getProperty("java.version") - - val javaOpts = workerLocalOpts ++ command.javaOpts - - val permGenOpt = - if (!javaVersion.startsWith("1.8") && !javaOpts.exists(_.startsWith("-XX:MaxPermSize="))) { - // do not specify -XX:MaxPermSize if it was already specified by user - Some("-XX:MaxPermSize=128m") - } else { - None - } - - Seq("-cp", userClassPath.filterNot(_.isEmpty).mkString(File.pathSeparator)) ++ - permGenOpt ++ javaOpts ++ memoryOpts - } - /** Spawn a thread that will redirect a given stream to a file */ def redirectStream(in: InputStream, file: File) { val out = new FileOutputStream(file, true) diff --git a/core/src/main/scala/org/apache/spark/executor/Executor.scala b/core/src/main/scala/org/apache/spark/executor/Executor.scala index bed0a08d4d515..a897e532184ac 100644 --- a/core/src/main/scala/org/apache/spark/executor/Executor.scala +++ b/core/src/main/scala/org/apache/spark/executor/Executor.scala @@ -49,7 +49,6 @@ private[spark] class Executor( isLocal: Boolean = false) extends Logging { - logInfo(s"Starting executor ID $executorId on host $executorHostname") // Application dependencies (added through SparkContext) that we've fetched so far on this node. diff --git a/core/src/main/scala/org/apache/spark/launcher/SparkSubmitArgumentsParser.scala b/core/src/main/scala/org/apache/spark/launcher/SparkSubmitArgumentsParser.scala new file mode 100644 index 0000000000000..a835012531052 --- /dev/null +++ b/core/src/main/scala/org/apache/spark/launcher/SparkSubmitArgumentsParser.scala @@ -0,0 +1,25 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher + +/** + * This class makes SparkSubmitOptionParser visible for Spark code outside of the `launcher` + * package, since Java doesn't have a feature similar to `private[spark]`, and we don't want + * that class to be public. + */ +private[spark] abstract class SparkSubmitArgumentsParser extends SparkSubmitOptionParser diff --git a/core/src/main/scala/org/apache/spark/launcher/WorkerCommandBuilder.scala b/core/src/main/scala/org/apache/spark/launcher/WorkerCommandBuilder.scala new file mode 100644 index 0000000000000..9be98723aed14 --- /dev/null +++ b/core/src/main/scala/org/apache/spark/launcher/WorkerCommandBuilder.scala @@ -0,0 +1,50 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher + +import java.io.File +import java.util.{HashMap => JHashMap, List => JList, Map => JMap} + +import scala.collection.JavaConversions._ + +import org.apache.spark.deploy.Command + +/** + * This class is used by CommandUtils. It uses some package-private APIs in SparkLauncher, and since + * Java doesn't have a feature similar to `private[spark]`, and we don't want that class to be + * public, needs to live in the same package as the rest of the library. + */ +private[spark] class WorkerCommandBuilder(sparkHome: String, memoryMb: Int, command: Command) + extends AbstractCommandBuilder { + + childEnv.putAll(command.environment) + childEnv.put(CommandBuilderUtils.ENV_SPARK_HOME, sparkHome) + + override def buildCommand(env: JMap[String, String]): JList[String] = { + val cmd = buildJavaCommand(command.classPathEntries.mkString(File.pathSeparator)) + cmd.add(s"-Xms${memoryMb}M") + cmd.add(s"-Xmx${memoryMb}M") + command.javaOpts.foreach(cmd.add) + addPermGenSizeOpt(cmd) + addOptionString(cmd, getenv("SPARK_JAVA_OPTS")) + cmd + } + + def buildCommand(): JList[String] = buildCommand(new JHashMap[String, String]()) + +} diff --git a/docs/programming-guide.md b/docs/programming-guide.md index b5e04bd0c610d..fa0b4e3705d6e 100644 --- a/docs/programming-guide.md +++ b/docs/programming-guide.md @@ -1369,6 +1369,11 @@ The [application submission guide](submitting-applications.html) describes how t In short, once you package your application into a JAR (for Java/Scala) or a set of `.py` or `.zip` files (for Python), the `bin/spark-submit` script lets you submit it to any supported cluster manager. +# Launching Spark jobs from Java / Scala + +The [org.apache.spark.launcher](api/java/index.html?org/apache/spark/launcher/package-summary.html) +package provides classes for launching Spark jobs as child processes using a simple Java API. + # Unit Testing Spark is friendly to unit testing with any popular unit test framework. diff --git a/launcher/pom.xml b/launcher/pom.xml new file mode 100644 index 0000000000000..ccbd9d0419a98 --- /dev/null +++ b/launcher/pom.xml @@ -0,0 +1,83 @@ + + + + + 4.0.0 + + org.apache.spark + spark-parent_2.10 + 1.3.0-SNAPSHOT + ../pom.xml + + + org.apache.spark + spark-launcher_2.10 + jar + Spark Launcher Project + http://spark.apache.org/ + + launcher + + + + + + log4j + log4j + test + + + junit + junit + test + + + org.mockito + mockito-all + test + + + org.scalatest + scalatest_${scala.binary.version} + test + + + org.slf4j + slf4j-api + test + + + org.slf4j + slf4j-log4j12 + test + + + + + org.apache.hadoop + hadoop-client + test + + + + + target/scala-${scala.binary.version}/classes + target/scala-${scala.binary.version}/test-classes + + diff --git a/launcher/src/main/java/org/apache/spark/launcher/AbstractCommandBuilder.java b/launcher/src/main/java/org/apache/spark/launcher/AbstractCommandBuilder.java new file mode 100644 index 0000000000000..dc90e9e987234 --- /dev/null +++ b/launcher/src/main/java/org/apache/spark/launcher/AbstractCommandBuilder.java @@ -0,0 +1,362 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.io.BufferedReader; +import java.io.File; +import java.io.FileFilter; +import java.io.FileInputStream; +import java.io.InputStreamReader; +import java.io.IOException; +import java.util.ArrayList; +import java.util.Arrays; +import java.util.Collections; +import java.util.HashMap; +import java.util.List; +import java.util.Map; +import java.util.Properties; +import java.util.jar.JarFile; +import java.util.regex.Pattern; + +import static org.apache.spark.launcher.CommandBuilderUtils.*; + +/** + * Abstract Spark command builder that defines common functionality. + */ +abstract class AbstractCommandBuilder { + + boolean verbose; + String appName; + String appResource; + String deployMode; + String javaHome; + String mainClass; + String master; + String propertiesFile; + final List appArgs; + final List jars; + final List files; + final List pyFiles; + final Map childEnv; + final Map conf; + + public AbstractCommandBuilder() { + this.appArgs = new ArrayList(); + this.childEnv = new HashMap(); + this.conf = new HashMap(); + this.files = new ArrayList(); + this.jars = new ArrayList(); + this.pyFiles = new ArrayList(); + } + + /** + * Builds the command to execute. + * + * @param env A map containing environment variables for the child process. It may already contain + * entries defined by the user (such as SPARK_HOME, or those defined by the + * SparkLauncher constructor that takes an environment), and may be modified to + * include other variables needed by the process to be executed. + */ + abstract List buildCommand(Map env) throws IOException; + + /** + * Builds a list of arguments to run java. + * + * This method finds the java executable to use and appends JVM-specific options for running a + * class with Spark in the classpath. It also loads options from the "java-opts" file in the + * configuration directory being used. + * + * Callers should still add at least the class to run, as well as any arguments to pass to the + * class. + */ + List buildJavaCommand(String extraClassPath) throws IOException { + List cmd = new ArrayList(); + if (javaHome == null) { + cmd.add(join(File.separator, System.getProperty("java.home"), "bin", "java")); + } else { + cmd.add(join(File.separator, javaHome, "bin", "java")); + } + + // Load extra JAVA_OPTS from conf/java-opts, if it exists. + File javaOpts = new File(join(File.separator, getConfDir(), "java-opts")); + if (javaOpts.isFile()) { + BufferedReader br = new BufferedReader(new InputStreamReader( + new FileInputStream(javaOpts), "UTF-8")); + try { + String line; + while ((line = br.readLine()) != null) { + addOptionString(cmd, line); + } + } finally { + br.close(); + } + } + + cmd.add("-cp"); + cmd.add(join(File.pathSeparator, buildClassPath(extraClassPath))); + return cmd; + } + + /** + * Adds the default perm gen size option for Spark if the VM requires it and the user hasn't + * set it. + */ + void addPermGenSizeOpt(List cmd) { + // Don't set MaxPermSize for Java 8 and later. + String[] version = System.getProperty("java.version").split("\\."); + if (Integer.parseInt(version[0]) > 1 || Integer.parseInt(version[1]) > 7) { + return; + } + + for (String arg : cmd) { + if (arg.startsWith("-XX:MaxPermSize=")) { + return; + } + } + + cmd.add("-XX:MaxPermSize=128m"); + } + + void addOptionString(List cmd, String options) { + if (!isEmpty(options)) { + for (String opt : parseOptionString(options)) { + cmd.add(opt); + } + } + } + + /** + * Builds the classpath for the application. Returns a list with one classpath entry per element; + * each entry is formatted in the way expected by java.net.URLClassLoader (more + * specifically, with trailing slashes for directories). + */ + List buildClassPath(String appClassPath) throws IOException { + String sparkHome = getSparkHome(); + String scala = getScalaVersion(); + + List cp = new ArrayList(); + addToClassPath(cp, getenv("SPARK_CLASSPATH")); + addToClassPath(cp, appClassPath); + + addToClassPath(cp, getConfDir()); + + boolean prependClasses = !isEmpty(getenv("SPARK_PREPEND_CLASSES")); + boolean isTesting = "1".equals(getenv("SPARK_TESTING")); + if (prependClasses || isTesting) { + List projects = Arrays.asList("core", "repl", "mllib", "bagel", "graphx", + "streaming", "tools", "sql/catalyst", "sql/core", "sql/hive", "sql/hive-thriftserver", + "yarn", "launcher"); + if (prependClasses) { + System.err.println( + "NOTE: SPARK_PREPEND_CLASSES is set, placing locally compiled Spark classes ahead of " + + "assembly."); + for (String project : projects) { + addToClassPath(cp, String.format("%s/%s/target/scala-%s/classes", sparkHome, project, + scala)); + } + } + if (isTesting) { + for (String project : projects) { + addToClassPath(cp, String.format("%s/%s/target/scala-%s/test-classes", sparkHome, + project, scala)); + } + } + + // Add this path to include jars that are shaded in the final deliverable created during + // the maven build. These jars are copied to this directory during the build. + addToClassPath(cp, String.format("%s/core/target/jars/*", sparkHome)); + } + + String assembly = findAssembly(scala); + addToClassPath(cp, assembly); + + // When Hive support is needed, Datanucleus jars must be included on the classpath. Datanucleus + // jars do not work if only included in the uber jar as plugin.xml metadata is lost. Both sbt + // and maven will populate "lib_managed/jars/" with the datanucleus jars when Spark is built + // with Hive, so first check if the datanucleus jars exist, and then ensure the current Spark + // assembly is built for Hive, before actually populating the CLASSPATH with the jars. + // + // This block also serves as a check for SPARK-1703, when the assembly jar is built with + // Java 7 and ends up with too many files, causing issues with other JDK versions. + boolean needsDataNucleus = false; + JarFile assemblyJar = null; + try { + assemblyJar = new JarFile(assembly); + needsDataNucleus = assemblyJar.getEntry("org/apache/hadoop/hive/ql/exec/") != null; + } catch (IOException ioe) { + if (ioe.getMessage().indexOf("invalid CEN header") >= 0) { + System.err.println( + "Loading Spark jar failed.\n" + + "This is likely because Spark was compiled with Java 7 and run\n" + + "with Java 6 (see SPARK-1703). Please use Java 7 to run Spark\n" + + "or build Spark with Java 6."); + System.exit(1); + } else { + throw ioe; + } + } finally { + if (assemblyJar != null) { + try { + assemblyJar.close(); + } catch (IOException e) { + // Ignore. + } + } + } + + if (needsDataNucleus) { + System.err.println("Spark assembly has been built with Hive, including Datanucleus jars " + + "in classpath."); + File libdir; + if (new File(sparkHome, "RELEASE").isFile()) { + libdir = new File(sparkHome, "lib"); + } else { + libdir = new File(sparkHome, "lib_managed/jars"); + } + + checkState(libdir.isDirectory(), "Library directory '%s' does not exist.", + libdir.getAbsolutePath()); + for (File jar : libdir.listFiles()) { + if (jar.getName().startsWith("datanucleus-")) { + addToClassPath(cp, jar.getAbsolutePath()); + } + } + } + + addToClassPath(cp, getenv("HADOOP_CONF_DIR")); + addToClassPath(cp, getenv("YARN_CONF_DIR")); + addToClassPath(cp, getenv("SPARK_DIST_CLASSPATH")); + return cp; + } + + /** + * Adds entries to the classpath. + * + * @param cp List to which the new entries are appended. + * @param entries New classpath entries (separated by File.pathSeparator). + */ + private void addToClassPath(List cp, String entries) { + if (isEmpty(entries)) { + return; + } + String[] split = entries.split(Pattern.quote(File.pathSeparator)); + for (String entry : split) { + if (!isEmpty(entry)) { + if (new File(entry).isDirectory() && !entry.endsWith(File.separator)) { + entry += File.separator; + } + cp.add(entry); + } + } + } + + String getScalaVersion() { + String scala = getenv("SPARK_SCALA_VERSION"); + if (scala != null) { + return scala; + } + + String sparkHome = getSparkHome(); + File scala210 = new File(sparkHome, "assembly/target/scala-2.10"); + File scala211 = new File(sparkHome, "assembly/target/scala-2.11"); + checkState(!scala210.isDirectory() || !scala211.isDirectory(), + "Presence of build for both scala versions (2.10 and 2.11) detected.\n" + + "Either clean one of them or set SPARK_SCALA_VERSION in your environment."); + if (scala210.isDirectory()) { + return "2.10"; + } else { + checkState(scala211.isDirectory(), "Cannot find any assembly build directories."); + return "2.11"; + } + } + + String getSparkHome() { + String path = getenv(ENV_SPARK_HOME); + checkState(path != null, + "Spark home not found; set it explicitly or use the SPARK_HOME environment variable."); + return path; + } + + /** + * Loads the configuration file for the application, if it exists. This is either the + * user-specified properties file, or the spark-defaults.conf file under the Spark configuration + * directory. + */ + Properties loadPropertiesFile() throws IOException { + Properties props = new Properties(); + File propsFile; + if (propertiesFile != null) { + propsFile = new File(propertiesFile); + checkArgument(propsFile.isFile(), "Invalid properties file '%s'.", propertiesFile); + } else { + propsFile = new File(getConfDir(), DEFAULT_PROPERTIES_FILE); + } + + if (propsFile.isFile()) { + FileInputStream fd = null; + try { + fd = new FileInputStream(propsFile); + props.load(new InputStreamReader(fd, "UTF-8")); + } finally { + if (fd != null) { + try { + fd.close(); + } catch (IOException e) { + // Ignore. + } + } + } + } + + return props; + } + + String getenv(String key) { + return firstNonEmpty(childEnv.get(key), System.getenv(key)); + } + + private String findAssembly(String scalaVersion) { + String sparkHome = getSparkHome(); + File libdir; + if (new File(sparkHome, "RELEASE").isFile()) { + libdir = new File(sparkHome, "lib"); + checkState(libdir.isDirectory(), "Library directory '%s' does not exist.", + libdir.getAbsolutePath()); + } else { + libdir = new File(sparkHome, String.format("assembly/target/scala-%s", scalaVersion)); + } + + final Pattern re = Pattern.compile("spark-assembly.*hadoop.*\\.jar"); + FileFilter filter = new FileFilter() { + @Override + public boolean accept(File file) { + return file.isFile() && re.matcher(file.getName()).matches(); + } + }; + File[] assemblies = libdir.listFiles(filter); + checkState(assemblies != null && assemblies.length > 0, "No assemblies found in '%s'.", libdir); + checkState(assemblies.length == 1, "Multiple assemblies found in '%s'.", libdir); + return assemblies[0].getAbsolutePath(); + } + + private String getConfDir() { + String confDir = getenv("SPARK_CONF_DIR"); + return confDir != null ? confDir : join(File.separator, getSparkHome(), "conf"); + } + +} diff --git a/launcher/src/main/java/org/apache/spark/launcher/CommandBuilderUtils.java b/launcher/src/main/java/org/apache/spark/launcher/CommandBuilderUtils.java new file mode 100644 index 0000000000000..9b04732afee14 --- /dev/null +++ b/launcher/src/main/java/org/apache/spark/launcher/CommandBuilderUtils.java @@ -0,0 +1,296 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.io.File; +import java.util.ArrayList; +import java.util.List; +import java.util.Map; + +/** + * Helper methods for command builders. + */ +class CommandBuilderUtils { + + static final String DEFAULT_MEM = "512m"; + static final String DEFAULT_PROPERTIES_FILE = "spark-defaults.conf"; + static final String ENV_SPARK_HOME = "SPARK_HOME"; + + /** Returns whether the given string is null or empty. */ + static boolean isEmpty(String s) { + return s == null || s.isEmpty(); + } + + /** Joins a list of strings using the given separator. */ + static String join(String sep, String... elements) { + StringBuilder sb = new StringBuilder(); + for (String e : elements) { + if (e != null) { + if (sb.length() > 0) { + sb.append(sep); + } + sb.append(e); + } + } + return sb.toString(); + } + + /** Joins a list of strings using the given separator. */ + static String join(String sep, Iterable elements) { + StringBuilder sb = new StringBuilder(); + for (String e : elements) { + if (e != null) { + if (sb.length() > 0) { + sb.append(sep); + } + sb.append(e); + } + } + return sb.toString(); + } + + /** + * Returns the first non-empty value mapped to the given key in the given maps, or null otherwise. + */ + static String firstNonEmptyValue(String key, Map... maps) { + for (Map map : maps) { + String value = (String) map.get(key); + if (!isEmpty(value)) { + return value; + } + } + return null; + } + + /** Returns the first non-empty, non-null string in the given list, or null otherwise. */ + static String firstNonEmpty(String... candidates) { + for (String s : candidates) { + if (!isEmpty(s)) { + return s; + } + } + return null; + } + + /** Returns the name of the env variable that holds the native library path. */ + static String getLibPathEnvName() { + if (isWindows()) { + return "PATH"; + } + + String os = System.getProperty("os.name"); + if (os.startsWith("Mac OS X")) { + return "DYLD_LIBRARY_PATH"; + } else { + return "LD_LIBRARY_PATH"; + } + } + + /** Returns whether the OS is Windows. */ + static boolean isWindows() { + String os = System.getProperty("os.name"); + return os.startsWith("Windows"); + } + + /** + * Updates the user environment, appending the given pathList to the existing value of the given + * environment variable (or setting it if it hasn't yet been set). + */ + static void mergeEnvPathList(Map userEnv, String envKey, String pathList) { + if (!isEmpty(pathList)) { + String current = firstNonEmpty(userEnv.get(envKey), System.getenv(envKey)); + userEnv.put(envKey, join(File.pathSeparator, current, pathList)); + } + } + + /** + * Parse a string as if it were a list of arguments, following bash semantics. + * For example: + * + * Input: "\"ab cd\" efgh 'i \" j'" + * Output: [ "ab cd", "efgh", "i \" j" ] + */ + static List parseOptionString(String s) { + List opts = new ArrayList(); + StringBuilder opt = new StringBuilder(); + boolean inOpt = false; + boolean inSingleQuote = false; + boolean inDoubleQuote = false; + boolean escapeNext = false; + + // This is needed to detect when a quoted empty string is used as an argument ("" or ''). + boolean hasData = false; + + for (int i = 0; i < s.length(); i++) { + int c = s.codePointAt(i); + if (escapeNext) { + opt.appendCodePoint(c); + escapeNext = false; + } else if (inOpt) { + switch (c) { + case '\\': + if (inSingleQuote) { + opt.appendCodePoint(c); + } else { + escapeNext = true; + } + break; + case '\'': + if (inDoubleQuote) { + opt.appendCodePoint(c); + } else { + inSingleQuote = !inSingleQuote; + } + break; + case '"': + if (inSingleQuote) { + opt.appendCodePoint(c); + } else { + inDoubleQuote = !inDoubleQuote; + } + break; + default: + if (!Character.isWhitespace(c) || inSingleQuote || inDoubleQuote) { + opt.appendCodePoint(c); + } else { + opts.add(opt.toString()); + opt.setLength(0); + inOpt = false; + hasData = false; + } + } + } else { + switch (c) { + case '\'': + inSingleQuote = true; + inOpt = true; + hasData = true; + break; + case '"': + inDoubleQuote = true; + inOpt = true; + hasData = true; + break; + case '\\': + escapeNext = true; + inOpt = true; + hasData = true; + break; + default: + if (!Character.isWhitespace(c)) { + inOpt = true; + hasData = true; + opt.appendCodePoint(c); + } + } + } + } + + checkArgument(!inSingleQuote && !inDoubleQuote && !escapeNext, "Invalid option string: %s", s); + if (hasData) { + opts.add(opt.toString()); + } + return opts; + } + + /** Throws IllegalArgumentException if the given object is null. */ + static void checkNotNull(Object o, String arg) { + if (o == null) { + throw new IllegalArgumentException(String.format("'%s' must not be null.", arg)); + } + } + + /** Throws IllegalArgumentException with the given message if the check is false. */ + static void checkArgument(boolean check, String msg, Object... args) { + if (!check) { + throw new IllegalArgumentException(String.format(msg, args)); + } + } + + /** Throws IllegalStateException with the given message if the check is false. */ + static void checkState(boolean check, String msg, Object... args) { + if (!check) { + throw new IllegalStateException(String.format(msg, args)); + } + } + + /** + * Quote a command argument for a command to be run by a Windows batch script, if the argument + * needs quoting. Arguments only seem to need quotes in batch scripts if they have certain + * special characters, some of which need extra (and different) escaping. + * + * For example: + * original single argument: ab="cde fgh" + * quoted: "ab^=""cde fgh""" + */ + static String quoteForBatchScript(String arg) { + + boolean needsQuotes = false; + for (int i = 0; i < arg.length(); i++) { + int c = arg.codePointAt(i); + if (Character.isWhitespace(c) || c == '"' || c == '=') { + needsQuotes = true; + break; + } + } + if (!needsQuotes) { + return arg; + } + StringBuilder quoted = new StringBuilder(); + quoted.append("\""); + for (int i = 0; i < arg.length(); i++) { + int cp = arg.codePointAt(i); + switch (cp) { + case '"': + quoted.append('"'); + break; + + case '=': + quoted.append('^'); + break; + + default: + break; + } + quoted.appendCodePoint(cp); + } + quoted.append("\""); + return quoted.toString(); + } + + /** + * Quotes a string so that it can be used in a command string and be parsed back into a single + * argument by python's "shlex.split()" function. + * + * Basically, just add simple escapes. E.g.: + * original single argument : ab "cd" ef + * after: "ab \"cd\" ef" + */ + static String quoteForPython(String s) { + StringBuilder quoted = new StringBuilder().append('"'); + for (int i = 0; i < s.length(); i++) { + int cp = s.codePointAt(i); + if (cp == '"' || cp == '\\') { + quoted.appendCodePoint('\\'); + } + quoted.appendCodePoint(cp); + } + return quoted.append('"').toString(); + } + +} diff --git a/launcher/src/main/java/org/apache/spark/launcher/Main.java b/launcher/src/main/java/org/apache/spark/launcher/Main.java new file mode 100644 index 0000000000000..206acfb514d86 --- /dev/null +++ b/launcher/src/main/java/org/apache/spark/launcher/Main.java @@ -0,0 +1,173 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.util.ArrayList; +import java.util.Arrays; +import java.util.HashMap; +import java.util.List; +import java.util.Map; + +import static org.apache.spark.launcher.CommandBuilderUtils.*; + +/** + * Command line interface for the Spark launcher. Used internally by Spark scripts. + */ +class Main { + + /** + * Usage: Main [class] [class args] + *

+ * This CLI works in two different modes: + *

    + *
  • "spark-submit": if class is "org.apache.spark.deploy.SparkSubmit", the + * {@link SparkLauncher} class is used to launch a Spark application.
  • + *
  • "spark-class": if another class is provided, an internal Spark class is run.
  • + *
+ * + * This class works in tandem with the "bin/spark-class" script on Unix-like systems, and + * "bin/spark-class2.cmd" batch script on Windows to execute the final command. + *

+ * On Unix-like systems, the output is a list of command arguments, separated by the NULL + * character. On Windows, the output is a command line suitable for direct execution from the + * script. + */ + public static void main(String[] argsArray) throws Exception { + checkArgument(argsArray.length > 0, "Not enough arguments: missing class name."); + + List args = new ArrayList(Arrays.asList(argsArray)); + String className = args.remove(0); + + boolean printLaunchCommand; + boolean printUsage; + AbstractCommandBuilder builder; + try { + if (className.equals("org.apache.spark.deploy.SparkSubmit")) { + builder = new SparkSubmitCommandBuilder(args); + } else { + builder = new SparkClassCommandBuilder(className, args); + } + printLaunchCommand = !isEmpty(System.getenv("SPARK_PRINT_LAUNCH_COMMAND")); + printUsage = false; + } catch (IllegalArgumentException e) { + builder = new UsageCommandBuilder(e.getMessage()); + printLaunchCommand = false; + printUsage = true; + } + + Map env = new HashMap(); + List cmd = builder.buildCommand(env); + if (printLaunchCommand) { + System.err.println("Spark Command: " + join(" ", cmd)); + System.err.println("========================================"); + } + + if (isWindows()) { + // When printing the usage message, we can't use "cmd /v" since that prevents the env + // variable from being seen in the caller script. So do not call prepareWindowsCommand(). + if (printUsage) { + System.out.println(join(" ", cmd)); + } else { + System.out.println(prepareWindowsCommand(cmd, env)); + } + } else { + // In bash, use NULL as the arg separator since it cannot be used in an argument. + List bashCmd = prepareBashCommand(cmd, env); + for (String c : bashCmd) { + System.out.print(c); + System.out.print('\0'); + } + } + } + + /** + * Prepare a command line for execution from a Windows batch script. + * + * The method quotes all arguments so that spaces are handled as expected. Quotes within arguments + * are "double quoted" (which is batch for escaping a quote). This page has more details about + * quoting and other batch script fun stuff: http://ss64.com/nt/syntax-esc.html + * + * The command is executed using "cmd /c" and formatted in single line, since that's the + * easiest way to consume this from a batch script (see spark-class2.cmd). + */ + private static String prepareWindowsCommand(List cmd, Map childEnv) { + StringBuilder cmdline = new StringBuilder("cmd /c \""); + for (Map.Entry e : childEnv.entrySet()) { + cmdline.append(String.format("set %s=%s", e.getKey(), e.getValue())); + cmdline.append(" && "); + } + for (String arg : cmd) { + cmdline.append(quoteForBatchScript(arg)); + cmdline.append(" "); + } + cmdline.append("\""); + return cmdline.toString(); + } + + /** + * Prepare the command for execution from a bash script. The final command will have commands to + * set up any needed environment variables needed by the child process. + */ + private static List prepareBashCommand(List cmd, Map childEnv) { + if (childEnv.isEmpty()) { + return cmd; + } + + List newCmd = new ArrayList(); + newCmd.add("env"); + + for (Map.Entry e : childEnv.entrySet()) { + newCmd.add(String.format("%s=%s", e.getKey(), e.getValue())); + } + newCmd.addAll(cmd); + return newCmd; + } + + /** + * Internal builder used when command line parsing fails. This will behave differently depending + * on the platform: + * + * - On Unix-like systems, it will print a call to the "usage" function with two arguments: the + * the error string, and the exit code to use. The function is expected to print the command's + * usage and exit with the provided exit code. The script should use "export -f usage" after + * declaring a function called "usage", so that the function is available to downstream scripts. + * + * - On Windows it will set the variable "SPARK_LAUNCHER_USAGE_ERROR" to the usage error message. + * The batch script should check for this variable and print its usage, since batch scripts + * don't really support the "export -f" functionality used in bash. + */ + private static class UsageCommandBuilder extends AbstractCommandBuilder { + + private final String message; + + UsageCommandBuilder(String message) { + this.message = message; + } + + @Override + public List buildCommand(Map env) { + if (isWindows()) { + return Arrays.asList("set", "SPARK_LAUNCHER_USAGE_ERROR=" + message); + } else { + return Arrays.asList("usage", message, "1"); + } + } + + } + +} diff --git a/launcher/src/main/java/org/apache/spark/launcher/SparkClassCommandBuilder.java b/launcher/src/main/java/org/apache/spark/launcher/SparkClassCommandBuilder.java new file mode 100644 index 0000000000000..e601a0a19f368 --- /dev/null +++ b/launcher/src/main/java/org/apache/spark/launcher/SparkClassCommandBuilder.java @@ -0,0 +1,108 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.io.File; +import java.io.IOException; +import java.util.ArrayList; +import java.util.List; +import java.util.Map; +import java.util.regex.Pattern; + +import static org.apache.spark.launcher.CommandBuilderUtils.*; + +/** + * Command builder for internal Spark classes. + *

+ * This class handles building the command to launch all internal Spark classes except for + * SparkSubmit (which is handled by {@link SparkSubmitCommandBuilder} class. + */ +class SparkClassCommandBuilder extends AbstractCommandBuilder { + + private final String className; + private final List classArgs; + + SparkClassCommandBuilder(String className, List classArgs) { + this.className = className; + this.classArgs = classArgs; + } + + @Override + public List buildCommand(Map env) throws IOException { + List javaOptsKeys = new ArrayList(); + String memKey = null; + String extraClassPath = null; + + // Master, Worker, and HistoryServer use SPARK_DAEMON_JAVA_OPTS (and specific opts) + + // SPARK_DAEMON_MEMORY. + if (className.equals("org.apache.spark.deploy.master.Master")) { + javaOptsKeys.add("SPARK_DAEMON_JAVA_OPTS"); + javaOptsKeys.add("SPARK_MASTER_OPTS"); + memKey = "SPARK_DAEMON_MEMORY"; + } else if (className.equals("org.apache.spark.deploy.worker.Worker")) { + javaOptsKeys.add("SPARK_DAEMON_JAVA_OPTS"); + javaOptsKeys.add("SPARK_WORKER_OPTS"); + memKey = "SPARK_DAEMON_MEMORY"; + } else if (className.equals("org.apache.spark.deploy.history.HistoryServer")) { + javaOptsKeys.add("SPARK_DAEMON_JAVA_OPTS"); + javaOptsKeys.add("SPARK_HISTORY_OPTS"); + memKey = "SPARK_DAEMON_MEMORY"; + } else if (className.equals("org.apache.spark.executor.CoarseGrainedExecutorBackend")) { + javaOptsKeys.add("SPARK_JAVA_OPTS"); + javaOptsKeys.add("SPARK_EXECUTOR_OPTS"); + memKey = "SPARK_EXECUTOR_MEMORY"; + } else if (className.equals("org.apache.spark.executor.MesosExecutorBackend")) { + javaOptsKeys.add("SPARK_EXECUTOR_OPTS"); + memKey = "SPARK_EXECUTOR_MEMORY"; + } else if (className.startsWith("org.apache.spark.tools.")) { + String sparkHome = getSparkHome(); + File toolsDir = new File(join(File.separator, sparkHome, "tools", "target", + "scala-" + getScalaVersion())); + checkState(toolsDir.isDirectory(), "Cannot find tools build directory."); + + Pattern re = Pattern.compile("spark-tools_.*\\.jar"); + for (File f : toolsDir.listFiles()) { + if (re.matcher(f.getName()).matches()) { + extraClassPath = f.getAbsolutePath(); + break; + } + } + + checkState(extraClassPath != null, + "Failed to find Spark Tools Jar in %s.\n" + + "You need to run \"build/sbt tools/package\" before running %s.", + toolsDir.getAbsolutePath(), className); + + javaOptsKeys.add("SPARK_JAVA_OPTS"); + } + + List cmd = buildJavaCommand(extraClassPath); + for (String key : javaOptsKeys) { + addOptionString(cmd, System.getenv(key)); + } + + String mem = firstNonEmpty(memKey != null ? System.getenv(memKey) : null, DEFAULT_MEM); + cmd.add("-Xms" + mem); + cmd.add("-Xmx" + mem); + addPermGenSizeOpt(cmd); + cmd.add(className); + cmd.addAll(classArgs); + return cmd; + } + +} diff --git a/launcher/src/main/java/org/apache/spark/launcher/SparkLauncher.java b/launcher/src/main/java/org/apache/spark/launcher/SparkLauncher.java new file mode 100644 index 0000000000000..b566507ee6061 --- /dev/null +++ b/launcher/src/main/java/org/apache/spark/launcher/SparkLauncher.java @@ -0,0 +1,279 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.io.File; +import java.io.IOException; +import java.util.ArrayList; +import java.util.List; +import java.util.Map; + +import static org.apache.spark.launcher.CommandBuilderUtils.*; + +/** + * Launcher for Spark applications. + *

+ * Use this class to start Spark applications programmatically. The class uses a builder pattern + * to allow clients to configure the Spark application and launch it as a child process. + */ +public class SparkLauncher { + + /** The Spark master. */ + public static final String SPARK_MASTER = "spark.master"; + + /** Configuration key for the driver memory. */ + public static final String DRIVER_MEMORY = "spark.driver.memory"; + /** Configuration key for the driver class path. */ + public static final String DRIVER_EXTRA_CLASSPATH = "spark.driver.extraClassPath"; + /** Configuration key for the driver VM options. */ + public static final String DRIVER_EXTRA_JAVA_OPTIONS = "spark.driver.extraJavaOptions"; + /** Configuration key for the driver native library path. */ + public static final String DRIVER_EXTRA_LIBRARY_PATH = "spark.driver.extraLibraryPath"; + + /** Configuration key for the executor memory. */ + public static final String EXECUTOR_MEMORY = "spark.executor.memory"; + /** Configuration key for the executor class path. */ + public static final String EXECUTOR_EXTRA_CLASSPATH = "spark.executor.extraClassPath"; + /** Configuration key for the executor VM options. */ + public static final String EXECUTOR_EXTRA_JAVA_OPTIONS = "spark.executor.extraJavaOptions"; + /** Configuration key for the executor native library path. */ + public static final String EXECUTOR_EXTRA_LIBRARY_PATH = "spark.executor.extraLibraryOptions"; + /** Configuration key for the number of executor CPU cores. */ + public static final String EXECUTOR_CORES = "spark.executor.cores"; + + private final SparkSubmitCommandBuilder builder; + + public SparkLauncher() { + this(null); + } + + /** + * Creates a launcher that will set the given environment variables in the child. + * + * @param env Environment variables to set. + */ + public SparkLauncher(Map env) { + this.builder = new SparkSubmitCommandBuilder(); + if (env != null) { + this.builder.childEnv.putAll(env); + } + } + + /** + * Set a custom JAVA_HOME for launching the Spark application. + * + * @param javaHome Path to the JAVA_HOME to use. + * @return This launcher. + */ + public SparkLauncher setJavaHome(String javaHome) { + checkNotNull(javaHome, "javaHome"); + builder.javaHome = javaHome; + return this; + } + + /** + * Set a custom Spark installation location for the application. + * + * @param sparkHome Path to the Spark installation to use. + * @return This launcher. + */ + public SparkLauncher setSparkHome(String sparkHome) { + checkNotNull(sparkHome, "sparkHome"); + builder.childEnv.put(ENV_SPARK_HOME, sparkHome); + return this; + } + + /** + * Set a custom properties file with Spark configuration for the application. + * + * @param path Path to custom properties file to use. + * @return This launcher. + */ + public SparkLauncher setPropertiesFile(String path) { + checkNotNull(path, "path"); + builder.propertiesFile = path; + return this; + } + + /** + * Set a single configuration value for the application. + * + * @param key Configuration key. + * @param value The value to use. + * @return This launcher. + */ + public SparkLauncher setConf(String key, String value) { + checkNotNull(key, "key"); + checkNotNull(value, "value"); + checkArgument(key.startsWith("spark."), "'key' must start with 'spark.'"); + builder.conf.put(key, value); + return this; + } + + /** + * Set the application name. + * + * @param appName Application name. + * @return This launcher. + */ + public SparkLauncher setAppName(String appName) { + checkNotNull(appName, "appName"); + builder.appName = appName; + return this; + } + + /** + * Set the Spark master for the application. + * + * @param master Spark master. + * @return This launcher. + */ + public SparkLauncher setMaster(String master) { + checkNotNull(master, "master"); + builder.master = master; + return this; + } + + /** + * Set the deploy mode for the application. + * + * @param mode Deploy mode. + * @return This launcher. + */ + public SparkLauncher setDeployMode(String mode) { + checkNotNull(mode, "mode"); + builder.deployMode = mode; + return this; + } + + /** + * Set the main application resource. This should be the location of a jar file for Scala/Java + * applications, or a python script for PySpark applications. + * + * @param resource Path to the main application resource. + * @return This launcher. + */ + public SparkLauncher setAppResource(String resource) { + checkNotNull(resource, "resource"); + builder.appResource = resource; + return this; + } + + /** + * Sets the application class name for Java/Scala applications. + * + * @param mainClass Application's main class. + * @return This launcher. + */ + public SparkLauncher setMainClass(String mainClass) { + checkNotNull(mainClass, "mainClass"); + builder.mainClass = mainClass; + return this; + } + + /** + * Adds command line arguments for the application. + * + * @param args Arguments to pass to the application's main class. + * @return This launcher. + */ + public SparkLauncher addAppArgs(String... args) { + for (String arg : args) { + checkNotNull(arg, "arg"); + builder.appArgs.add(arg); + } + return this; + } + + /** + * Adds a jar file to be submitted with the application. + * + * @param jar Path to the jar file. + * @return This launcher. + */ + public SparkLauncher addJar(String jar) { + checkNotNull(jar, "jar"); + builder.jars.add(jar); + return this; + } + + /** + * Adds a file to be submitted with the application. + * + * @param file Path to the file. + * @return This launcher. + */ + public SparkLauncher addFile(String file) { + checkNotNull(file, "file"); + builder.files.add(file); + return this; + } + + /** + * Adds a python file / zip / egg to be submitted with the application. + * + * @param file Path to the file. + * @return This launcher. + */ + public SparkLauncher addPyFile(String file) { + checkNotNull(file, "file"); + builder.pyFiles.add(file); + return this; + } + + /** + * Enables verbose reporting for SparkSubmit. + * + * @param verbose Whether to enable verbose output. + * @return This launcher. + */ + public SparkLauncher setVerbose(boolean verbose) { + builder.verbose = verbose; + return this; + } + + /** + * Launches a sub-process that will start the configured Spark application. + * + * @return A process handle for the Spark app. + */ + public Process launch() throws IOException { + List cmd = new ArrayList(); + String script = isWindows() ? "spark-submit.cmd" : "spark-submit"; + cmd.add(join(File.separator, builder.getSparkHome(), "bin", script)); + cmd.addAll(builder.buildSparkSubmitArgs()); + + // Since the child process is a batch script, let's quote things so that special characters are + // preserved, otherwise the batch interpreter will mess up the arguments. Batch scripts are + // weird. + if (isWindows()) { + List winCmd = new ArrayList(); + for (String arg : cmd) { + winCmd.add(quoteForBatchScript(arg)); + } + cmd = winCmd; + } + + ProcessBuilder pb = new ProcessBuilder(cmd.toArray(new String[cmd.size()])); + for (Map.Entry e : builder.childEnv.entrySet()) { + pb.environment().put(e.getKey(), e.getValue()); + } + return pb.start(); + } + +} diff --git a/launcher/src/main/java/org/apache/spark/launcher/SparkSubmitCommandBuilder.java b/launcher/src/main/java/org/apache/spark/launcher/SparkSubmitCommandBuilder.java new file mode 100644 index 0000000000000..6ffdff63d3c78 --- /dev/null +++ b/launcher/src/main/java/org/apache/spark/launcher/SparkSubmitCommandBuilder.java @@ -0,0 +1,327 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.io.IOException; +import java.util.ArrayList; +import java.util.Arrays; +import java.util.Collections; +import java.util.HashMap; +import java.util.List; +import java.util.Map; +import java.util.Properties; + +import static org.apache.spark.launcher.CommandBuilderUtils.*; + +/** + * Special command builder for handling a CLI invocation of SparkSubmit. + *

+ * This builder adds command line parsing compatible with SparkSubmit. It handles setting + * driver-side options and special parsing behavior needed for the special-casing certain internal + * Spark applications. + *

+ * This class has also some special features to aid launching pyspark. + */ +class SparkSubmitCommandBuilder extends AbstractCommandBuilder { + + /** + * Name of the app resource used to identify the PySpark shell. The command line parser expects + * the resource name to be the very first argument to spark-submit in this case. + * + * NOTE: this cannot be "pyspark-shell" since that identifies the PySpark shell to SparkSubmit + * (see java_gateway.py), and can cause this code to enter into an infinite loop. + */ + static final String PYSPARK_SHELL = "pyspark-shell-main"; + + /** + * This is the actual resource name that identifies the PySpark shell to SparkSubmit. + */ + static final String PYSPARK_SHELL_RESOURCE = "pyspark-shell"; + + /** + * This map must match the class names for available special classes, since this modifies the way + * command line parsing works. This maps the class name to the resource to use when calling + * spark-submit. + */ + private static final Map specialClasses = new HashMap(); + static { + specialClasses.put("org.apache.spark.repl.Main", "spark-shell"); + specialClasses.put("org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver", + "spark-internal"); + specialClasses.put("org.apache.spark.sql.hive.thriftserver.HiveThriftServer2", + "spark-internal"); + } + + private final List sparkArgs; + + /** + * Controls whether mixing spark-submit arguments with app arguments is allowed. This is needed + * to parse the command lines for things like bin/spark-shell, which allows users to mix and + * match arguments (e.g. "bin/spark-shell SparkShellArg --master foo"). + */ + private boolean allowsMixedArguments; + + SparkSubmitCommandBuilder() { + this.sparkArgs = new ArrayList(); + } + + SparkSubmitCommandBuilder(List args) { + this(); + List submitArgs = args; + if (args.size() > 0 && args.get(0).equals(PYSPARK_SHELL)) { + this.allowsMixedArguments = true; + appResource = PYSPARK_SHELL_RESOURCE; + submitArgs = args.subList(1, args.size()); + } else { + this.allowsMixedArguments = false; + } + + new OptionParser().parse(submitArgs); + } + + @Override + public List buildCommand(Map env) throws IOException { + if (PYSPARK_SHELL_RESOURCE.equals(appResource)) { + return buildPySparkShellCommand(env); + } else { + return buildSparkSubmitCommand(env); + } + } + + List buildSparkSubmitArgs() { + List args = new ArrayList(); + SparkSubmitOptionParser parser = new SparkSubmitOptionParser(); + + if (verbose) { + args.add(parser.VERBOSE); + } + + if (master != null) { + args.add(parser.MASTER); + args.add(master); + } + + if (deployMode != null) { + args.add(parser.DEPLOY_MODE); + args.add(deployMode); + } + + if (appName != null) { + args.add(parser.NAME); + args.add(appName); + } + + for (Map.Entry e : conf.entrySet()) { + args.add(parser.CONF); + args.add(String.format("%s=%s", e.getKey(), e.getValue())); + } + + if (propertiesFile != null) { + args.add(parser.PROPERTIES_FILE); + args.add(propertiesFile); + } + + if (!jars.isEmpty()) { + args.add(parser.JARS); + args.add(join(",", jars)); + } + + if (!files.isEmpty()) { + args.add(parser.FILES); + args.add(join(",", files)); + } + + if (!pyFiles.isEmpty()) { + args.add(parser.PY_FILES); + args.add(join(",", pyFiles)); + } + + if (mainClass != null) { + args.add(parser.CLASS); + args.add(mainClass); + } + + args.addAll(sparkArgs); + if (appResource != null) { + args.add(appResource); + } + args.addAll(appArgs); + + return args; + } + + private List buildSparkSubmitCommand(Map env) throws IOException { + // Load the properties file and check whether spark-submit will be running the app's driver + // or just launching a cluster app. When running the driver, the JVM's argument will be + // modified to cover the driver's configuration. + Properties props = loadPropertiesFile(); + boolean isClientMode = isClientMode(props); + String extraClassPath = isClientMode ? + firstNonEmptyValue(SparkLauncher.DRIVER_EXTRA_CLASSPATH, conf, props) : null; + + List cmd = buildJavaCommand(extraClassPath); + addOptionString(cmd, System.getenv("SPARK_SUBMIT_OPTS")); + addOptionString(cmd, System.getenv("SPARK_JAVA_OPTS")); + + if (isClientMode) { + // Figuring out where the memory value come from is a little tricky due to precedence. + // Precedence is observed in the following order: + // - explicit configuration (setConf()), which also covers --driver-memory cli argument. + // - properties file. + // - SPARK_DRIVER_MEMORY env variable + // - SPARK_MEM env variable + // - default value (512m) + String memory = firstNonEmpty(firstNonEmptyValue(SparkLauncher.DRIVER_MEMORY, conf, props), + System.getenv("SPARK_DRIVER_MEMORY"), System.getenv("SPARK_MEM"), DEFAULT_MEM); + cmd.add("-Xms" + memory); + cmd.add("-Xmx" + memory); + addOptionString(cmd, firstNonEmptyValue(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, conf, props)); + mergeEnvPathList(env, getLibPathEnvName(), + firstNonEmptyValue(SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH, conf, props)); + } + + addPermGenSizeOpt(cmd); + cmd.add("org.apache.spark.deploy.SparkSubmit"); + cmd.addAll(buildSparkSubmitArgs()); + return cmd; + } + + private List buildPySparkShellCommand(Map env) throws IOException { + // For backwards compatibility, if a script is specified in + // the pyspark command line, then run it using spark-submit. + if (!appArgs.isEmpty() && appArgs.get(0).endsWith(".py")) { + System.err.println( + "WARNING: Running python applications through 'pyspark' is deprecated as of Spark 1.0.\n" + + "Use ./bin/spark-submit "); + appResource = appArgs.get(0); + appArgs.remove(0); + return buildCommand(env); + } + + // When launching the pyspark shell, the spark-submit arguments should be stored in the + // PYSPARK_SUBMIT_ARGS env variable. The executable is the PYSPARK_DRIVER_PYTHON env variable + // set by the pyspark script, followed by PYSPARK_DRIVER_PYTHON_OPTS. + checkArgument(appArgs.isEmpty(), "pyspark does not support any application options."); + + Properties props = loadPropertiesFile(); + mergeEnvPathList(env, getLibPathEnvName(), + firstNonEmptyValue(SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH, conf, props)); + + // Store spark-submit arguments in an environment variable, since there's no way to pass + // them to shell.py on the comand line. + StringBuilder submitArgs = new StringBuilder(); + for (String arg : buildSparkSubmitArgs()) { + if (submitArgs.length() > 0) { + submitArgs.append(" "); + } + submitArgs.append(quoteForPython(arg)); + } + env.put("PYSPARK_SUBMIT_ARGS", submitArgs.toString()); + + List pyargs = new ArrayList(); + pyargs.add(firstNonEmpty(System.getenv("PYSPARK_DRIVER_PYTHON"), "python")); + String pyOpts = System.getenv("PYSPARK_DRIVER_PYTHON_OPTS"); + if (!isEmpty(pyOpts)) { + pyargs.addAll(parseOptionString(pyOpts)); + } + + return pyargs; + } + + private boolean isClientMode(Properties userProps) { + String userMaster = firstNonEmpty(master, (String) userProps.get(SparkLauncher.SPARK_MASTER)); + // Default master is "local[*]", so assume client mode in that case. + return userMaster == null || + "client".equals(deployMode) || + (!userMaster.equals("yarn-cluster") && deployMode == null); + } + + private class OptionParser extends SparkSubmitOptionParser { + + private final List driverJvmKeys = Arrays.asList( + SparkLauncher.DRIVER_EXTRA_CLASSPATH, + SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, + SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH, + SparkLauncher.DRIVER_MEMORY); + + @Override + protected boolean handle(String opt, String value) { + if (opt.equals(MASTER)) { + master = value; + } else if (opt.equals(DEPLOY_MODE)) { + deployMode = value; + } else if (opt.equals(PROPERTIES_FILE)) { + propertiesFile = value; + } else if (opt.equals(DRIVER_MEMORY)) { + conf.put(SparkLauncher.DRIVER_MEMORY, value); + } else if (opt.equals(DRIVER_JAVA_OPTIONS)) { + conf.put(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, value); + } else if (opt.equals(DRIVER_LIBRARY_PATH)) { + conf.put(SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH, value); + } else if (opt.equals(DRIVER_CLASS_PATH)) { + conf.put(SparkLauncher.DRIVER_EXTRA_CLASSPATH, value); + } else if (opt.equals(CONF)) { + String[] setConf = value.split("=", 2); + checkArgument(setConf.length == 2, "Invalid argument to %s: %s", CONF, value); + if (driverJvmKeys.contains(setConf[0])) { + conf.put(setConf[0], setConf[1]); + } + } else if (opt.equals(CLASS)) { + // The special classes require some special command line handling, since they allow + // mixing spark-submit arguments with arguments that should be propagated to the shell + // itself. Note that for this to work, the "--class" argument must come before any + // non-spark-submit arguments. + mainClass = value; + if (specialClasses.containsKey(value)) { + allowsMixedArguments = true; + appResource = specialClasses.get(value); + } + } else { + sparkArgs.add(opt); + if (value != null) { + sparkArgs.add(value); + } + } + return true; + } + + @Override + protected boolean handleUnknown(String opt) { + // When mixing arguments, add unrecognized parameters directly to the user arguments list. In + // normal mode, any unrecognized parameter triggers the end of command line parsing, and the + // parameter itself will be interpreted by SparkSubmit as the application resource. The + // remaining params will be appended to the list of SparkSubmit arguments. + if (allowsMixedArguments) { + appArgs.add(opt); + return true; + } else { + sparkArgs.add(opt); + return false; + } + } + + @Override + protected void handleExtraArgs(List extra) { + for (String arg : extra) { + sparkArgs.add(arg); + } + } + + } + +} diff --git a/launcher/src/main/java/org/apache/spark/launcher/SparkSubmitOptionParser.java b/launcher/src/main/java/org/apache/spark/launcher/SparkSubmitOptionParser.java new file mode 100644 index 0000000000000..8526d2e7cfa3f --- /dev/null +++ b/launcher/src/main/java/org/apache/spark/launcher/SparkSubmitOptionParser.java @@ -0,0 +1,224 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.util.List; +import java.util.regex.Matcher; +import java.util.regex.Pattern; + +/** + * Parser for spark-submit command line options. + *

+ * This class encapsulates the parsing code for spark-submit command line options, so that there + * is a single list of options that needs to be maintained (well, sort of, but it makes it harder + * to break things). + */ +class SparkSubmitOptionParser { + + // The following constants define the "main" name for the available options. They're defined + // to avoid copy & paste of the raw strings where they're needed. + // + // The fields are not static so that they're exposed to Scala code that uses this class. See + // SparkSubmitArguments.scala. That is also why this class is not abstract - to allow code to + // easily use these constants without having to create dummy implementations of this class. + protected final String CLASS = "--class"; + protected final String CONF = "--conf"; + protected final String DEPLOY_MODE = "--deploy-mode"; + protected final String DRIVER_CLASS_PATH = "--driver-class-path"; + protected final String DRIVER_CORES = "--driver-cores"; + protected final String DRIVER_JAVA_OPTIONS = "--driver-java-options"; + protected final String DRIVER_LIBRARY_PATH = "--driver-library-path"; + protected final String DRIVER_MEMORY = "--driver-memory"; + protected final String EXECUTOR_MEMORY = "--executor-memory"; + protected final String FILES = "--files"; + protected final String JARS = "--jars"; + protected final String KILL_SUBMISSION = "--kill"; + protected final String MASTER = "--master"; + protected final String NAME = "--name"; + protected final String PACKAGES = "--packages"; + protected final String PROPERTIES_FILE = "--properties-file"; + protected final String PROXY_USER = "--proxy-user"; + protected final String PY_FILES = "--py-files"; + protected final String REPOSITORIES = "--repositories"; + protected final String STATUS = "--status"; + protected final String TOTAL_EXECUTOR_CORES = "--total-executor-cores"; + + // Options that do not take arguments. + protected final String HELP = "--help"; + protected final String SUPERVISE = "--supervise"; + protected final String VERBOSE = "--verbose"; + protected final String VERSION = "--version"; + + // Standalone-only options. + + // YARN-only options. + protected final String ARCHIVES = "--archives"; + protected final String EXECUTOR_CORES = "--executor-cores"; + protected final String QUEUE = "--queue"; + protected final String NUM_EXECUTORS = "--num-executors"; + + /** + * This is the canonical list of spark-submit options. Each entry in the array contains the + * different aliases for the same option; the first element of each entry is the "official" + * name of the option, passed to {@link #handle(String, String)}. + *

+ * Options not listed here nor in the "switch" list below will result in a call to + * {@link $#handleUnknown(String)}. + *

+ * These two arrays are visible for tests. + */ + final String[][] opts = { + { ARCHIVES }, + { CLASS }, + { CONF, "-c" }, + { DEPLOY_MODE }, + { DRIVER_CLASS_PATH }, + { DRIVER_CORES }, + { DRIVER_JAVA_OPTIONS }, + { DRIVER_LIBRARY_PATH }, + { DRIVER_MEMORY }, + { EXECUTOR_CORES }, + { EXECUTOR_MEMORY }, + { FILES }, + { JARS }, + { KILL_SUBMISSION }, + { MASTER }, + { NAME }, + { NUM_EXECUTORS }, + { PACKAGES }, + { PROPERTIES_FILE }, + { PROXY_USER }, + { PY_FILES }, + { QUEUE }, + { REPOSITORIES }, + { STATUS }, + { TOTAL_EXECUTOR_CORES }, + }; + + /** + * List of switches (command line options that do not take parameters) recognized by spark-submit. + */ + final String[][] switches = { + { HELP, "-h" }, + { SUPERVISE }, + { VERBOSE, "-v" }, + { VERSION }, + }; + + /** + * Parse a list of spark-submit command line options. + *

+ * See SparkSubmitArguments.scala for a more formal description of available options. + * + * @throws IllegalArgumentException If an error is found during parsing. + */ + protected final void parse(List args) { + Pattern eqSeparatedOpt = Pattern.compile("(--[^=]+)=(.+)"); + + int idx = 0; + for (idx = 0; idx < args.size(); idx++) { + String arg = args.get(idx); + String value = null; + + Matcher m = eqSeparatedOpt.matcher(arg); + if (m.matches()) { + arg = m.group(1); + value = m.group(2); + } + + // Look for options with a value. + String name = findCliOption(arg, opts); + if (name != null) { + if (value == null) { + if (idx == args.size() - 1) { + throw new IllegalArgumentException( + String.format("Missing argument for option '%s'.", arg)); + } + idx++; + value = args.get(idx); + } + if (!handle(name, value)) { + break; + } + continue; + } + + // Look for a switch. + name = findCliOption(arg, switches); + if (name != null) { + if (!handle(name, null)) { + break; + } + continue; + } + + if (!handleUnknown(arg)) { + break; + } + } + + if (idx < args.size()) { + idx++; + } + handleExtraArgs(args.subList(idx, args.size())); + } + + /** + * Callback for when an option with an argument is parsed. + * + * @param opt The long name of the cli option (might differ from actual command line). + * @param value The value. This will be null if the option does not take a value. + * @return Whether to continue parsing the argument list. + */ + protected boolean handle(String opt, String value) { + throw new UnsupportedOperationException(); + } + + /** + * Callback for when an unrecognized option is parsed. + * + * @param opt Unrecognized option from the command line. + * @return Whether to continue parsing the argument list. + */ + protected boolean handleUnknown(String opt) { + throw new UnsupportedOperationException(); + } + + /** + * Callback for remaining command line arguments after either {@link #handle(String, String)} or + * {@link #handleUnknown(String)} return "false". This will be called at the end of parsing even + * when there are no remaining arguments. + * + * @param extra List of remaining arguments. + */ + protected void handleExtraArgs(List extra) { + throw new UnsupportedOperationException(); + } + + private String findCliOption(String name, String[][] available) { + for (String[] candidates : available) { + for (String candidate : candidates) { + if (candidate.equals(name)) { + return candidates[0]; + } + } + } + return null; + } + +} diff --git a/launcher/src/main/java/org/apache/spark/launcher/package-info.java b/launcher/src/main/java/org/apache/spark/launcher/package-info.java new file mode 100644 index 0000000000000..7ed756f4b8591 --- /dev/null +++ b/launcher/src/main/java/org/apache/spark/launcher/package-info.java @@ -0,0 +1,45 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/** + * Library for launching Spark applications. + *

+ * This library allows applications to launch Spark programmatically. There's only one entry + * point to the library - the {@link org.apache.spark.launcher.SparkLauncher} class. + *

+ * To launch a Spark application, just instantiate a {@link org.apache.spark.launcher.SparkLauncher} + * and configure the application to run. For example: + * + *

+ * {@code
+ *   import org.apache.spark.launcher.SparkLauncher;
+ *
+ *   public class MyLauncher {
+ *     public static void main(String[] args) throws Exception {
+ *       Process spark = new SparkLauncher()
+ *         .setAppResource("/my/app.jar")
+ *         .setMainClass("my.spark.app.Main")
+ *         .setMaster("local")
+ *         .setConf(SparkLauncher.DRIVER_MEMORY, "2g")
+ *         .launch();
+ *       spark.waitFor();
+ *     }
+ *   }
+ * }
+ * 
+ */ +package org.apache.spark.launcher; diff --git a/launcher/src/test/java/org/apache/spark/launcher/CommandBuilderUtilsSuite.java b/launcher/src/test/java/org/apache/spark/launcher/CommandBuilderUtilsSuite.java new file mode 100644 index 0000000000000..dba0203867372 --- /dev/null +++ b/launcher/src/test/java/org/apache/spark/launcher/CommandBuilderUtilsSuite.java @@ -0,0 +1,101 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.util.ArrayList; +import java.util.Arrays; +import java.util.List; + +import org.junit.Test; +import static org.junit.Assert.*; + +import static org.apache.spark.launcher.CommandBuilderUtils.*; + +public class CommandBuilderUtilsSuite { + + @Test + public void testValidOptionStrings() { + testOpt("a b c d e", Arrays.asList("a", "b", "c", "d", "e")); + testOpt("a 'b c' \"d\" e", Arrays.asList("a", "b c", "d", "e")); + testOpt("a 'b\\\"c' \"'d'\" e", Arrays.asList("a", "b\\\"c", "'d'", "e")); + testOpt("a 'b\"c' \"\\\"d\\\"\" e", Arrays.asList("a", "b\"c", "\"d\"", "e")); + testOpt(" a b c \\\\ ", Arrays.asList("a", "b", "c", "\\")); + + // Following tests ported from UtilsSuite.scala. + testOpt("", new ArrayList()); + testOpt("a", Arrays.asList("a")); + testOpt("aaa", Arrays.asList("aaa")); + testOpt("a b c", Arrays.asList("a", "b", "c")); + testOpt(" a b\t c ", Arrays.asList("a", "b", "c")); + testOpt("a 'b c'", Arrays.asList("a", "b c")); + testOpt("a 'b c' d", Arrays.asList("a", "b c", "d")); + testOpt("'b c'", Arrays.asList("b c")); + testOpt("a \"b c\"", Arrays.asList("a", "b c")); + testOpt("a \"b c\" d", Arrays.asList("a", "b c", "d")); + testOpt("\"b c\"", Arrays.asList("b c")); + testOpt("a 'b\" c' \"d' e\"", Arrays.asList("a", "b\" c", "d' e")); + testOpt("a\t'b\nc'\nd", Arrays.asList("a", "b\nc", "d")); + testOpt("a \"b\\\\c\"", Arrays.asList("a", "b\\c")); + testOpt("a \"b\\\"c\"", Arrays.asList("a", "b\"c")); + testOpt("a 'b\\\"c'", Arrays.asList("a", "b\\\"c")); + testOpt("'a'b", Arrays.asList("ab")); + testOpt("'a''b'", Arrays.asList("ab")); + testOpt("\"a\"b", Arrays.asList("ab")); + testOpt("\"a\"\"b\"", Arrays.asList("ab")); + testOpt("''", Arrays.asList("")); + testOpt("\"\"", Arrays.asList("")); + } + + @Test + public void testInvalidOptionStrings() { + testInvalidOpt("\\"); + testInvalidOpt("\"abcde"); + testInvalidOpt("'abcde"); + } + + @Test + public void testWindowsBatchQuoting() { + assertEquals("abc", quoteForBatchScript("abc")); + assertEquals("\"a b c\"", quoteForBatchScript("a b c")); + assertEquals("\"a \"\"b\"\" c\"", quoteForBatchScript("a \"b\" c")); + assertEquals("\"a\"\"b\"\"c\"", quoteForBatchScript("a\"b\"c")); + assertEquals("\"ab^=\"\"cd\"\"\"", quoteForBatchScript("ab=\"cd\"")); + } + + @Test + public void testPythonArgQuoting() { + assertEquals("\"abc\"", quoteForPython("abc")); + assertEquals("\"a b c\"", quoteForPython("a b c")); + assertEquals("\"a \\\"b\\\" c\"", quoteForPython("a \"b\" c")); + } + + private void testOpt(String opts, List expected) { + assertEquals(String.format("test string failed to parse: [[ %s ]]", opts), + expected, parseOptionString(opts)); + } + + private void testInvalidOpt(String opts) { + try { + parseOptionString(opts); + fail("Expected exception for invalid option string."); + } catch (IllegalArgumentException e) { + // pass. + } + } + +} diff --git a/launcher/src/test/java/org/apache/spark/launcher/SparkLauncherSuite.java b/launcher/src/test/java/org/apache/spark/launcher/SparkLauncherSuite.java new file mode 100644 index 0000000000000..252d5abae1ca3 --- /dev/null +++ b/launcher/src/test/java/org/apache/spark/launcher/SparkLauncherSuite.java @@ -0,0 +1,94 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.io.BufferedReader; +import java.io.InputStream; +import java.io.InputStreamReader; +import java.util.HashMap; +import java.util.Map; + +import org.junit.Test; +import org.slf4j.Logger; +import org.slf4j.LoggerFactory; +import static org.junit.Assert.*; + +/** + * These tests require the Spark assembly to be built before they can be run. + */ +public class SparkLauncherSuite { + + private static final Logger LOG = LoggerFactory.getLogger(SparkLauncherSuite.class); + + @Test + public void testChildProcLauncher() throws Exception { + Map env = new HashMap(); + env.put("SPARK_PRINT_LAUNCH_COMMAND", "1"); + + SparkLauncher launcher = new SparkLauncher(env) + .setSparkHome(System.getProperty("spark.test.home")) + .setMaster("local") + .setAppResource("spark-internal") + .setConf(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, + "-Dfoo=bar -Dtest.name=-testChildProcLauncher") + .setConf(SparkLauncher.DRIVER_EXTRA_CLASSPATH, System.getProperty("java.class.path")) + .setMainClass(SparkLauncherTestApp.class.getName()) + .addAppArgs("proc"); + final Process app = launcher.launch(); + new Redirector("stdout", app.getInputStream()).start(); + new Redirector("stderr", app.getErrorStream()).start(); + assertEquals(0, app.waitFor()); + } + + public static class SparkLauncherTestApp { + + public static void main(String[] args) throws Exception { + assertEquals(1, args.length); + assertEquals("proc", args[0]); + assertEquals("bar", System.getProperty("foo")); + assertEquals("local", System.getProperty(SparkLauncher.SPARK_MASTER)); + } + + } + + private static class Redirector extends Thread { + + private final InputStream in; + + Redirector(String name, InputStream in) { + this.in = in; + setName(name); + setDaemon(true); + } + + @Override + public void run() { + try { + BufferedReader reader = new BufferedReader(new InputStreamReader(in, "UTF-8")); + String line; + while ((line = reader.readLine()) != null) { + LOG.warn(line); + } + } catch (Exception e) { + LOG.error("Error reading process output.", e); + } + } + + } + +} diff --git a/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitCommandBuilderSuite.java b/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitCommandBuilderSuite.java new file mode 100644 index 0000000000000..815edc4e4971f --- /dev/null +++ b/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitCommandBuilderSuite.java @@ -0,0 +1,278 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.io.File; +import java.util.Arrays; +import java.util.Collections; +import java.util.HashMap; +import java.util.List; +import java.util.Map; +import java.util.regex.Pattern; + +import org.junit.AfterClass; +import org.junit.BeforeClass; +import org.junit.Test; +import static org.junit.Assert.*; + +public class SparkSubmitCommandBuilderSuite { + + private static File dummyPropsFile; + private static SparkSubmitOptionParser parser; + + @BeforeClass + public static void setUp() throws Exception { + dummyPropsFile = File.createTempFile("spark", "properties"); + parser = new SparkSubmitOptionParser(); + } + + @AfterClass + public static void cleanUp() throws Exception { + dummyPropsFile.delete(); + } + + @Test + public void testDriverCmdBuilder() throws Exception { + testCmdBuilder(true); + } + + @Test + public void testClusterCmdBuilder() throws Exception { + testCmdBuilder(false); + } + + @Test + public void testCliParser() throws Exception { + List sparkSubmitArgs = Arrays.asList( + parser.MASTER, + "local", + parser.DRIVER_MEMORY, + "42g", + parser.DRIVER_CLASS_PATH, + "/driverCp", + parser.DRIVER_JAVA_OPTIONS, + "extraJavaOpt", + parser.CONF, + SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH + "=/driverLibPath"); + Map env = new HashMap(); + List cmd = buildCommand(sparkSubmitArgs, env); + + assertTrue(findInStringList(env.get(CommandBuilderUtils.getLibPathEnvName()), + File.pathSeparator, "/driverLibPath")); + assertTrue(findInStringList(findArgValue(cmd, "-cp"), File.pathSeparator, "/driverCp")); + assertTrue("Driver -Xms should be configured.", cmd.contains("-Xms42g")); + assertTrue("Driver -Xmx should be configured.", cmd.contains("-Xmx42g")); + } + + @Test + public void testShellCliParser() throws Exception { + List sparkSubmitArgs = Arrays.asList( + parser.CLASS, + "org.apache.spark.repl.Main", + parser.MASTER, + "foo", + "--app-arg", + "bar", + "--app-switch", + parser.FILES, + "baz", + parser.NAME, + "appName"); + + List args = new SparkSubmitCommandBuilder(sparkSubmitArgs).buildSparkSubmitArgs(); + List expected = Arrays.asList("spark-shell", "--app-arg", "bar", "--app-switch"); + assertEquals(expected, args.subList(args.size() - expected.size(), args.size())); + } + + @Test + public void testAlternateSyntaxParsing() throws Exception { + List sparkSubmitArgs = Arrays.asList( + parser.CLASS + "=org.my.Class", + parser.MASTER + "=foo", + parser.DEPLOY_MODE + "=bar"); + + List cmd = new SparkSubmitCommandBuilder(sparkSubmitArgs).buildSparkSubmitArgs(); + assertEquals("org.my.Class", findArgValue(cmd, parser.CLASS)); + assertEquals("foo", findArgValue(cmd, parser.MASTER)); + assertEquals("bar", findArgValue(cmd, parser.DEPLOY_MODE)); + } + + @Test + public void testPySparkLauncher() throws Exception { + List sparkSubmitArgs = Arrays.asList( + SparkSubmitCommandBuilder.PYSPARK_SHELL, + "--master=foo", + "--deploy-mode=bar"); + + Map env = new HashMap(); + List cmd = buildCommand(sparkSubmitArgs, env); + assertEquals("python", cmd.get(cmd.size() - 1)); + assertEquals( + String.format("\"%s\" \"foo\" \"%s\" \"bar\" \"%s\"", + parser.MASTER, parser.DEPLOY_MODE, SparkSubmitCommandBuilder.PYSPARK_SHELL_RESOURCE), + env.get("PYSPARK_SUBMIT_ARGS")); + } + + @Test + public void testPySparkFallback() throws Exception { + List sparkSubmitArgs = Arrays.asList( + "--master=foo", + "--deploy-mode=bar", + "script.py", + "arg1"); + + Map env = new HashMap(); + List cmd = buildCommand(sparkSubmitArgs, env); + + assertEquals("foo", findArgValue(cmd, "--master")); + assertEquals("bar", findArgValue(cmd, "--deploy-mode")); + assertEquals("script.py", cmd.get(cmd.size() - 2)); + assertEquals("arg1", cmd.get(cmd.size() - 1)); + } + + private void testCmdBuilder(boolean isDriver) throws Exception { + String deployMode = isDriver ? "client" : "cluster"; + + SparkSubmitCommandBuilder launcher = + new SparkSubmitCommandBuilder(Collections.emptyList()); + launcher.childEnv.put(CommandBuilderUtils.ENV_SPARK_HOME, + System.getProperty("spark.test.home")); + launcher.master = "yarn"; + launcher.deployMode = deployMode; + launcher.appResource = "/foo"; + launcher.appName = "MyApp"; + launcher.mainClass = "my.Class"; + launcher.propertiesFile = dummyPropsFile.getAbsolutePath(); + launcher.appArgs.add("foo"); + launcher.appArgs.add("bar"); + launcher.conf.put(SparkLauncher.DRIVER_MEMORY, "1g"); + launcher.conf.put(SparkLauncher.DRIVER_EXTRA_CLASSPATH, "/driver"); + launcher.conf.put(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, "-Ddriver -XX:MaxPermSize=256m"); + launcher.conf.put(SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH, "/native"); + launcher.conf.put("spark.foo", "foo"); + + Map env = new HashMap(); + List cmd = launcher.buildCommand(env); + + // Checks below are different for driver and non-driver mode. + + if (isDriver) { + assertTrue("Driver -Xms should be configured.", cmd.contains("-Xms1g")); + assertTrue("Driver -Xmx should be configured.", cmd.contains("-Xmx1g")); + } else { + boolean found = false; + for (String arg : cmd) { + if (arg.startsWith("-Xms") || arg.startsWith("-Xmx")) { + found = true; + break; + } + } + assertFalse("Memory arguments should not be set.", found); + } + + for (String arg : cmd) { + if (arg.startsWith("-XX:MaxPermSize=")) { + if (isDriver) { + assertEquals("-XX:MaxPermSize=256m", arg); + } else { + assertEquals("-XX:MaxPermSize=128m", arg); + } + } + } + + String[] cp = findArgValue(cmd, "-cp").split(Pattern.quote(File.pathSeparator)); + if (isDriver) { + assertTrue("Driver classpath should contain provided entry.", contains("/driver", cp)); + } else { + assertFalse("Driver classpath should not be in command.", contains("/driver", cp)); + } + + String libPath = env.get(CommandBuilderUtils.getLibPathEnvName()); + if (isDriver) { + assertNotNull("Native library path should be set.", libPath); + assertTrue("Native library path should contain provided entry.", + contains("/native", libPath.split(Pattern.quote(File.pathSeparator)))); + } else { + assertNull("Native library should not be set.", libPath); + } + + // Checks below are the same for both driver and non-driver mode. + assertEquals(dummyPropsFile.getAbsolutePath(), findArgValue(cmd, parser.PROPERTIES_FILE)); + assertEquals("yarn", findArgValue(cmd, parser.MASTER)); + assertEquals(deployMode, findArgValue(cmd, parser.DEPLOY_MODE)); + assertEquals("my.Class", findArgValue(cmd, parser.CLASS)); + assertEquals("MyApp", findArgValue(cmd, parser.NAME)); + + boolean appArgsOk = false; + for (int i = 0; i < cmd.size(); i++) { + if (cmd.get(i).equals("/foo")) { + assertEquals("foo", cmd.get(i + 1)); + assertEquals("bar", cmd.get(i + 2)); + assertEquals(cmd.size(), i + 3); + appArgsOk = true; + break; + } + } + assertTrue("App resource and args should be added to command.", appArgsOk); + + Map conf = parseConf(cmd, parser); + assertEquals("foo", conf.get("spark.foo")); + } + + private boolean contains(String needle, String[] haystack) { + for (String entry : haystack) { + if (entry.equals(needle)) { + return true; + } + } + return false; + } + + private Map parseConf(List cmd, SparkSubmitOptionParser parser) { + Map conf = new HashMap(); + for (int i = 0; i < cmd.size(); i++) { + if (cmd.get(i).equals(parser.CONF)) { + String[] val = cmd.get(i + 1).split("=", 2); + conf.put(val[0], val[1]); + i += 1; + } + } + return conf; + } + + private String findArgValue(List cmd, String name) { + for (int i = 0; i < cmd.size(); i++) { + if (cmd.get(i).equals(name)) { + return cmd.get(i + 1); + } + } + fail(String.format("arg '%s' not found", name)); + return null; + } + + private boolean findInStringList(String list, String sep, String needle) { + return contains(needle, list.split(sep)); + } + + private List buildCommand(List args, Map env) throws Exception { + SparkSubmitCommandBuilder builder = new SparkSubmitCommandBuilder(args); + builder.childEnv.put(CommandBuilderUtils.ENV_SPARK_HOME, System.getProperty("spark.test.home")); + return builder.buildCommand(env); + } + +} diff --git a/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitOptionParserSuite.java b/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitOptionParserSuite.java new file mode 100644 index 0000000000000..f3d2109917056 --- /dev/null +++ b/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitOptionParserSuite.java @@ -0,0 +1,108 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.launcher; + +import java.util.Arrays; +import java.util.Collections; +import java.util.List; + +import org.junit.Before; +import org.junit.Test; +import static org.junit.Assert.*; +import static org.mockito.Mockito.*; + +import static org.apache.spark.launcher.SparkSubmitOptionParser.*; + +public class SparkSubmitOptionParserSuite { + + private SparkSubmitOptionParser parser; + + @Before + public void setUp() { + parser = spy(new DummyParser()); + } + + @Test + public void testAllOptions() { + int count = 0; + for (String[] optNames : parser.opts) { + for (String optName : optNames) { + String value = optName + "-value"; + parser.parse(Arrays.asList(optName, value)); + count++; + verify(parser).handle(eq(optNames[0]), eq(value)); + verify(parser, times(count)).handle(anyString(), anyString()); + verify(parser, times(count)).handleExtraArgs(eq(Collections.emptyList())); + } + } + + for (String[] switchNames : parser.switches) { + int switchCount = 0; + for (String name : switchNames) { + parser.parse(Arrays.asList(name)); + count++; + switchCount++; + verify(parser, times(switchCount)).handle(eq(switchNames[0]), same((String) null)); + verify(parser, times(count)).handle(anyString(), any(String.class)); + verify(parser, times(count)).handleExtraArgs(eq(Collections.emptyList())); + } + } + } + + @Test + public void testExtraOptions() { + List args = Arrays.asList(parser.MASTER, parser.MASTER, "foo", "bar"); + parser.parse(args); + verify(parser).handle(eq(parser.MASTER), eq(parser.MASTER)); + verify(parser).handleUnknown(eq("foo")); + verify(parser).handleExtraArgs(eq(Arrays.asList("bar"))); + } + + @Test(expected=IllegalArgumentException.class) + public void testMissingArg() { + parser.parse(Arrays.asList(parser.MASTER)); + } + + @Test + public void testEqualSeparatedOption() { + List args = Arrays.asList(parser.MASTER + "=" + parser.MASTER); + parser.parse(args); + verify(parser).handle(eq(parser.MASTER), eq(parser.MASTER)); + verify(parser).handleExtraArgs(eq(Collections.emptyList())); + } + + private static class DummyParser extends SparkSubmitOptionParser { + + @Override + protected boolean handle(String opt, String value) { + return true; + } + + @Override + protected boolean handleUnknown(String opt) { + return false; + } + + @Override + protected void handleExtraArgs(List extra) { + + } + + } + +} diff --git a/launcher/src/test/resources/log4j.properties b/launcher/src/test/resources/log4j.properties new file mode 100644 index 0000000000000..00c20ad69cd4d --- /dev/null +++ b/launcher/src/test/resources/log4j.properties @@ -0,0 +1,31 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +# Set everything to be logged to the file core/target/unit-tests.log +log4j.rootCategory=INFO, file +log4j.appender.file=org.apache.log4j.FileAppender +log4j.appender.file.append=false + +# Some tests will set "test.name" to avoid overwriting the main log file. +log4j.appender.file.file=target/unit-tests${test.name}.log + +log4j.appender.file.layout=org.apache.log4j.PatternLayout +log4j.appender.file.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss.SSS} %t %p %c{1}: %m%n + +# Ignore messages below warning level from Jetty, because it's a bit verbose +log4j.logger.org.eclipse.jetty=WARN +org.eclipse.jetty.LEVEL=WARN diff --git a/make-distribution.sh b/make-distribution.sh index dd990d4b96e46..82d33408cd5e5 100755 --- a/make-distribution.sh +++ b/make-distribution.sh @@ -127,6 +127,7 @@ if [ ! $(command -v "$MVN") ] ; then fi VERSION=$("$MVN" help:evaluate -Dexpression=project.version 2>/dev/null | grep -v "INFO" | tail -n 1) +SCALA_VERSION=$("$MVN" help:evaluate -Dexpression=scala.binary.version 2>/dev/null | grep -v "INFO" | tail -n 1) SPARK_HADOOP_VERSION=$("$MVN" help:evaluate -Dexpression=hadoop.version $@ 2>/dev/null\ | grep -v "INFO"\ | tail -n 1) @@ -196,6 +197,7 @@ echo "Build flags: $@" >> "$DISTDIR/RELEASE" # Copy jars cp "$SPARK_HOME"/assembly/target/scala*/*assembly*hadoop*.jar "$DISTDIR/lib/" cp "$SPARK_HOME"/examples/target/scala*/spark-examples*.jar "$DISTDIR/lib/" +cp "$SPARK_HOME"/launcher/target/spark-launcher_$SCALA_VERSION-$VERSION.jar "$DISTDIR/lib/" # This will fail if the -Pyarn profile is not provided # In this case, silence the error and ignore the return code of this command cp "$SPARK_HOME"/network/yarn/target/scala*/spark-*-yarn-shuffle.jar "$DISTDIR/lib/" &> /dev/null || : diff --git a/pom.xml b/pom.xml index 51bef30f9ca8f..a19da73cf45b3 100644 --- a/pom.xml +++ b/pom.xml @@ -105,6 +105,7 @@ external/zeromq examples repl + launcher @@ -1195,7 +1196,7 @@ true - ${session.executionRootDirectory} + ${spark.test.home} 1 false false diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 4f17df59f4c1f..35e748f26bbaa 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -34,11 +34,11 @@ object BuildCommons { val allProjects@Seq(bagel, catalyst, core, graphx, hive, hiveThriftServer, mllib, repl, sql, networkCommon, networkShuffle, streaming, streamingFlumeSink, streamingFlume, streamingKafka, - streamingMqtt, streamingTwitter, streamingZeromq) = + streamingMqtt, streamingTwitter, streamingZeromq, launcher) = Seq("bagel", "catalyst", "core", "graphx", "hive", "hive-thriftserver", "mllib", "repl", "sql", "network-common", "network-shuffle", "streaming", "streaming-flume-sink", "streaming-flume", "streaming-kafka", "streaming-mqtt", "streaming-twitter", - "streaming-zeromq").map(ProjectRef(buildLocation, _)) + "streaming-zeromq", "launcher").map(ProjectRef(buildLocation, _)) val optionallyEnabledProjects@Seq(yarn, yarnStable, java8Tests, sparkGangliaLgpl, sparkKinesisAsl) = Seq("yarn", "yarn-stable", "java8-tests", "ganglia-lgpl", @@ -155,8 +155,9 @@ object SparkBuild extends PomBuild { (allProjects ++ optionallyEnabledProjects).foreach(enable(TestSettings.settings)) // TODO: Add Sql to mima checks + // TODO: remove launcher from this list after 1.3. allProjects.filterNot(x => Seq(spark, sql, hive, hiveThriftServer, catalyst, repl, - networkCommon, networkShuffle, networkYarn).contains(x)).foreach { + networkCommon, networkShuffle, networkYarn, launcher).contains(x)).foreach { x => enable(MimaBuild.mimaSettings(sparkHome, x))(x) } diff --git a/python/pyspark/java_gateway.py b/python/pyspark/java_gateway.py index 936857e75c7e9..43d2cf5171880 100644 --- a/python/pyspark/java_gateway.py +++ b/python/pyspark/java_gateway.py @@ -41,7 +41,7 @@ def launch_gateway(): submit_args = os.environ.get("PYSPARK_SUBMIT_ARGS") submit_args = submit_args if submit_args is not None else "" submit_args = shlex.split(submit_args) - command = [os.path.join(SPARK_HOME, script)] + submit_args + ["pyspark-shell"] + command = [os.path.join(SPARK_HOME, script)] + submit_args # Start a socket that will be used by PythonGatewayServer to communicate its port to us callback_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) @@ -58,7 +58,6 @@ def launch_gateway(): # Don't send ctrl-c / SIGINT to the Java gateway: def preexec_func(): signal.signal(signal.SIGINT, signal.SIG_IGN) - env["IS_SUBPROCESS"] = "1" # tell JVM to exit after python exits proc = Popen(command, stdin=PIPE, preexec_fn=preexec_func, env=env) else: # preexec_fn not supported on Windows diff --git a/sbin/spark-daemon.sh b/sbin/spark-daemon.sh index 5e812a1d91c6b..92e76a3fe6ca2 100755 --- a/sbin/spark-daemon.sh +++ b/sbin/spark-daemon.sh @@ -121,45 +121,63 @@ if [ "$SPARK_NICENESS" = "" ]; then export SPARK_NICENESS=0 fi +run_command() { + mode="$1" + shift -case $option in + mkdir -p "$SPARK_PID_DIR" - (start|spark-submit) + if [ -f "$pid" ]; then + TARGET_ID="$(cat "$pid")" + if [[ $(ps -p "$TARGET_ID" -o args=) =~ $command ]]; then + echo "$command running as process $TARGET_ID. Stop it first." + exit 1 + fi + fi - mkdir -p "$SPARK_PID_DIR" + if [ "$SPARK_MASTER" != "" ]; then + echo rsync from "$SPARK_MASTER" + rsync -a -e ssh --delete --exclude=.svn --exclude='logs/*' --exclude='contrib/hod/logs/*' "$SPARK_MASTER/" "$SPARK_HOME" + fi - if [ -f $pid ]; then - TARGET_ID="$(cat "$pid")" - if [[ $(ps -p "$TARGET_ID" -o args=) =~ $command ]]; then - echo "$command running as process $TARGET_ID. Stop it first." - exit 1 - fi - fi + spark_rotate_log "$log" + echo "starting $command, logging to $log" + + case "$mode" in + (class) + nohup nice -n "$SPARK_NICENESS" "$SPARK_PREFIX"/bin/spark-class $command "$@" >> "$log" 2>&1 < /dev/null & + newpid="$!" + ;; + + (submit) + nohup nice -n "$SPARK_NICENESS" "$SPARK_PREFIX"/bin/spark-submit --class $command "$@" >> "$log" 2>&1 < /dev/null & + newpid="$!" + ;; + + (*) + echo "unknown mode: $mode" + exit 1 + ;; + esac + + echo "$newpid" > "$pid" + sleep 2 + # Check if the process has died; in that case we'll tail the log so the user can see + if [[ ! $(ps -p "$newpid" -o args=) =~ $command ]]; then + echo "failed to launch $command:" + tail -2 "$log" | sed 's/^/ /' + echo "full log in $log" + fi +} - if [ "$SPARK_MASTER" != "" ]; then - echo rsync from "$SPARK_MASTER" - rsync -a -e ssh --delete --exclude=.svn --exclude='logs/*' --exclude='contrib/hod/logs/*' $SPARK_MASTER/ "$SPARK_HOME" - fi +case $option in - spark_rotate_log "$log" - echo "starting $command, logging to $log" - if [ $option == spark-submit ]; then - source "$SPARK_HOME"/bin/utils.sh - gatherSparkSubmitOpts "$@" - nohup nice -n $SPARK_NICENESS "$SPARK_PREFIX"/bin/spark-submit --class $command \ - "${SUBMISSION_OPTS[@]}" spark-internal "${APPLICATION_OPTS[@]}" >> "$log" 2>&1 < /dev/null & - else - nohup nice -n $SPARK_NICENESS "$SPARK_PREFIX"/bin/spark-class $command "$@" >> "$log" 2>&1 < /dev/null & - fi - newpid=$! - echo $newpid > $pid - sleep 2 - # Check if the process has died; in that case we'll tail the log so the user can see - if [[ ! $(ps -p "$newpid" -o args=) =~ $command ]]; then - echo "failed to launch $command:" - tail -2 "$log" | sed 's/^/ /' - echo "full log in $log" - fi + (submit) + run_command submit "$@" + ;; + + (start) + run_command class "$@" ;; (stop) diff --git a/sbin/start-thriftserver.sh b/sbin/start-thriftserver.sh index 070cc7a87e6f2..5b0aeb177fff3 100755 --- a/sbin/start-thriftserver.sh +++ b/sbin/start-thriftserver.sh @@ -52,4 +52,4 @@ fi export SUBMIT_USAGE_FUNCTION=usage -exec "$FWDIR"/sbin/spark-daemon.sh spark-submit $CLASS 1 "$@" +exec "$FWDIR"/sbin/spark-daemon.sh submit $CLASS 1 "$@" From 35b25640a4debddd5a4498455888f6241caf6223 Mon Sep 17 00:00:00 2001 From: Sean Owen Date: Wed, 11 Mar 2015 12:16:32 +0000 Subject: [PATCH 05/43] [MINOR] [DOCS] Fix map -> mapToPair in Streaming Java example Fix map -> mapToPair in Java example. (And zap some unneeded "throws Exception" while here) Author: Sean Owen Closes #4967 from srowen/MapToPairFix and squashes the following commits: ded2bc0 [Sean Owen] Fix map -> mapToPair in Java example. (And zap some unneeded "throws Exception" while here) --- docs/streaming-programming-guide.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/streaming-programming-guide.md b/docs/streaming-programming-guide.md index 815c98713b738..062ac2648db30 100644 --- a/docs/streaming-programming-guide.md +++ b/docs/streaming-programming-guide.md @@ -189,15 +189,15 @@ Next, we want to count these words. {% highlight java %} // Count each word in each batch -JavaPairDStream pairs = words.map( +JavaPairDStream pairs = words.mapToPair( new PairFunction() { - @Override public Tuple2 call(String s) throws Exception { + @Override public Tuple2 call(String s) { return new Tuple2(s, 1); } }); JavaPairDStream wordCounts = pairs.reduceByKey( new Function2() { - @Override public Integer call(Integer i1, Integer i2) throws Exception { + @Override public Integer call(Integer i1, Integer i2) { return i1 + i2; } }); @@ -1041,7 +1041,7 @@ val windowedWordCounts = pairs.reduceByKeyAndWindow((a:Int,b:Int) => (a + b), Se {% highlight java %} // Reduce function adding two integers, defined separately for clarity Function2 reduceFunc = new Function2() { - @Override public Integer call(Integer i1, Integer i2) throws Exception { + @Override public Integer call(Integer i1, Integer i2) { return i1 + i2; } }; From 40f49795e2624326dd4e38eedbf63d35860ea00e Mon Sep 17 00:00:00 2001 From: Hongbo Liu Date: Wed, 11 Mar 2015 12:18:24 +0000 Subject: [PATCH 06/43] [SQL][Minor] fix typo in comments Removed an repeated "from" in the comments. Author: Hongbo Liu Closes #4976 from liuhb86/mine and squashes the following commits: e280e7c [Hongbo Liu] [SQL][Minor] fix typo in comments --- .../scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala index 109671bdca361..7e191ad0315a5 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala @@ -63,7 +63,7 @@ abstract class TreeNode[BaseType <: TreeNode[BaseType]] { /** * Faster version of equality which short-circuits when two treeNodes are the same instance. - * We don't just override Object.Equals, as doing so prevents the scala compiler from from + * We don't just override Object.equals, as doing so prevents the scala compiler from * generating case class `equals` methods */ def fastEquals(other: TreeNode[_]): Boolean = { From ec30c17822329e6d2b8c85625b31ba8bd8679fcf Mon Sep 17 00:00:00 2001 From: zzcclp Date: Wed, 11 Mar 2015 12:22:24 +0000 Subject: [PATCH 07/43] [SPARK-6279][Streaming]In KafkaRDD.scala, Miss expressions flag "s" at logging string In KafkaRDD.scala, Miss expressions flag "s" at logging string In logging file, it print `Beginning offset $ {part.fromOffset} is the same as ending offset ` but not `Beginning offset 111 is the same as ending offset `. Author: zzcclp Closes #4979 from zzcclp/SPARK-6279 and squashes the following commits: 768f88e [zzcclp] Miss expressions flag "s" --- .../main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala b/external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala index d56cc01be9514..6d465bcb6bfc0 100644 --- a/external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala +++ b/external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala @@ -86,7 +86,7 @@ class KafkaRDD[ val part = thePart.asInstanceOf[KafkaRDDPartition] assert(part.fromOffset <= part.untilOffset, errBeginAfterEnd(part)) if (part.fromOffset == part.untilOffset) { - log.warn("Beginning offset ${part.fromOffset} is the same as ending offset " + + log.warn(s"Beginning offset ${part.fromOffset} is the same as ending offset " + s"skipping ${part.topic} ${part.partition}") Iterator.empty } else { From 6e94c4eadf443ac3d34eaae4c334c8386fdec960 Mon Sep 17 00:00:00 2001 From: Sean Owen Date: Wed, 11 Mar 2015 13:15:19 +0000 Subject: [PATCH 08/43] SPARK-6225 [CORE] [SQL] [STREAMING] Resolve most build warnings, 1.3.0 edition Resolve javac, scalac warnings of various types -- deprecations, Scala lang, unchecked cast, etc. Author: Sean Owen Closes #4950 from srowen/SPARK-6225 and squashes the following commits: 3080972 [Sean Owen] Ordered imports: Java, Scala, 3rd party, Spark c67985b [Sean Owen] Resolve javac, scalac warnings of various types -- deprecations, Scala lang, unchecked cast, etc. --- .../scala/org/apache/spark/SparkContext.scala | 2 +- .../scheduler/EventLoggingListener.scala | 2 +- .../spark/util/MutableURLClassLoader.scala | 2 -- .../OutputCommitCoordinatorSuite.scala | 2 +- .../util/MutableURLClassLoaderSuite.scala | 3 +-- .../JavaStatefulNetworkWordCount.java | 1 + .../org/apache/spark/examples/HBaseTest.scala | 4 ++-- .../kafka/JavaDirectKafkaStreamSuite.java | 21 +++++++------------ .../streaming/kafka/JavaKafkaRDDSuite.java | 21 +++++++------------ .../streaming/kafka/JavaKafkaStreamSuite.java | 14 ++++++------- .../MatrixFactorizationModel.scala | 8 +++---- .../org/apache/spark/sql/sources/ddl.scala | 1 + .../sql/ScalaReflectionRelationSuite.scala | 2 +- .../spark/sql/hive/HiveInspectorSuite.scala | 2 +- .../apache/spark/streaming/JavaAPISuite.java | 4 ++++ 15 files changed, 40 insertions(+), 49 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 1a0bee4e3aea9..8121aab3b0b34 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -1104,7 +1104,7 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli if (!fs.exists(hadoopPath)) { throw new FileNotFoundException(s"Added file $hadoopPath does not exist.") } - val isDir = fs.isDirectory(hadoopPath) + val isDir = fs.getFileStatus(hadoopPath).isDir if (!isLocal && scheme == "file" && isDir) { throw new SparkException(s"addFile does not support local directories when not running " + "local mode.") diff --git a/core/src/main/scala/org/apache/spark/scheduler/EventLoggingListener.scala b/core/src/main/scala/org/apache/spark/scheduler/EventLoggingListener.scala index 2091a9fe8d0d3..34fa6d27c3a45 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/EventLoggingListener.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/EventLoggingListener.scala @@ -95,7 +95,7 @@ private[spark] class EventLoggingListener( * Creates the log file in the configured log directory. */ def start() { - if (!fileSystem.isDirectory(new Path(logBaseDir))) { + if (!fileSystem.getFileStatus(new Path(logBaseDir)).isDir) { throw new IllegalArgumentException(s"Log directory $logBaseDir does not exist.") } diff --git a/core/src/main/scala/org/apache/spark/util/MutableURLClassLoader.scala b/core/src/main/scala/org/apache/spark/util/MutableURLClassLoader.scala index d9c7103b2f3bf..1e0ba5c28754a 100644 --- a/core/src/main/scala/org/apache/spark/util/MutableURLClassLoader.scala +++ b/core/src/main/scala/org/apache/spark/util/MutableURLClassLoader.scala @@ -23,8 +23,6 @@ import java.util.concurrent.ConcurrentHashMap import scala.collection.JavaConversions._ -import org.apache.spark.util.ParentClassLoader - /** * URL class loader that exposes the `addURL` and `getURLs` methods in URLClassLoader. */ diff --git a/core/src/test/scala/org/apache/spark/scheduler/OutputCommitCoordinatorSuite.scala b/core/src/test/scala/org/apache/spark/scheduler/OutputCommitCoordinatorSuite.scala index 3cc860caa1d9b..c8c957856247a 100644 --- a/core/src/test/scala/org/apache/spark/scheduler/OutputCommitCoordinatorSuite.scala +++ b/core/src/test/scala/org/apache/spark/scheduler/OutputCommitCoordinatorSuite.scala @@ -153,7 +153,7 @@ class OutputCommitCoordinatorSuite extends FunSuite with BeforeAndAfter { def resultHandler(x: Int, y: Unit): Unit = {} val futureAction: SimpleFutureAction[Unit] = sc.submitJob[Int, Unit, Unit](rdd, OutputCommitFunctions(tempDir.getAbsolutePath).commitSuccessfully, - 0 until rdd.partitions.size, resultHandler, 0) + 0 until rdd.partitions.size, resultHandler, () => Unit) // It's an error if the job completes successfully even though no committer was authorized, // so throw an exception if the job was allowed to complete. intercept[TimeoutException] { diff --git a/core/src/test/scala/org/apache/spark/util/MutableURLClassLoaderSuite.scala b/core/src/test/scala/org/apache/spark/util/MutableURLClassLoaderSuite.scala index 31e3b7e7bb71b..87de90bb0dfb0 100644 --- a/core/src/test/scala/org/apache/spark/util/MutableURLClassLoaderSuite.scala +++ b/core/src/test/scala/org/apache/spark/util/MutableURLClassLoaderSuite.scala @@ -21,8 +21,7 @@ import java.net.URLClassLoader import org.scalatest.FunSuite -import org.apache.spark.{LocalSparkContext, SparkContext, SparkException, TestUtils} -import org.apache.spark.util.Utils +import org.apache.spark.{SparkContext, SparkException, TestUtils} class MutableURLClassLoaderSuite extends FunSuite { diff --git a/examples/src/main/java/org/apache/spark/examples/streaming/JavaStatefulNetworkWordCount.java b/examples/src/main/java/org/apache/spark/examples/streaming/JavaStatefulNetworkWordCount.java index d46c7107c7a21..dbf2ef02d7b76 100644 --- a/examples/src/main/java/org/apache/spark/examples/streaming/JavaStatefulNetworkWordCount.java +++ b/examples/src/main/java/org/apache/spark/examples/streaming/JavaStatefulNetworkWordCount.java @@ -82,6 +82,7 @@ public Optional call(List values, Optional state) { ssc.checkpoint("."); // Initial RDD input to updateStateByKey + @SuppressWarnings("unchecked") List> tuples = Arrays.asList(new Tuple2("hello", 1), new Tuple2("world", 1)); JavaPairRDD initialRDD = ssc.sc().parallelizePairs(tuples); diff --git a/examples/src/main/scala/org/apache/spark/examples/HBaseTest.scala b/examples/src/main/scala/org/apache/spark/examples/HBaseTest.scala index 822673347bdce..f4684b42b5d41 100644 --- a/examples/src/main/scala/org/apache/spark/examples/HBaseTest.scala +++ b/examples/src/main/scala/org/apache/spark/examples/HBaseTest.scala @@ -18,7 +18,7 @@ package org.apache.spark.examples import org.apache.hadoop.hbase.client.HBaseAdmin -import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor} +import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName} import org.apache.hadoop.hbase.mapreduce.TableInputFormat import org.apache.spark._ @@ -36,7 +36,7 @@ object HBaseTest { // Initialize hBase table if necessary val admin = new HBaseAdmin(conf) if (!admin.isTableAvailable(args(0))) { - val tableDesc = new HTableDescriptor(args(0)) + val tableDesc = new HTableDescriptor(TableName.valueOf(args(0))) admin.createTable(tableDesc) } diff --git a/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaDirectKafkaStreamSuite.java b/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaDirectKafkaStreamSuite.java index 1334cc8fd1b57..d6ca6d58b5665 100644 --- a/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaDirectKafkaStreamSuite.java +++ b/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaDirectKafkaStreamSuite.java @@ -20,32 +20,27 @@ import java.io.Serializable; import java.util.HashMap; import java.util.HashSet; -import java.util.Random; import java.util.Arrays; -import org.apache.spark.SparkConf; - import scala.Tuple2; -import junit.framework.Assert; - import kafka.common.TopicAndPartition; import kafka.message.MessageAndMetadata; import kafka.serializer.StringDecoder; +import org.junit.After; +import org.junit.Assert; +import org.junit.Before; +import org.junit.Test; +import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.Function; -import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.Durations; +import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; -import org.junit.Test; -import org.junit.After; -import org.junit.Before; - public class JavaDirectKafkaStreamSuite implements Serializable { private transient JavaStreamingContext ssc = null; - private transient Random random = new Random(); private transient KafkaStreamSuiteBase suiteBase = null; @Before @@ -93,7 +88,7 @@ public void testKafkaStream() throws InterruptedException { ).map( new Function, String>() { @Override - public String call(scala.Tuple2 kv) throws Exception { + public String call(Tuple2 kv) throws Exception { return kv._2(); } } @@ -121,7 +116,7 @@ public String call(MessageAndMetadata msgAndMd) throws Exception unifiedStream.foreachRDD( new Function, Void>() { @Override - public Void call(org.apache.spark.api.java.JavaRDD rdd) throws Exception { + public Void call(JavaRDD rdd) throws Exception { result.addAll(rdd.collect()); return null; } diff --git a/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaKafkaRDDSuite.java b/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaKafkaRDDSuite.java index 9d2e1705c6c73..4477b81827c70 100644 --- a/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaKafkaRDDSuite.java +++ b/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaKafkaRDDSuite.java @@ -19,27 +19,22 @@ import java.io.Serializable; import java.util.HashMap; -import java.util.HashSet; -import java.util.Arrays; - -import org.apache.spark.SparkConf; import scala.Tuple2; -import junit.framework.Assert; - import kafka.common.TopicAndPartition; import kafka.message.MessageAndMetadata; import kafka.serializer.StringDecoder; +import org.junit.After; +import org.junit.Assert; +import org.junit.Before; +import org.junit.Test; +import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; -import org.junit.Test; -import org.junit.After; -import org.junit.Before; - public class JavaKafkaRDDSuite implements Serializable { private transient JavaSparkContext sc = null; private transient KafkaStreamSuiteBase suiteBase = null; @@ -78,8 +73,8 @@ public void testKafkaRDD() throws InterruptedException { OffsetRange.create(topic2, 0, 0, 1) }; - HashMap emptyLeaders = new HashMap(); - HashMap leaders = new HashMap(); + HashMap emptyLeaders = new HashMap(); + HashMap leaders = new HashMap(); String[] hostAndPort = suiteBase.brokerAddress().split(":"); Broker broker = Broker.create(hostAndPort[0], Integer.parseInt(hostAndPort[1])); leaders.put(new TopicAndPartition(topic1, 0), broker); @@ -96,7 +91,7 @@ public void testKafkaRDD() throws InterruptedException { ).map( new Function, String>() { @Override - public String call(scala.Tuple2 kv) throws Exception { + public String call(Tuple2 kv) throws Exception { return kv._2(); } } diff --git a/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaKafkaStreamSuite.java b/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaKafkaStreamSuite.java index 208cc51b29876..bad0a93eb2e84 100644 --- a/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaKafkaStreamSuite.java +++ b/external/kafka/src/test/java/org/apache/spark/streaming/kafka/JavaKafkaStreamSuite.java @@ -22,27 +22,25 @@ import java.util.List; import java.util.Random; -import org.apache.spark.SparkConf; -import org.apache.spark.streaming.Duration; import scala.Predef; import scala.Tuple2; import scala.collection.JavaConverters; -import junit.framework.Assert; - import kafka.serializer.StringDecoder; +import org.junit.After; +import org.junit.Assert; +import org.junit.Before; +import org.junit.Test; +import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.function.Function; import org.apache.spark.storage.StorageLevel; +import org.apache.spark.streaming.Duration; import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.api.java.JavaPairDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; -import org.junit.Test; -import org.junit.After; -import org.junit.Before; - public class JavaKafkaStreamSuite implements Serializable { private transient JavaStreamingContext ssc = null; private transient Random random = new Random(); diff --git a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala index c399496568bfb..5f5a996a87b81 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala @@ -199,12 +199,12 @@ object MatrixFactorizationModel extends Loader[MatrixFactorizationModel] { assert(formatVersion == thisFormatVersion) val rank = (metadata \ "rank").extract[Int] val userFeatures = sqlContext.parquetFile(userPath(path)) - .map { case Row(id: Int, features: Seq[Double]) => - (id, features.toArray) + .map { case Row(id: Int, features: Seq[_]) => + (id, features.asInstanceOf[Seq[Double]].toArray) } val productFeatures = sqlContext.parquetFile(productPath(path)) - .map { case Row(id: Int, features: Seq[Double]) => - (id, features.toArray) + .map { case Row(id: Int, features: Seq[_]) => + (id, features.asInstanceOf[Seq[Double]].toArray) } new MatrixFactorizationModel(rank, userFeatures, productFeatures) } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala index 5020689f7a105..76754a6ce4617 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala @@ -17,6 +17,7 @@ package org.apache.spark.sql.sources +import scala.language.existentials import scala.language.implicitConversions import org.apache.spark.Logging diff --git a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala index 23df6e7eac043..17e923ca48502 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala @@ -86,7 +86,7 @@ class ScalaReflectionRelationSuite extends FunSuite { assert(sql("SELECT * FROM reflectData").collect().head === Row("a", 1, 1L, 1.toFloat, 1.toDouble, 1.toShort, 1.toByte, true, - new java.math.BigDecimal(1), new Date(70, 0, 1), // This is 1970-01-01 + new java.math.BigDecimal(1), Date.valueOf("1970-01-01"), new Timestamp(12345), Seq(1,2,3))) } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala index 09bbd5c867e4e..3181cfe40016c 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala @@ -75,7 +75,7 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { Literal(0.asInstanceOf[Float]) :: Literal(0.asInstanceOf[Double]) :: Literal("0") :: - Literal(new java.sql.Date(114, 8, 23)) :: + Literal(java.sql.Date.valueOf("2014-09-23")) :: Literal(Decimal(BigDecimal(123.123))) :: Literal(new java.sql.Timestamp(123123)) :: Literal(Array[Byte](1,2,3)) :: diff --git a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java index 57302ff407183..90340753a4eed 100644 --- a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java +++ b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java @@ -316,6 +316,7 @@ public void testReduceByWindowWithoutInverse() { testReduceByWindow(false); } + @SuppressWarnings("unchecked") private void testReduceByWindow(boolean withInverse) { List> inputData = Arrays.asList( Arrays.asList(1,2,3), @@ -684,6 +685,7 @@ public void testStreamingContextTransform(){ JavaDStream transformed1 = ssc.transform( listOfDStreams1, new Function2>, Time, JavaRDD>() { + @Override public JavaRDD call(List> listOfRDDs, Time time) { Assert.assertEquals(2, listOfRDDs.size()); return null; @@ -697,6 +699,7 @@ public JavaRDD call(List> listOfRDDs, Time time) { JavaPairDStream> transformed2 = ssc.transformToPair( listOfDStreams2, new Function2>, Time, JavaPairRDD>>() { + @Override public JavaPairRDD> call(List> listOfRDDs, Time time) { Assert.assertEquals(3, listOfRDDs.size()); JavaRDD rdd1 = (JavaRDD)listOfRDDs.get(0); @@ -1829,6 +1832,7 @@ private List> fileTestPrepare(File testDir) throws IOException { return expected; } + @SuppressWarnings("unchecked") // SPARK-5795: no logic assertions, just testing that intended API invocations compile private void compileSaveAsJavaAPI(JavaPairDStream pds) { pds.saveAsNewAPIHadoopFiles( From 5b335bdda3efb7c6a5b18b4eeff189064c11e6c3 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Wed, 11 Mar 2015 13:16:22 +0000 Subject: [PATCH 09/43] [SPARK-6228] [network] Move SASL classes from network/shuffle to network... .../common. No code changes. Left the shuffle-related files in the shuffle module. Author: Marcelo Vanzin Closes #4953 from vanzin/SPARK-6228 and squashes the following commits: 664ef30 [Marcelo Vanzin] [SPARK-6228] [network] Move SASL classes from network/shuffle to network/common. --- .../java/org/apache/spark/network/sasl/SaslClientBootstrap.java | 0 .../src/main/java/org/apache/spark/network/sasl/SaslMessage.java | 0 .../main/java/org/apache/spark/network/sasl/SaslRpcHandler.java | 0 .../main/java/org/apache/spark/network/sasl/SecretKeyHolder.java | 0 .../main/java/org/apache/spark/network/sasl/SparkSaslClient.java | 0 .../main/java/org/apache/spark/network/sasl/SparkSaslServer.java | 0 .../test/java/org/apache/spark/network/sasl/SparkSaslSuite.java | 0 7 files changed, 0 insertions(+), 0 deletions(-) rename network/{shuffle => common}/src/main/java/org/apache/spark/network/sasl/SaslClientBootstrap.java (100%) rename network/{shuffle => common}/src/main/java/org/apache/spark/network/sasl/SaslMessage.java (100%) rename network/{shuffle => common}/src/main/java/org/apache/spark/network/sasl/SaslRpcHandler.java (100%) rename network/{shuffle => common}/src/main/java/org/apache/spark/network/sasl/SecretKeyHolder.java (100%) rename network/{shuffle => common}/src/main/java/org/apache/spark/network/sasl/SparkSaslClient.java (100%) rename network/{shuffle => common}/src/main/java/org/apache/spark/network/sasl/SparkSaslServer.java (100%) rename network/{shuffle => common}/src/test/java/org/apache/spark/network/sasl/SparkSaslSuite.java (100%) diff --git a/network/shuffle/src/main/java/org/apache/spark/network/sasl/SaslClientBootstrap.java b/network/common/src/main/java/org/apache/spark/network/sasl/SaslClientBootstrap.java similarity index 100% rename from network/shuffle/src/main/java/org/apache/spark/network/sasl/SaslClientBootstrap.java rename to network/common/src/main/java/org/apache/spark/network/sasl/SaslClientBootstrap.java diff --git a/network/shuffle/src/main/java/org/apache/spark/network/sasl/SaslMessage.java b/network/common/src/main/java/org/apache/spark/network/sasl/SaslMessage.java similarity index 100% rename from network/shuffle/src/main/java/org/apache/spark/network/sasl/SaslMessage.java rename to network/common/src/main/java/org/apache/spark/network/sasl/SaslMessage.java diff --git a/network/shuffle/src/main/java/org/apache/spark/network/sasl/SaslRpcHandler.java b/network/common/src/main/java/org/apache/spark/network/sasl/SaslRpcHandler.java similarity index 100% rename from network/shuffle/src/main/java/org/apache/spark/network/sasl/SaslRpcHandler.java rename to network/common/src/main/java/org/apache/spark/network/sasl/SaslRpcHandler.java diff --git a/network/shuffle/src/main/java/org/apache/spark/network/sasl/SecretKeyHolder.java b/network/common/src/main/java/org/apache/spark/network/sasl/SecretKeyHolder.java similarity index 100% rename from network/shuffle/src/main/java/org/apache/spark/network/sasl/SecretKeyHolder.java rename to network/common/src/main/java/org/apache/spark/network/sasl/SecretKeyHolder.java diff --git a/network/shuffle/src/main/java/org/apache/spark/network/sasl/SparkSaslClient.java b/network/common/src/main/java/org/apache/spark/network/sasl/SparkSaslClient.java similarity index 100% rename from network/shuffle/src/main/java/org/apache/spark/network/sasl/SparkSaslClient.java rename to network/common/src/main/java/org/apache/spark/network/sasl/SparkSaslClient.java diff --git a/network/shuffle/src/main/java/org/apache/spark/network/sasl/SparkSaslServer.java b/network/common/src/main/java/org/apache/spark/network/sasl/SparkSaslServer.java similarity index 100% rename from network/shuffle/src/main/java/org/apache/spark/network/sasl/SparkSaslServer.java rename to network/common/src/main/java/org/apache/spark/network/sasl/SparkSaslServer.java diff --git a/network/shuffle/src/test/java/org/apache/spark/network/sasl/SparkSaslSuite.java b/network/common/src/test/java/org/apache/spark/network/sasl/SparkSaslSuite.java similarity index 100% rename from network/shuffle/src/test/java/org/apache/spark/network/sasl/SparkSaslSuite.java rename to network/common/src/test/java/org/apache/spark/network/sasl/SparkSaslSuite.java From 548643a9e4690b69e2a496cdcd0a426b6de8d8b5 Mon Sep 17 00:00:00 2001 From: Ilya Ganelin Date: Wed, 11 Mar 2015 13:20:15 +0000 Subject: [PATCH 10/43] [SPARK-4423] Improve foreach() documentation to avoid confusion between local- and cluster-mode behavior Hi all - I've added a writeup on how closures work within Spark to help clarify the general case for this problem and similar problems. I hope this addresses the issue and would love any feedback. Author: Ilya Ganelin Closes #4696 from ilganeli/SPARK-4423 and squashes the following commits: c5dc498 [Ilya Ganelin] Fixed typo 07b78e8 [Ilya Ganelin] Updated to fix capitalization 48c1983 [Ilya Ganelin] Updated to fix capitalization and clarify wording 2fd2a07 [Ilya Ganelin] Incoporated a few more minor fixes. Fixed a bug in python code. Added semicolons for java 4772f99 [Ilya Ganelin] Incorporated latest feedback 448bd79 [Ilya Ganelin] Updated some verbage and added section links 5dbbda5 [Ilya Ganelin] Improved some wording d374d3a [Ilya Ganelin] Merge remote-tracking branch 'upstream/master' into SPARK-4423 2600668 [Ilya Ganelin] Minor edits c768ab2 [Ilya Ganelin] Updated documentation to add a section on closures. This helps understand confusing behavior of foreach and map functions when attempting to modify variables outside of the scope of an RDD action or transformation --- docs/programming-guide.md | 72 ++++++++++++++++++++++++++++++++++++--- 1 file changed, 68 insertions(+), 4 deletions(-) diff --git a/docs/programming-guide.md b/docs/programming-guide.md index fa0b4e3705d6e..c011a8404f7c9 100644 --- a/docs/programming-guide.md +++ b/docs/programming-guide.md @@ -725,7 +725,7 @@ class MyClass(object): def __init__(self): self.field = "Hello" def doStuff(self, rdd): - return rdd.map(lambda s: self.field + x) + return rdd.map(lambda s: self.field + s) {% endhighlight %} To avoid this issue, the simplest way is to copy `field` into a local variable instead @@ -734,13 +734,76 @@ of accessing it externally: {% highlight python %} def doStuff(self, rdd): field = self.field - return rdd.map(lambda s: field + x) + return rdd.map(lambda s: field + s) {% endhighlight %} +### Understanding closures +One of the harder things about Spark is understanding the scope and life cycle of variables and methods when executing code across a cluster. RDD operations that modify variables outside of their scope can be a frequent source of confusion. In the example below we'll look at code that uses `foreach()` to increment a counter, but similar issues can occur for other operations as well. + +#### Example + +Consider the naive RDD element sum below, which behaves completely differently depending on whether execution is happening within the same JVM. A common example of this is when running Spark in `local` mode (`--master = local[n]`) versus deploying a Spark application to a cluster (e.g. via spark-submit to YARN): + +
+ +
+{% highlight scala %} +var counter = 0 +var rdd = sc.parallelize(data) + +// Wrong: Don't do this!! +rdd.foreach(x => counter += x) + +println("Counter value: " + counter) +{% endhighlight %} +
+ +
+{% highlight java %} +int counter = 0; +JavaRDD rdd = sc.parallelize(data); + +// Wrong: Don't do this!! +rdd.foreach(x -> counter += x); + +println("Counter value: " + counter); +{% endhighlight %} +
+ +
+{% highlight python %} +counter = 0 +rdd = sc.parallelize(data) + +# Wrong: Don't do this!! +rdd.foreach(lambda x: counter += x) + +print("Counter value: " + counter) + +{% endhighlight %} +
+ +
+ +#### Local vs. cluster modes + +The primary challenge is that the behavior of the above code is undefined. In local mode with a single JVM, the above code will sum the values within the RDD and store it in **counter**. This is because both the RDD and the variable **counter** are in the same memory space on the driver node. + +However, in `cluster` mode, what happens is more complicated, and the above may not work as intended. To execute jobs, Spark breaks up the processing of RDD operations into tasks - each of which is operated on by an executor. Prior to execution, Spark computes the **closure**. The closure is those variables and methods which must be visible for the executor to perform its computations on the RDD (in this case `foreach()`). This closure is serialized and sent to each executor. In `local` mode, there is only the one executors so everything shares the same closure. In other modes however, this is not the case and the executors running on seperate worker nodes each have their own copy of the closure. + +What is happening here is that the variables within the closure sent to each executor are now copies and thus, when **counter** is referenced within the `foreach` function, it's no longer the **counter** on the driver node. There is still a **counter** in the memory of the driver node but this is no longer visible to the executors! The executors only sees the copy from the serialized closure. Thus, the final value of **counter** will still be zero since all operations on **counter** were referencing the value within the serialized closure. + +To ensure well-defined behavior in these sorts of scenarios one should use an [`Accumulator`](#AccumLink). Accumulators in Spark are used specifically to provide a mechanism for safely updating a variable when execution is split up across worker nodes in a cluster. The Accumulators section of this guide discusses these in more detail. + +In general, closures - constructs like loops or locally defined methods, should not be used to mutate some global state. Spark does not define or guarantee the behavior of mutations to objects referenced from outside of closures. Some code that does this may work in local mode, but that's just by accident and such code will not behave as expected in distributed mode. Use an Accumulator instead if some global aggregation is needed. + +#### Printing elements of an RDD +Another common idiom is attempting to print out the elements of an RDD using `rdd.foreach(println)` or `rdd.map(println)`. On a single machine, this will generate the expected output and print all the RDD's elements. However, in `cluster` mode, the output to `stdout` being called by the executors is now writing to the executor's `stdout` instead, not the one on the driver, so `stdout` on the driver won't show these! To print all elements on the driver, one can use the `collect()` method to first bring the RDD to the driver node thus: `rdd.collect().foreach(println)`. This can cause the driver to run out of memory, though, because `collect()` fetches the entire RDD to a single machine; if you only need to print a few elements of the RDD, a safer approach is to use the `take()`: `rdd.take(100).foreach(println)`. + ### Working with Key-Value Pairs
@@ -1018,7 +1081,8 @@ for details. foreach(func) - Run a function func on each element of the dataset. This is usually done for side effects such as updating an accumulator variable (see below) or interacting with external storage systems. + Run a function func on each element of the dataset. This is usually done for side effects such as updating an Accumulator or interacting with external storage systems. +
Note: modifying variables other than Accumulators outside of the foreach() may result in undefined behavior. See Understanding closures for more details. @@ -1191,7 +1255,7 @@ run on the cluster so that `v` is not shipped to the nodes more than once. In ad `v` should not be modified after it is broadcast in order to ensure that all nodes get the same value of the broadcast variable (e.g. if the variable is shipped to a new node later). -## Accumulators +## Accumulators Accumulators are variables that are only "added" to through an associative operation and can therefore be efficiently supported in parallel. They can be used to implement counters (as in From 2d87a415f20c85487537d6791a73827ff537f2c0 Mon Sep 17 00:00:00 2001 From: Sandy Ryza Date: Wed, 11 Mar 2015 13:22:05 +0000 Subject: [PATCH 11/43] SPARK-3642. Document the nuances of shared variables. Author: Sandy Ryza Closes #2490 from sryza/sandy-spark-3642 and squashes the following commits: aae3340 [Sandy Ryza] SPARK-3642. Document the nuances of broadcast variables --- docs/programming-guide.md | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/docs/programming-guide.md b/docs/programming-guide.md index c011a8404f7c9..eda3a95426182 100644 --- a/docs/programming-guide.md +++ b/docs/programming-guide.md @@ -1207,6 +1207,12 @@ than shipping a copy of it with tasks. They can be used, for example, to give ev large input dataset in an efficient manner. Spark also attempts to distribute broadcast variables using efficient broadcast algorithms to reduce communication cost. +Spark actions are executed through a set of stages, separated by distributed "shuffle" operations. +Spark automatically broadcasts the common data needed by tasks within each stage. The data +broadcasted this way is cached in serialized form and deserialized before running each task. This +means that explicitly creating broadcast variables is only useful when tasks across multiple stages +need the same data or when caching the data in deserialized form is important. + Broadcast variables are created from a variable `v` by calling `SparkContext.broadcast(v)`. The broadcast variable is a wrapper around `v`, and its value can be accessed by calling the `value` method. The code below shows this: From 55c4831d68c8326380086b5540244f984ea9ec27 Mon Sep 17 00:00:00 2001 From: Sean Owen Date: Wed, 11 Mar 2015 14:09:09 +0000 Subject: [PATCH 12/43] SPARK-6245 [SQL] jsonRDD() of empty RDD results in exception Avoid `UnsupportedOperationException` from JsonRDD.inferSchema on empty RDD. Not sure if this is supposed to be an error (but a better one), but it seems like this case can come up if the input is down-sampled so much that nothing is sampled. Now stuff like this: ``` sqlContext.jsonRDD(sc.parallelize(List[String]())) ``` just results in ``` org.apache.spark.sql.DataFrame = [] ``` Author: Sean Owen Closes #4971 from srowen/SPARK-6245 and squashes the following commits: 3699964 [Sean Owen] Set() -> Set.empty 3c619e1 [Sean Owen] Avoid UnsupportedOperationException from JsonRDD.inferSchema on empty RDD --- .../src/main/scala/org/apache/spark/sql/json/JsonRDD.scala | 6 +++++- .../test/scala/org/apache/spark/sql/json/JsonSuite.scala | 7 +++++++ .../scala/org/apache/spark/sql/json/TestJsonData.scala | 3 +++ 3 files changed, 15 insertions(+), 1 deletion(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala index e54a2a3679272..2b0358c4e2a1e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala @@ -48,7 +48,11 @@ private[sql] object JsonRDD extends Logging { require(samplingRatio > 0, s"samplingRatio ($samplingRatio) should be greater than 0") val schemaData = if (samplingRatio > 0.99) json else json.sample(false, samplingRatio, 1) val allKeys = - parseJson(schemaData, columnNameOfCorruptRecords).map(allKeysWithValueTypes).reduce(_ ++ _) + if (schemaData.isEmpty()) { + Set.empty[(String,DataType)] + } else { + parseJson(schemaData, columnNameOfCorruptRecords).map(allKeysWithValueTypes).reduce(_ ++ _) + } createSchema(allKeys) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala index 0c21f725f0b49..320b80d80e997 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala @@ -1033,4 +1033,11 @@ class JsonSuite extends QueryTest { assert(!logicalRelation2.sameResult(logicalRelation3), s"$logicalRelation2 and $logicalRelation3 should be considered not having the same result.") } + + test("SPARK-6245 JsonRDD.inferSchema on empty RDD") { + // This is really a test that it doesn't throw an exception + val emptySchema = JsonRDD.inferSchema(empty, 1.0, "") + assert(StructType(Seq()) === emptySchema) + } + } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/json/TestJsonData.scala b/sql/core/src/test/scala/org/apache/spark/sql/json/TestJsonData.scala index 15698f61e0837..47a97a49daabb 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/json/TestJsonData.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/json/TestJsonData.scala @@ -185,4 +185,7 @@ object TestJsonData { """{"a":{, b:3}""" :: """{"b":"str_b_4", "a":"str_a_4", "c":"str_c_4"}""" :: """]""" :: Nil) + + val empty = + TestSQLContext.sparkContext.parallelize(Seq[String]()) } From 51a79a770a8356bd0ed244af5ca7f1c44c9437d2 Mon Sep 17 00:00:00 2001 From: Tathagata Das Date: Wed, 11 Mar 2015 11:19:51 -0700 Subject: [PATCH 13/43] [SPARK-6274][Streaming][Examples] Added examples streaming + sql examples. Added Scala, Java and Python streaming examples showing DataFrame and SQL operations within streaming. Author: Tathagata Das Closes #4975 from tdas/streaming-sql-examples and squashes the following commits: 705cba1 [Tathagata Das] Fixed python lint error 75a3fad [Tathagata Das] Fixed python lint error 5fbf789 [Tathagata Das] Removed empty lines at the end 874b943 [Tathagata Das] Added examples streaming + sql examples. --- .../spark/examples/streaming/JavaRecord.java | 31 +++++ .../streaming/JavaSqlNetworkWordCount.java | 122 ++++++++++++++++++ .../python/streaming/sql_network_wordcount.py | 82 ++++++++++++ .../streaming/SqlNetworkWordCount.scala | 101 +++++++++++++++ 4 files changed, 336 insertions(+) create mode 100644 examples/src/main/java/org/apache/spark/examples/streaming/JavaRecord.java create mode 100644 examples/src/main/java/org/apache/spark/examples/streaming/JavaSqlNetworkWordCount.java create mode 100644 examples/src/main/python/streaming/sql_network_wordcount.py create mode 100644 examples/src/main/scala/org/apache/spark/examples/streaming/SqlNetworkWordCount.scala diff --git a/examples/src/main/java/org/apache/spark/examples/streaming/JavaRecord.java b/examples/src/main/java/org/apache/spark/examples/streaming/JavaRecord.java new file mode 100644 index 0000000000000..e63697a79f23a --- /dev/null +++ b/examples/src/main/java/org/apache/spark/examples/streaming/JavaRecord.java @@ -0,0 +1,31 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.streaming; + +/** Java Bean class to be used with the example JavaSqlNetworkWordCount. */ +public class JavaRecord implements java.io.Serializable { + private String word; + + public String getWord() { + return word; + } + + public void setWord(String word) { + this.word = word; + } +} diff --git a/examples/src/main/java/org/apache/spark/examples/streaming/JavaSqlNetworkWordCount.java b/examples/src/main/java/org/apache/spark/examples/streaming/JavaSqlNetworkWordCount.java new file mode 100644 index 0000000000000..46562ddbbcb57 --- /dev/null +++ b/examples/src/main/java/org/apache/spark/examples/streaming/JavaSqlNetworkWordCount.java @@ -0,0 +1,122 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.streaming; + +import java.util.regex.Pattern; + +import com.google.common.collect.Lists; + +import org.apache.spark.SparkConf; +import org.apache.spark.SparkContext; +import org.apache.spark.api.java.JavaRDD; +import org.apache.spark.api.java.function.FlatMapFunction; +import org.apache.spark.api.java.function.Function; +import org.apache.spark.api.java.function.Function2; +import org.apache.spark.sql.SQLContext; +import org.apache.spark.sql.DataFrame; +import org.apache.spark.api.java.StorageLevels; +import org.apache.spark.streaming.Durations; +import org.apache.spark.streaming.Time; +import org.apache.spark.streaming.api.java.JavaDStream; +import org.apache.spark.streaming.api.java.JavaReceiverInputDStream; +import org.apache.spark.streaming.api.java.JavaStreamingContext; + +/** + * Use DataFrames and SQL to count words in UTF8 encoded, '\n' delimited text received from the + * network every second. + * + * Usage: JavaSqlNetworkWordCount + * and describe the TCP server that Spark Streaming would connect to receive data. + * + * To run this on your local machine, you need to first run a Netcat server + * `$ nc -lk 9999` + * and then run the example + * `$ bin/run-example org.apache.spark.examples.streaming.JavaSqlNetworkWordCount localhost 9999` + */ + +public final class JavaSqlNetworkWordCount { + private static final Pattern SPACE = Pattern.compile(" "); + + public static void main(String[] args) { + if (args.length < 2) { + System.err.println("Usage: JavaNetworkWordCount "); + System.exit(1); + } + + StreamingExamples.setStreamingLogLevels(); + + // Create the context with a 1 second batch size + SparkConf sparkConf = new SparkConf().setAppName("JavaSqlNetworkWordCount"); + JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(1)); + + // Create a JavaReceiverInputDStream on target ip:port and count the + // words in input stream of \n delimited text (eg. generated by 'nc') + // Note that no duplication in storage level only for running locally. + // Replication necessary in distributed scenario for fault tolerance. + JavaReceiverInputDStream lines = ssc.socketTextStream( + args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER); + JavaDStream words = lines.flatMap(new FlatMapFunction() { + @Override + public Iterable call(String x) { + return Lists.newArrayList(SPACE.split(x)); + } + }); + + // Convert RDDs of the words DStream to DataFrame and run SQL query + words.foreachRDD(new Function2, Time, Void>() { + @Override + public Void call(JavaRDD rdd, Time time) { + SQLContext sqlContext = JavaSQLContextSingleton.getInstance(rdd.context()); + + // Convert JavaRDD[String] to JavaRDD[bean class] to DataFrame + JavaRDD rowRDD = rdd.map(new Function() { + public JavaRecord call(String word) { + JavaRecord record = new JavaRecord(); + record.setWord(word); + return record; + } + }); + DataFrame wordsDataFrame = sqlContext.createDataFrame(rowRDD, JavaRecord.class); + + // Register as table + wordsDataFrame.registerTempTable("words"); + + // Do word count on table using SQL and print it + DataFrame wordCountsDataFrame = + sqlContext.sql("select word, count(*) as total from words group by word"); + System.out.println("========= " + time + "========="); + wordCountsDataFrame.show(); + return null; + } + }); + + ssc.start(); + ssc.awaitTermination(); + } +} + +/** Lazily instantiated singleton instance of SQLContext */ +class JavaSQLContextSingleton { + static private transient SQLContext instance = null; + static public SQLContext getInstance(SparkContext sparkContext) { + if (instance == null) { + instance = new SQLContext(sparkContext); + } + return instance; + } +} diff --git a/examples/src/main/python/streaming/sql_network_wordcount.py b/examples/src/main/python/streaming/sql_network_wordcount.py new file mode 100644 index 0000000000000..f89bc562d856b --- /dev/null +++ b/examples/src/main/python/streaming/sql_network_wordcount.py @@ -0,0 +1,82 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +""" + Use DataFrames and SQL to count words in UTF8 encoded, '\n' delimited text received from the + network every second. + + Usage: sql_network_wordcount.py + and describe the TCP server that Spark Streaming would connect to receive data. + + To run this on your local machine, you need to first run a Netcat server + `$ nc -lk 9999` + and then run the example + `$ bin/spark-submit examples/src/main/python/streaming/sql_network_wordcount.py localhost 9999` +""" + +import os +import sys + +from pyspark import SparkContext +from pyspark.streaming import StreamingContext +from pyspark.sql import SQLContext, Row + + +def getSqlContextInstance(sparkContext): + if ('sqlContextSingletonInstance' not in globals()): + globals()['sqlContextSingletonInstance'] = SQLContext(sparkContext) + return globals()['sqlContextSingletonInstance'] + + +if __name__ == "__main__": + if len(sys.argv) != 3: + print >> sys.stderr, "Usage: sql_network_wordcount.py " + exit(-1) + host, port = sys.argv[1:] + sc = SparkContext(appName="PythonSqlNetworkWordCount") + ssc = StreamingContext(sc, 1) + + # Create a socket stream on target ip:port and count the + # words in input stream of \n delimited text (eg. generated by 'nc') + lines = ssc.socketTextStream(host, int(port)) + words = lines.flatMap(lambda line: line.split(" ")) + + # Convert RDDs of the words DStream to DataFrame and run SQL query + def process(time, rdd): + print "========= %s =========" % str(time) + + try: + # Get the singleton instance of SQLContext + sqlContext = getSqlContextInstance(rdd.context) + + # Convert RDD[String] to RDD[Row] to DataFrame + rowRdd = rdd.map(lambda w: Row(word=w)) + wordsDataFrame = sqlContext.createDataFrame(rowRdd) + + # Register as table + wordsDataFrame.registerTempTable("words") + + # Do word count on table using SQL and print it + wordCountsDataFrame = \ + sqlContext.sql("select word, count(*) as total from words group by word") + wordCountsDataFrame.show() + except: + pass + + words.foreachRDD(process) + ssc.start() + ssc.awaitTermination() diff --git a/examples/src/main/scala/org/apache/spark/examples/streaming/SqlNetworkWordCount.scala b/examples/src/main/scala/org/apache/spark/examples/streaming/SqlNetworkWordCount.scala new file mode 100644 index 0000000000000..5a6b9216a3fbc --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/streaming/SqlNetworkWordCount.scala @@ -0,0 +1,101 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.streaming + +import org.apache.spark.SparkConf +import org.apache.spark.SparkContext +import org.apache.spark.rdd.RDD +import org.apache.spark.streaming.{Time, Seconds, StreamingContext} +import org.apache.spark.util.IntParam +import org.apache.spark.sql.SQLContext +import org.apache.spark.storage.StorageLevel + +/** + * Use DataFrames and SQL to count words in UTF8 encoded, '\n' delimited text received from the + * network every second. + * + * Usage: SqlNetworkWordCount + * and describe the TCP server that Spark Streaming would connect to receive data. + * + * To run this on your local machine, you need to first run a Netcat server + * `$ nc -lk 9999` + * and then run the example + * `$ bin/run-example org.apache.spark.examples.streaming.SqlNetworkWordCount localhost 9999` + */ + +object SqlNetworkWordCount { + def main(args: Array[String]) { + if (args.length < 2) { + System.err.println("Usage: NetworkWordCount ") + System.exit(1) + } + + StreamingExamples.setStreamingLogLevels() + + // Create the context with a 2 second batch size + val sparkConf = new SparkConf().setAppName("SqlNetworkWordCount") + val ssc = new StreamingContext(sparkConf, Seconds(2)) + + // Create a socket stream on target ip:port and count the + // words in input stream of \n delimited text (eg. generated by 'nc') + // Note that no duplication in storage level only for running locally. + // Replication necessary in distributed scenario for fault tolerance. + val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER) + val words = lines.flatMap(_.split(" ")) + + // Convert RDDs of the words DStream to DataFrame and run SQL query + words.foreachRDD((rdd: RDD[String], time: Time) => { + // Get the singleton instance of SQLContext + val sqlContext = SQLContextSingleton.getInstance(rdd.sparkContext) + import sqlContext.implicits._ + + // Convert RDD[String] to RDD[case class] to DataFrame + val wordsDataFrame = rdd.map(w => Record(w)).toDF() + + // Register as table + wordsDataFrame.registerTempTable("words") + + // Do word count on table using SQL and print it + val wordCountsDataFrame = + sqlContext.sql("select word, count(*) as total from words group by word") + println(s"========= $time =========") + wordCountsDataFrame.show() + }) + + ssc.start() + ssc.awaitTermination() + } +} + + +/** Case class for converting RDD to DataFrame */ +case class Record(word: String) + + +/** Lazily instantiated singleton instance of SQLContext */ +object SQLContextSingleton { + + @transient private var instance: SQLContext = _ + + def getInstance(sparkContext: SparkContext): SQLContext = { + if (instance == null) { + instance = new SQLContext(sparkContext) + } + instance + } +} From cd3b68d93a01f11bd3d5a441b341cb33d227e900 Mon Sep 17 00:00:00 2001 From: Tathagata Das Date: Wed, 11 Mar 2015 18:48:21 -0700 Subject: [PATCH 14/43] [SPARK-6128][Streaming][Documentation] Updates to Spark Streaming Programming Guide Updates to the documentation are as follows: - Added information on Kafka Direct API and Kafka Python API - Added joins to the main streaming guide - Improved details on the fault-tolerance semantics Generated docs located here http://people.apache.org/~tdas/spark-1.3.0-temp-docs/streaming-programming-guide.html#fault-tolerance-semantics More things to add: - Configuration for Kafka receive rate - May be add concurrentJobs Author: Tathagata Das Closes #4956 from tdas/streaming-guide-update-1.3 and squashes the following commits: 819408c [Tathagata Das] Minor fixes. debe484 [Tathagata Das] Added DataFrames and MLlib 380cf8d [Tathagata Das] Fix link 04167a6 [Tathagata Das] Merge remote-tracking branch 'apache-github/master' into streaming-guide-update-1.3 0b77486 [Tathagata Das] Updates based on Josh's comments. 86c4c2a [Tathagata Das] Updated streaming guides 82de92a [Tathagata Das] Add Kafka to Python api docs --- docs/configuration.md | 14 +- docs/streaming-flume-integration.md | 2 + docs/streaming-kafka-integration.md | 151 +++++++-- docs/streaming-programming-guide.md | 470 +++++++++++++++++++++++----- 4 files changed, 528 insertions(+), 109 deletions(-) diff --git a/docs/configuration.md b/docs/configuration.md index ae90fe1f8f6b9..a7116fbece9bb 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -1345,9 +1345,9 @@ Apart from these, the following properties are also available, and may be useful spark.streaming.receiver.maxRate - infinite + not set - Maximum number records per second at which each receiver will receive data. + Maximum rate (number of records per second) at which each receiver will receive data. Effectively, each stream will consume at most this number of records per second. Setting this configuration to 0 or a negative number will put no limit on the rate. See the deployment guide @@ -1375,6 +1375,16 @@ Apart from these, the following properties are also available, and may be useful higher memory usage in Spark. + + spark.streaming.kafka.maxRatePerPartition + not set + + Maximum rate (number of records per second) at which data will be read from each Kafka + partition when using the new Kafka direct stream API. See the + Kafka Integration guide + for more details. + + #### Cluster Managers diff --git a/docs/streaming-flume-integration.md b/docs/streaming-flume-integration.md index 40e17246fea83..c8ab146bcae0a 100644 --- a/docs/streaming-flume-integration.md +++ b/docs/streaming-flume-integration.md @@ -5,6 +5,8 @@ title: Spark Streaming + Flume Integration Guide [Apache Flume](https://flume.apache.org/) is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. Here we explain how to configure Flume and Spark Streaming to receive data from Flume. There are two approaches to this. +Python API Flume is not yet available in the Python API. + ## Approach 1: Flume-style Push-based Approach Flume is designed to push data between Flume agents. In this approach, Spark Streaming essentially sets up a receiver that acts an Avro agent for Flume, to which Flume can push the data. Here are the configuration steps. diff --git a/docs/streaming-kafka-integration.md b/docs/streaming-kafka-integration.md index 77c0abbbacbd0..64714f0b799fc 100644 --- a/docs/streaming-kafka-integration.md +++ b/docs/streaming-kafka-integration.md @@ -2,58 +2,155 @@ layout: global title: Spark Streaming + Kafka Integration Guide --- -[Apache Kafka](http://kafka.apache.org/) is publish-subscribe messaging rethought as a distributed, partitioned, replicated commit log service. Here we explain how to configure Spark Streaming to receive data from Kafka. +[Apache Kafka](http://kafka.apache.org/) is publish-subscribe messaging rethought as a distributed, partitioned, replicated commit log service. Here we explain how to configure Spark Streaming to receive data from Kafka. There are two approaches to this - the old approach using Receivers and Kafka's high-level API, and a new experimental approach (introduced in Spark 1.3) without using Receivers. They have different programming models, performance characteristics, and semantics guarantees, so read on for more details. -1. **Linking:** In your SBT/Maven project definition, link your streaming application against the following artifact (see [Linking section](streaming-programming-guide.html#linking) in the main programming guide for further information). +## Approach 1: Receiver-based Approach +This approach uses a Receiver to receive the data. The Received is implemented using the Kafka high-level consumer API. As with all receivers, the data received from Kafka through a Receiver is stored in Spark executors, and then jobs launched by Spark Streaming processes the data. + +However, under default configuration, this approach can lose data under failures (see [receiver reliability](streaming-programming-guide.html#receiver-reliability). To ensure zero-data loss, you have to additionally enable Write Ahead Logs in Spark Streaming. To ensure zero data loss, enable the Write Ahead Logs (introduced in Spark 1.2). This synchronously saves all the received Kafka data into write ahead logs on a distributed file system (e.g HDFS), so that all the data can be recovered on failure. See [Deploying section](streaming-programming-guide.html#deploying-applications) in the streaming programming guide for more details on Write Ahead Logs. + +Next, we discuss how to use this approach in your streaming application. + +1. **Linking:** For Scala/Java applications using SBT/Maven project definitions, link your streaming application with the following artifact (see [Linking section](streaming-programming-guide.html#linking) in the main programming guide for further information). groupId = org.apache.spark artifactId = spark-streaming-kafka_{{site.SCALA_BINARY_VERSION}} version = {{site.SPARK_VERSION_SHORT}} -2. **Programming:** In the streaming application code, import `KafkaUtils` and create input DStream as follows. + For Python applications, you will have to add this above library and its dependencies when deploying your application. See the *Deploying* subsection below. + +2. **Programming:** In the streaming application code, import `KafkaUtils` and create an input DStream as follows.
import org.apache.spark.streaming.kafka._ - val kafkaStream = KafkaUtils.createStream( - streamingContext, [zookeeperQuorum], [group id of the consumer], [per-topic number of Kafka partitions to consume]) + val kafkaStream = KafkaUtils.createStream(streamingContext, + [ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume]) - See the [API docs](api/scala/index.html#org.apache.spark.streaming.kafka.KafkaUtils$) + You can also specify the key and value classes and their corresponding decoder classes using variations of `createStream`. See the [API docs](api/scala/index.html#org.apache.spark.streaming.kafka.KafkaUtils$) and the [example]({{site.SPARK_GITHUB_URL}}/blob/master/examples/scala-2.10/src/main/scala/org/apache/spark/examples/streaming/KafkaWordCount.scala).
import org.apache.spark.streaming.kafka.*; - JavaPairReceiverInputDStream kafkaStream = KafkaUtils.createStream( - streamingContext, [zookeeperQuorum], [group id of the consumer], [per-topic number of Kafka partitions to consume]); + JavaPairReceiverInputDStream kafkaStream = + KafkaUtils.createStream(streamingContext, + [ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume]); - See the [API docs](api/java/index.html?org/apache/spark/streaming/kafka/KafkaUtils.html) + You can also specify the key and value classes and their corresponding decoder classes using variations of `createStream`. See the [API docs](api/java/index.html?org/apache/spark/streaming/kafka/KafkaUtils.html) and the [example]({{site.SPARK_GITHUB_URL}}/blob/master/examples/scala-2.10/src/main/java/org/apache/spark/examples/streaming/JavaKafkaWordCount.java). + +
+
+ from pyspark.streaming.kafka import KafkaUtils + + kafkaStream = KafkaUtils.createStream(streamingContext, \ + [ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume]) + + By default, the Python API will decode Kafka data as UTF8 encoded strings. You can specify your custom decoding function to decode the byte arrays in Kafka records to any arbitrary data type. See the [API docs](api/python/pyspark.streaming.html#pyspark.streaming.kafka.KafkaUtils) + and the [example]({{site.SPARK_GITHUB_URL}}/blob/master/examples/src/main/python/streaming/kafka_wordcount.py).
- *Points to remember:* + **Points to remember:** - Topic partitions in Kafka does not correlate to partitions of RDDs generated in Spark Streaming. So increasing the number of topic-specific partitions in the `KafkaUtils.createStream()` only increases the number of threads using which topics that are consumed within a single receiver. It does not increase the parallelism of Spark in processing the data. Refer to the main document for more information on that. - Multiple Kafka input DStreams can be created with different groups and topics for parallel receiving of data using multiple receivers. -3. **Deploying:** Package `spark-streaming-kafka_{{site.SCALA_BINARY_VERSION}}` and its dependencies (except `spark-core_{{site.SCALA_BINARY_VERSION}}` and `spark-streaming_{{site.SCALA_BINARY_VERSION}}` which are provided by `spark-submit`) into the application JAR. Then use `spark-submit` to launch your application (see [Deploying section](streaming-programming-guide.html#deploying-applications) in the main programming guide). - -Note that the Kafka receiver used by default is an -[*unreliable* receiver](streaming-programming-guide.html#receiver-reliability) section in the -programming guide). In Spark 1.2, we have added an experimental *reliable* Kafka receiver that -provides stronger -[fault-tolerance guarantees](streaming-programming-guide.html#fault-tolerance-semantics) of zero -data loss on failures. This receiver is automatically used when the write ahead log -(also introduced in Spark 1.2) is enabled -(see [Deployment](#deploying-applications.html) section in the programming guide). This -may reduce the receiving throughput of individual Kafka receivers compared to the unreliable -receivers, but this can be corrected by running -[more receivers in parallel](streaming-programming-guide.html#level-of-parallelism-in-data-receiving) -to increase aggregate throughput. Additionally, it is recommended that the replication of the -received data within Spark be disabled when the write ahead log is enabled as the log is already stored -in a replicated storage system. This can be done by setting the storage level for the input -stream to `StorageLevel.MEMORY_AND_DISK_SER` (that is, use + - If you have enabled Write Ahead Logs with a replicated file system like HDFS, the received data is already being replicated in the log. Hence, the storage level in storage level for the input stream to `StorageLevel.MEMORY_AND_DISK_SER` (that is, use `KafkaUtils.createStream(..., StorageLevel.MEMORY_AND_DISK_SER)`). + +3. **Deploying:** As with any Spark applications, `spark-submit` is used to launch your application. However, the details are slightly different for Scala/Java applications and Python applications. + + For Scala and Java applications, if you are using SBT or Maven for project management, then package `spark-streaming-kafka_{{site.SCALA_BINARY_VERSION}}` and its dependencies into the application JAR. Make sure `spark-core_{{site.SCALA_BINARY_VERSION}}` and `spark-streaming_{{site.SCALA_BINARY_VERSION}}` are marked as `provided` dependencies as those are already present in a Spark installation. Then use `spark-submit` to launch your application (see [Deploying section](streaming-programming-guide.html#deploying-applications) in the main programming guide). + + For Python applications which lack SBT/Maven project management, `spark-streaming-kafka_{{site.SCALA_BINARY_VERSION}}` and its dependencies can be directly added to `spark-submit` using `--packages` (see [Application Submission Guide](submitting-applications.html)). That is, + + ./bin/spark-submit --packages org.apache.spark:spark-streaming-kafka_{{site.SCALA_BINARY_VERSION}}:{{site.SPARK_VERSION_SHORT}} ... + + Alternatively, you can also download the JAR of the Maven artifact `spark-streaming-kafka-assembly` from the + [Maven repository](http://search.maven.org/#search|ga|1|a%3A%22spark-streaming-kafka-assembly_2.10%22%20AND%20v%3A%22{{site.SPARK_VERSION_SHORT}}%22) and add it to `spark-submit` with `--jars`. + +## Approach 2: Direct Approach (No Receivers) +This is a new receiver-less "direct" approach has been introduced in Spark 1.3 to ensure stronger end-to-end guarantees. Instead of using receivers to receive data, this approach periodically queries Kafka for the latest offsets in each topic+partition, and accordingly defines the offset ranges to process in each batch. When the jobs to process the data are launched, Kafka's simple consumer API is used to read the defined ranges of offsets from Kafka (similar to read files from a file system). Note that this is an experimental feature in Spark 1.3 and is only available in the Scala and Java API. + +This approach has the following advantages over the received-based approach (i.e. Approach 1). + +- *Simplified Parallelism:* No need to create multiple input Kafka streams and union-ing them. With `directStream`, Spark Streaming will create as many RDD partitions as there is Kafka partitions to consume, which will all read data from Kafka in parallel. So there is one-to-one mapping between Kafka and RDD partitions, which is easier to understand and tune. + +- *Efficiency:* Achieving zero-data loss in the first approach required the data to be stored in a Write Ahead Log, which further replicated the data. This is actually inefficient as the data effectively gets replicated twice - once by Kafka, and a second time by the Write Ahead Log. This second approach eliminate the problem as there is no receiver, and hence no need for Write Ahead Logs. + +- *Exactly-once semantics:* The first approach uses Kafka's high level API to store consumed offsets in Zookeeper. This is traditionally the way to consume data from Kafka. While this approach (in combination with write ahead logs) can ensure zero data loss (i.e. at-least once semantics), there is a small chance some records may get consumed twice under some failures. This occurs because of inconsistencies between data reliably received by Spark Streaming and offsets tracked by Zookeeper. Hence, in this second approach, we use simple Kafka API that does not use Zookeeper and offsets tracked only by Spark Streaming within its checkpoints. This eliminates inconsistencies between Spark Streaming and Zookeeper/Kafka, and so each record is received by Spark Streaming effectively exactly once despite failures. + +Note that one disadvantage of this approach is that it does not update offsets in Zookeeper, hence Zookeeper-based Kafka monitoring tools will not show progress. However, you can access the offsets processed by this approach in each batch and update Zookeeper yourself (see below). + +Next, we discuss how to use this approach in your streaming application. + +1. **Linking:** This approach is supported only in Scala/Java application. Link your SBT/Maven project with the following artifact (see [Linking section](streaming-programming-guide.html#linking) in the main programming guide for further information). + + groupId = org.apache.spark + artifactId = spark-streaming-kafka_{{site.SCALA_BINARY_VERSION}} + version = {{site.SPARK_VERSION_SHORT}} + +2. **Programming:** In the streaming application code, import `KafkaUtils` and create an input DStream as follows. + +
+
+ import org.apache.spark.streaming.kafka._ + + val directKafkaStream = KafkaUtils.createDirectStream[ + [key class], [value class], [key decoder class], [value decoder class] ]( + streamingContext, [map of Kafka parameters], [set of topics to consume]) + + See the [API docs](api/scala/index.html#org.apache.spark.streaming.kafka.KafkaUtils$) + and the [example]({{site.SPARK_GITHUB_URL}}/blob/master/examples/scala-2.10/src/main/scala/org/apache/spark/examples/streaming/DirectKafkaWordCount.scala). +
+
+ import org.apache.spark.streaming.kafka.*; + + JavaPairReceiverInputDStream directKafkaStream = + KafkaUtils.createDirectStream(streamingContext, + [key class], [value class], [key decoder class], [value decoder class], + [map of Kafka parameters], [set of topics to consume]); + + See the [API docs](api/java/index.html?org/apache/spark/streaming/kafka/KafkaUtils.html) + and the [example]({{site.SPARK_GITHUB_URL}}/blob/master/examples/scala-2.10/src/main/java/org/apache/spark/examples/streaming/JavaDirectKafkaWordCount.java). + +
+
+ + In the Kafka parameters, you must specify either `metadata.broker.list` or `bootstrap.servers`. + By default, it will start consuming from the latest offset of each Kafka partition. If you set configuration `auto.offset.reset` in Kafka parameters to `smallest`, then it will start consuming from the smallest offset. + + You can also start consuming from any arbitrary offset using other variations of `KafkaUtils.createDirectStream`. Furthermore, if you want to access the Kafka offsets consumed in each batch, you can do the following. + +
+
+ directKafkaStream.foreachRDD { rdd => + val offsetRanges = rdd.asInstanceOf[HasOffsetRanges] + // offsetRanges.length = # of Kafka partitions being consumed + ... + } +
+
+ directKafkaStream.foreachRDD( + new Function, Void>() { + @Override + public Void call(JavaPairRDD rdd) throws IOException { + OffsetRange[] offsetRanges = ((HasOffsetRanges)rdd).offsetRanges + // offsetRanges.length = # of Kafka partitions being consumed + ... + return null; + } + } + ); +
+
+ + You can use this to update Zookeeper yourself if you want Zookeeper-based Kafka monitoring tools to show progress of the streaming application. + + Another thing to note is that since this approach does not use Receivers, the standard receiver-related (that is, [configurations](configuration.html) of the form `spark.streaming.receiver.*` ) will not apply to the input DStreams created by this approach (will apply to other input DStreams though). Instead, use the [configurations](configuration.html) `spark.streaming.kafka.*`. An important one is `spark.streaming.kafka.maxRatePerPartition` which is the maximum rate at which each Kafka partition will be read by this direct API. + +3. **Deploying:** Similar to the first approach, you can package `spark-streaming-kafka_{{site.SCALA_BINARY_VERSION}}` and its dependencies into the application JAR and the launch the application using `spark-submit`. Make sure `spark-core_{{site.SCALA_BINARY_VERSION}}` and `spark-streaming_{{site.SCALA_BINARY_VERSION}}` are marked as `provided` dependencies as those are already present in a Spark installation. \ No newline at end of file diff --git a/docs/streaming-programming-guide.md b/docs/streaming-programming-guide.md index 062ac2648db30..6d6229625f3f9 100644 --- a/docs/streaming-programming-guide.md +++ b/docs/streaming-programming-guide.md @@ -432,7 +432,7 @@ some of the common ones are as follows. For an up-to-date list, please refer to the -[Apache repository](http://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.apache.spark%22%20AND%20v%3A%22{{site.SPARK_VERSION_SHORT}}%22) +[Maven repository](http://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.apache.spark%22%20AND%20v%3A%22{{site.SPARK_VERSION_SHORT}}%22) for the full list of supported sources and artifacts. *** @@ -662,8 +662,7 @@ methods for creating DStreams from files and Akka actors as input sources. For simple text files, there is an easier method `streamingContext.textFileStream(dataDirectory)`. And file streams do not require running a receiver, hence does not require allocating cores. - Python API As of Spark 1.2, - `fileStream` is not available in the Python API, only `textFileStream` is available. + Python API `fileStream` is not available in the Python API, only `textFileStream` is available. - **Streams based on Custom Actors:** DStreams can be created with data streams received through Akka actors by using `streamingContext.actorStream(actorProps, actor-name)`. See the [Custom Receiver @@ -682,8 +681,9 @@ for Java, and [StreamingContext](api/python/pyspark.streaming.html#pyspark.strea ### Advanced Sources {:.no_toc} -Python API As of Spark 1.2, -these sources are not available in the Python API. + +Python API As of Spark 1.3, +out of these sources, *only* Kafka is available in the Python API. We will add more advanced sources in the Python API in future. This category of sources require interfacing with external non-Spark libraries, some of them with complex dependencies (e.g., Kafka and Flume). Hence, to minimize issues related to version conflicts @@ -723,6 +723,12 @@ and it in the classpath. Some of these advanced sources are as follows. +- **Kafka:** Spark Streaming {{site.SPARK_VERSION_SHORT}} is compatible with Kafka 0.8.1.1. See the [Kafka Integration Guide](streaming-kafka-integration.html) for more details. + +- **Flume:** Spark Streaming {{site.SPARK_VERSION_SHORT}} is compatible with Flume 1.4.0. See the [Flume Integration Guide](streaming-flume-integration.html) for more details. + +- **Kinesis:** See the [Kinesis Integration Guide](streaming-kinesis-integration.html) for more details. + - **Twitter:** Spark Streaming's TwitterUtils uses Twitter4j 3.0.3 to get the public stream of tweets using [Twitter's Streaming API](https://dev.twitter.com/docs/streaming-apis). Authentication information can be provided by any of the [methods](http://twitter4j.org/en/configuration.html) supported by @@ -732,17 +738,10 @@ Some of these advanced sources are as follows. ([TwitterPopularTags]({{site.SPARK_GITHUB_URL}}/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/TwitterPopularTags.scala) and [TwitterAlgebirdCMS]({{site.SPARK_GITHUB_URL}}/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/TwitterAlgebirdCMS.scala)). -- **Flume:** Spark Streaming {{site.SPARK_VERSION_SHORT}} can received data from Flume 1.4.0. See the [Flume Integration Guide](streaming-flume-integration.html) for more details. - -- **Kafka:** Spark Streaming {{site.SPARK_VERSION_SHORT}} can receive data from Kafka 0.8.0. See the [Kafka Integration Guide](streaming-kafka-integration.html) for more details. - -- **Kinesis:** See the [Kinesis Integration Guide](streaming-kinesis-integration.html) for more details. - ### Custom Sources {:.no_toc} -Python API As of Spark 1.2, -these sources are not available in the Python API. +Python API This is not yet supported in Python. Input DStreams can also be created out of custom data sources. All you have to do is implement an user-defined **receiver** (see next section to understand what that is) that can receive data from @@ -846,7 +845,7 @@ Some of the common ones are as follows. -The last two transformations are worth highlighting again. +A few of these transformations are worth discussing in more detail. #### UpdateStateByKey Operation {:.no_toc} @@ -997,7 +996,7 @@ In fact, you can also use [machine learning](mllib-guide.html) and #### Window Operations {:.no_toc} -Finally, Spark Streaming also provides *windowed computations*, which allow you to apply +Spark Streaming also provides *windowed computations*, which allow you to apply transformations over a sliding window of data. This following figure illustrates this sliding window. @@ -1120,6 +1119,100 @@ said two parameters - windowLength and slideInterval. +#### Join Operations +{:.no_toc} +Finally, its worth highlighting how easily you can perform different kinds of joins in Spark Streaming. + + +##### Stream-stream joins +{:.no_toc} +Streams can be very easily joined with other streams. + +
+
+{% highlight scala %} +val stream1: DStream[String, String] = ... +val stream2: DStream[String, String] = ... +val joinedStream = stream1.join(stream2) +{% endhighlight %} +
+
+{% highlight java %} +JavaPairDStream stream1 = ... +JavaPairDStream stream2 = ... +JavaPairDStream joinedStream = stream1.join(stream2); +{% endhighlight %} +
+
+{% highlight python %} +stream1 = ... +stream2 = ... +joinedStream = stream1.join(stream2) +{% endhighlight %} +
+
+Here, in each batch interval, the RDD generated by `stream1` will be joined with the RDD generated by `stream2`. You can also do `leftOuterJoin`, `rightOuterJoin`, `fullOuterJoin`. Furthermore, it is often very useful to do joins over windows of the streams. That is pretty easy as well. + +
+
+{% highlight scala %} +val windowedStream1 = stream1.window(Seconds(20)) +val windowedStream2 = stream2.window(Minutes(1)) +val joinedStream = windowedStream1.join(windowedStream2) +{% endhighlight %} +
+
+{% highlight java %} +JavaPairDStream windowedStream1 = stream1.window(Durations.seconds(20)); +JavaPairDStream windowedStream2 = stream2.window(Durations.minutes(1)); +JavaPairDStream joinedStream = windowedStream1.join(windowedStream2); +{% endhighlight %} +
+
+{% highlight python %} +windowedStream1 = stream1.window(20) +windowedStream2 = stream2.window(60) +joinedStream = windowedStream1.join(windowedStream2) +{% endhighlight %} +
+
+ +##### Stream-dataset joins +{:.no_toc} +This has already been shown earlier while explain `DStream.transform` operation. Here is yet another example of joining a windowed stream with a dataset. + +
+
+{% highlight scala %} +val dataset: RDD[String, String] = ... +val windowedStream = stream.window(Seconds(20))... +val joinedStream = windowedStream.transform { rdd => rdd.join(dataset) } +{% endhighlight %} +
+
+{% highlight java %} +JavaPairRDD dataset = ... +JavaPairDStream windowedStream = stream.window(Durations.seconds(20)); +JavaPairDStream joinedStream = windowedStream.transform( + new Function>, JavaRDD>>() { + @Override + public JavaRDD> call(JavaRDD> rdd) { + return rdd.join(dataset); + } + } +); +{% endhighlight %} +
+
+{% highlight python %} +dataset = ... # some RDD +windowedStream = stream.window(20) +joinedStream = windowedStream.transform(lambda rdd: rdd.join(dataset)) +{% endhighlight %} +
+
+ +In fact, you can also dynamically change the dataset you want to join against. The function provided to `transform` is evaluated every batch interval and therefore will use the current dataset that `dataset` reference points to. The complete list of DStream transformations is available in the API documentation. For the Scala API, see [DStream](api/scala/index.html#org.apache.spark.streaming.dstream.DStream) @@ -1327,6 +1420,178 @@ Note that the connections in the pool should be lazily created on demand and tim *** +## DataFrame and SQL Operations +You can easily use [DataFrames and SQL](sql-programming-guide.html) operations on streaming data. You have to create a SQLContext using the SparkContext that the StreamingContext is using. Furthermore this has to done such that it can be restarted on driver failures. This is done by creating a lazily instantiated singleton instance of SQLContext. This is shown in the following example. It modifies the earlier [word count example](#a-quick-example) to generate word counts using DataFrames and SQL. Each RDD is converted to a DataFrame, registered as a temporary table and then queried using SQL. + +
+
+{% highlight scala %} + +/** Lazily instantiated singleton instance of SQLContext */ +object SQLContextSingleton { + @transient private var instance: SQLContext = null + + // Instantiate SQLContext on demand + def getInstance(sparkContext: SparkContext): SQLContext = synchronized { + if (instance == null) { + instance = new SQLContext(sparkContext) + } + instance + } +} + +... + +/** Case class for converting RDD to DataFrame */ +case class Row(word: String) + +... + +/** DataFrame operations inside your streaming program */ + +val words: DStream[String] = ... + +words.foreachRDD { rdd => + + // Get the singleton instance of SQLContext + val sqlContext = SQLContextSingleton.getInstance(rdd.sparkContext) + import sqlContext.implicits._ + + // Convert RDD[String] to RDD[case class] to DataFrame + val wordsDataFrame = rdd.map(w => Row(w)).toDF() + + // Register as table + wordsDataFrame.registerTempTable("words") + + // Do word count on DataFrame using SQL and print it + val wordCountsDataFrame = + sqlContext.sql("select word, count(*) as total from words group by word") + wordCountsDataFrame.show() +} + +{% endhighlight %} + +See the full [source code]({{site.SPARK_GITHUB_URL}}/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/SqlNetworkWordCount.scala). +
+
+{% highlight java %} + +/** Lazily instantiated singleton instance of SQLContext */ +class JavaSQLContextSingleton { + static private transient SQLContext instance = null; + static public SQLContext getInstance(SparkContext sparkContext) { + if (instance == null) { + instance = new SQLContext(sparkContext); + } + return instance; + } +} + +... + +/** Java Bean class for converting RDD to DataFrame */ +public class JavaRow implements java.io.Serializable { + private String word; + + public String getWord() { + return word; + } + + public void setWord(String word) { + this.word = word; + } +} + +... + +/** DataFrame operations inside your streaming program */ + +JavaDStream words = ... + +words.foreachRDD( + new Function2, Time, Void>() { + @Override + public Void call(JavaRDD rdd, Time time) { + SQLContext sqlContext = JavaSQLContextSingleton.getInstance(rdd.context()); + + // Convert RDD[String] to RDD[case class] to DataFrame + JavaRDD rowRDD = rdd.map(new Function() { + public JavaRow call(String word) { + JavaRow record = new JavaRow(); + record.setWord(word); + return record; + } + }); + DataFrame wordsDataFrame = sqlContext.createDataFrame(rowRDD, JavaRow.class); + + // Register as table + wordsDataFrame.registerTempTable("words"); + + // Do word count on table using SQL and print it + DataFrame wordCountsDataFrame = + sqlContext.sql("select word, count(*) as total from words group by word"); + wordCountsDataFrame.show(); + return null; + } + } +); +{% endhighlight %} + +See the full [source code]({{site.SPARK_GITHUB_URL}}/blob/master/examples/src/main/java/org/apache/spark/examples/streaming/JavaSqlNetworkWordCount.java). +
+
+{% highlight python %} + +# Lazily instantiated global instance of SQLContext +def getSqlContextInstance(sparkContext): + if ('sqlContextSingletonInstance' not in globals()): + globals()['sqlContextSingletonInstance'] = SQLContext(sparkContext) + return globals()['sqlContextSingletonInstance'] + +... + +# DataFrame operations inside your streaming program + +words = ... # DStream of strings + +def process(time, rdd): + print "========= %s =========" % str(time) + try: + # Get the singleton instance of SQLContext + sqlContext = getSqlContextInstance(rdd.context) + + # Convert RDD[String] to RDD[Row] to DataFrame + rowRdd = rdd.map(lambda w: Row(word=w)) + wordsDataFrame = sqlContext.createDataFrame(rowRdd) + + # Register as table + wordsDataFrame.registerTempTable("words") + + # Do word count on table using SQL and print it + wordCountsDataFrame = sqlContext.sql("select word, count(*) as total from words group by word") + wordCountsDataFrame.show() + except: + pass + +words.foreachRDD(process) +{% endhighlight %} + +See the full [source code]({{site.SPARK_GITHUB_URL}}/blob/master/examples/src/main/python/streaming/sql_network_wordcount.py). + +
+
+ +You can also run SQL queries on tables defined on streaming data from a different thread (that is, asynchronous to the running StreamingContext). Just make sure that you set the StreamingContext to remember sufficient amount of streaming data such that query can run. Otherwise the StreamingContext, which is unaware of the any asynchronous SQL queries, will delete off old streaming data before the query can complete. For example, if you want to query the last batch, but your query can take 5 minutes to run, then call `streamingContext.remember(Minutes(5))` (in Scala, or equivalent in other languages). + +See the [DataFrames and SQL](sql-programming-guide.html) guide to learn more about DataFrames. + +*** + +## MLlib Operations +You can also easily use machine learning algorithms provided by [MLlib](mllib-guide.html). First of all, there are streaming machine learning algorithms (e.g. (Streaming Linear Regression](mllib-linear-methods.html#streaming-linear-regression), [Streaming KMeans](mllib-clustering.html#streaming-k-means), etc.) which can simultaneously learn from the streaming data as well as apply the model on the streaming data. Beyond these, for a much larger class of machine learning algorithms, you can learn a learning model offline (i.e. using historical data) and then apply the model online on streaming data. See the [MLlib](mllib-guide.html) guide for more details. + +*** + ## Caching / Persistence Similar to RDDs, DStreams also allow developers to persist the stream's data in memory. That is, using `persist()` method on a DStream will automatically persist every RDD of that DStream in @@ -1580,9 +1845,8 @@ To run a Spark Streaming applications, you need to have the following. + *Mesos* - [Marathon](https://github.com/mesosphere/marathon) has been used to achieve this with Mesos. - -- *[Experimental in Spark 1.2] Configuring write ahead logs* - In Spark 1.2, - we have introduced a new experimental feature of write ahead logs for achieving strong +- *[Since Spark 1.2] Configuring write ahead logs* - Since Spark 1.2, + we have introduced _write ahead logs_ for achieving strong fault-tolerance guarantees. If enabled, all the data received from a receiver gets written into a write ahead log in the configuration checkpoint directory. This prevents data loss on driver recovery, thus ensuring zero data loss (discussed in detail in the @@ -1668,7 +1932,7 @@ improve the performance of you application. At a high level, you need to conside 2. Setting the right batch size such that the batches of data can be processed as fast as they are received (that is, data processing keeps up with the data ingestion). -## Reducing the Processing Time of each Batch +## Reducing the Batch Processing Times There are a number of optimizations that can be done in Spark to minimize the processing time of each batch. These have been discussed in detail in [Tuning Guide](tuning.html). This section highlights some of the most important ones. @@ -1740,16 +2004,15 @@ documentation), or set the `spark.default.parallelism` ### Data Serialization {:.no_toc} -The overhead of data serialization can be significant, especially when sub-second batch sizes are - to be achieved. There are two aspects to it. +The overheads of data serialization can be reduce by tuning the serialization formats. In case of streaming, there are two types of data that are being serialized. + +* **Input data**: By default, the input data received through Receivers is stored in the executors' memory with [StorageLevel.MEMORY_AND_DISK_SER_2](api/scala/index.html#org.apache.spark.storage.StorageLevel$). That is, the data is serialized into bytes to reduce GC overheads, and replicated for tolerating executor failures. Also, the data is kept first in memory, and spilled over to disk only if the memory is unsufficient to hold all the input data necessary for the streaming computation. This serialization obviously has overheads -- the receiver must deserialize the received data and re-serialize it using Spark's serialization format. -* **Serialization of RDD data in Spark**: Please refer to the detailed discussion on data - serialization in the [Tuning Guide](tuning.html). However, note that unlike Spark, by default - RDDs are persisted as serialized byte arrays to minimize pauses related to GC. +* **Persisted RDDs generated by Streaming Operations**: RDDs generated by streaming computations may be persisted in memory. For example, window operation persist data in memory as they would be processed multiple times. However, unlike Spark, by default RDDs are persisted with [StorageLevel.MEMORY_ONLY_SER](api/scala/index.html#org.apache.spark.storage.StorageLevel$) (i.e. serialized) to minimize GC overheads. -* **Serialization of input data**: To ingest external data into Spark, data received as bytes - (say, from the network) needs to deserialized from bytes and re-serialized into Spark's - serialization format. Hence, the deserialization overhead of input data may be a bottleneck. +In both cases, using Kryo serialization can reduce both CPU and memory overheads. See the [Spark Tuning Guide](tuning.html#data-serialization)) for more details. Consider registering custom classes, and disabling object reference tracking for Kryo (see Kryo-related configurations in the [Configuration Guide](configuration.html#compression-and-serialization)). + +In specific cases where the amount of data that needs to be retained for the streaming application is not large, it may be feasible to persist data (both types) as deserialized objects without incurring excessive GC overheads. For example, if you are using batch intervals of few seconds and no window operations, then you can try disabling serialization in persisted data by explicitly setting the storage level accordingly. This would reduce the CPU overheads due to serialization, potentially improving performance without too much GC overheads. ### Task Launching Overheads {:.no_toc} @@ -1769,7 +2032,7 @@ thus allowing sub-second batch size to be viable. *** -## Setting the Right Batch Size +## Setting the Right Batch Interval For a Spark Streaming application running on a cluster to be stable, the system should be able to process data as fast as it is being received. In other words, batches of data should be processed as fast as they are being generated. Whether this is true for an application can be found by @@ -1801,40 +2064,40 @@ temporary data rate increases maybe fine as long as the delay reduces back to a ## Memory Tuning Tuning the memory usage and GC behavior of Spark applications have been discussed in great detail -in the [Tuning Guide](tuning.html). It is recommended that you read that. In this section, -we highlight a few customizations that are strongly recommended to minimize GC related pauses -in Spark Streaming applications and achieving more consistent batch processing times. - -* **Default persistence level of DStreams**: Unlike RDDs, the default persistence level of DStreams -serializes the data in memory (that is, -[StorageLevel.MEMORY_ONLY_SER](api/scala/index.html#org.apache.spark.storage.StorageLevel$) for -DStream compared to -[StorageLevel.MEMORY_ONLY](api/scala/index.html#org.apache.spark.storage.StorageLevel$) for RDDs). -Even though keeping the data serialized incurs higher serialization/deserialization overheads, -it significantly reduces GC pauses. - -* **Clearing persistent RDDs**: By default, all persistent RDDs generated by Spark Streaming will - be cleared from memory based on Spark's built-in policy (LRU). If `spark.cleaner.ttl` is set, - then persistent RDDs that are older than that value are periodically cleared. As mentioned - [earlier](#operation), this needs to be careful set based on operations used in the Spark - Streaming program. However, a smarter unpersisting of RDDs can be enabled by setting the - [configuration property](configuration.html#spark-properties) `spark.streaming.unpersist` to - `true`. This makes the system to figure out which RDDs are not necessary to be kept around and - unpersists them. This is likely to reduce - the RDD memory usage of Spark, potentially improving GC behavior as well. - -* **Concurrent garbage collector**: Using the concurrent mark-and-sweep GC further -minimizes the variability of GC pauses. Even though concurrent GC is known to reduce the +in the [Tuning Guide](tuning.html#memory-tuning). It is strongly recommended that you read that. In this section, we discuss a few tuning parameters specifically in the context of Spark Streaming applications. + +The amount of cluster memory required by a Spark Streaming application depends heavily on the type of transformations used. For example, if you want to use a window operation on last 10 minutes of data, then your cluster should have sufficient memory to hold 10 minutes of worth of data in memory. Or if you want to use `updateStateByKey` with a large number of keys, then the necessary memory will be high. On the contrary, if you want to do a simple map-filter-store operation, then necessary memory will be low. + +In general, since the data received through receivers are stored with StorageLevel.MEMORY_AND_DISK_SER_2, the data that does not fit in memory will spill over to the disk. This may reduce the performance of the streaming application, and hence it is advised to provide sufficient memory as required by your streaming application. Its best to try and see the memory usage on a small scale and estimate accordingly. + +Another aspect of memory tuning is garbage collection. For a streaming application that require low latency, it is undesirable to have large pauses caused by JVM Garbage Collection. + +There are a few parameters that can help you tune the memory usage and GC overheads. + +* **Persistence Level of DStreams**: As mentioned earlier in the [Data Serialization](#data-serialization) section, the input data and RDDs are by default persisted as serialized bytes. This reduces both, the memory usage and GC overheads, compared to deserialized persistence. Enabling Kryo serialization further reduces serialized sizes and memory usage. Further reduction in memory usage can be achieved with compression (see the Spark configuration `spark.rdd.compress`), at the cost of CPU time. + +* **Clearing old data**: By default, all input data and persisted RDDs generated by DStream transformations are automatically cleared. Spark Streaming decides when to clear the data based on the transformations that are used. For example, if you are using window operation of 10 minutes, then Spark Streaming will keep around last 10 minutes of data, and actively throw away older data. +Data can be retained for longer duration (e.g. interactively querying older data) by setting `streamingContext.remember`. + +* **CMS Garbage Collector**: Use of the concurrent mark-and-sweep GC is strongly recommended for keeping GC-related pauses consistently low. Even though concurrent GC is known to reduce the overall processing throughput of the system, its use is still recommended to achieve more -consistent batch processing times. +consistent batch processing times. Make sure you set the CMS GC on both the driver (using `--driver-java-options` in `spark-submit`) and the executors (using [Spark configuration](configuration.html#runtime-environment) `spark.executor.extraJavaOptions`). + +* **Other tips**: To further reduce GC overheads, here are some more tips to try. + - Use Tachyon for off-heap storage of persisted RDDs. See more detail in the [Spark Programming Guide](programming-guide.html#rdd-persistence). + - Use more executors with smaller heap sizes. This will reduce the GC pressure within each JVM heap. + *************************************************************************************************** *************************************************************************************************** # Fault-tolerance Semantics In this section, we will discuss the behavior of Spark Streaming applications in the event -of node failures. To understand this, let us remember the basic fault-tolerance semantics of -Spark's RDDs. +of failures. + +## Background +{:.no_toc} +To understand the semantics provided by Spark Streaming, let us remember the basic fault-tolerance semantics of Spark's RDDs. 1. An RDD is an immutable, deterministically re-computable, distributed dataset. Each RDD remembers the lineage of deterministic operations that were used on a fault-tolerant input @@ -1868,13 +2131,43 @@ Furthermore, there are two kinds of failures that we should be concerned about: With this basic knowledge, let us understand the fault-tolerance semantics of Spark Streaming. -## Semantics with files as input source +## Definitions +{:.no_toc} +The semantics of streaming systems are often captured in terms of how many times each record can be processed by the system. There are three types of guarantees that a system can provide under all possible operating conditions (despite failures, etc.) + +1. *At most once*: Each record will be either processed once or not processed at all. +2. *At least once*: Each record will be processed one or more times. This is stronger than *at-most once* as it ensure that no data will be lost. But there may be duplicates. +3. *Exactly once*: Each record will be processed exactly once - no data will be lost and no data will be processed multiple times. This is obviously the strongest guarantee of the three. + +## Basic Semantics +{:.no_toc} +In any stream processing system, broadly speaking, there are three steps in processing the data. + +1. *Receiving the data*: The data is received from sources using Receivers or otherwise. + +1. *Transforming the data*: The data received data is transformed using DStream and RDD transformations. + +1. *Pushing out the data*: The final transformed data is pushed out to external systems like file systems, databases, dashboards, etc. + +If a streaming application has to achieve end-to-end exactly-once guarantees, then each step has to provide exactly-once guarantee. That is, each record must be received exactly once, transformed exactly once, and pushed to downstream systems exactly once. Let's understand the semantics of these steps in the context of Spark Streaming. + +1. *Receiving the data*: Different input sources provided different guarantees. This is discussed in detail in the next subsection. + +1. *Transforming the data*: All data that has been received will be processed _exactly once_, thanks to the guarantees that RDDs provide. Even if there are failures, as long as the received input data is accessible, the final transformed RDDs will always have the same contents. + +1. *Pushing out the data*: Output operations by default ensure _at-least once_ semantics because it depends on the type of output operation (idempotent, or not) and the semantics of the downstream system (supports transactions or not). But users can implement their own transaction mechanisms to achieve _exactly-once_ semantics. This is discussed in more details later in the section. + +## Semantics of Received Data +{:.no_toc} +Different input sources provide different guarantees, ranging from _at-least once_ to _exactly once_. Read for more details. + +### With Files {:.no_toc} If all of the input data is already present in a fault-tolerant files system like HDFS, Spark Streaming can always recover from any failure and process all the data. This gives *exactly-once* semantics, that all the data will be processed exactly once no matter what fails. -## Semantics with input sources based on receivers +### With Receiver-based Sources {:.no_toc} For input sources based on receivers, the fault-tolerance semantics depend on both the failure scenario and the type of receiver. @@ -1893,10 +2186,9 @@ receivers, data received but not replicated can get lost. If the driver node fai then besides these losses, all the past data that was received and replicated in memory will be lost. This will affect the results of the stateful transformations. -To avoid this loss of past received data, Spark 1.2 introduces an experimental feature of _write +To avoid this loss of past received data, Spark 1.2 introduced _write ahead logs_ which saves the received data to fault-tolerant storage. With the [write ahead logs -enabled](#deploying-applications) and reliable receivers, there is zero data loss and -exactly-once semantics. +enabled](#deploying-applications) and reliable receivers, there is zero data loss. In terms of semantics, it provides at-least once guarantee. The following table summarizes the semantics under failures: @@ -1908,23 +2200,30 @@ The following table summarizes the semantics under failures: - Spark 1.1 or earlier, or
- Spark 1.2 without write ahead log + Spark 1.1 or earlier, OR
+ Spark 1.2 or later without write ahead logs Buffered data lost with unreliable receivers
- Zero data loss with reliable receivers and files
+ Zero data loss with reliable receivers
+ At-least once semantics Buffered data lost with unreliable receivers
Past data lost with all receivers
- Zero data loss with files - + Undefined semantics + - Spark 1.2 with write ahead log - Zero data loss with reliable receivers and files - Zero data loss with reliable receivers and files + Spark 1.2 or later with write ahead logs + + Zero data loss with reliable receivers
+ At-least once semantics + + + Zero data loss with reliable receivers and files
+ At-least once semantics + @@ -1933,17 +2232,24 @@ The following table summarizes the semantics under failures: +### With Kafka Direct API +{:.no_toc} +In Spark 1.3, we have introduced a new Kafka Direct API, which can ensure that all the Kafka data is received by Spark Streaming exactly once. Along with this, if you implement exactly-once output operation, you can achieve end-to-end exactly-once guarantees. This approach (experimental as of Spark 1.3) is further discussed in the [Kafka Integration Guide](streaming-kafka-integration.html). + ## Semantics of output operations {:.no_toc} -Since all data is modeled as RDDs with their lineage of deterministic operations, any recomputation - always leads to the same result. As a result, all DStream transformations are guaranteed to have - _exactly-once_ semantics. That is, the final transformed result will be same even if there were - was a worker node failure. However, output operations (like `foreachRDD`) have _at-least once_ - semantics, that is, the transformed data may get written to an external entity more than once in - the event of a worker failure. While this is acceptable for saving to HDFS using the - `saveAs***Files` operations (as the file will simply get over-written by the same data), - additional transactions-like mechanisms may be necessary to achieve exactly-once semantics - for output operations. +Output operations (like `foreachRDD`) have _at-least once_ semantics, that is, +the transformed data may get written to an external entity more than once in +the event of a worker failure. While this is acceptable for saving to file systems using the +`saveAs***Files` operations (as the file will simply get overwritten with the same data), +additional effort may be necessary to achieve exactly-once semantics. There are two approaches. + +- *Idempotent updates*: Multiple attempts always write the same data. For example, `saveAs***Files` always writes the same data to the generated files. + +- *Transactional updates*: All updates are made transactionally so that updates are made exactly once atomically. One way to do this would be the following. + + - Use the batch time (available in `foreachRDD`) and the partition index of the transformed RDD to create an identifier. This identifier uniquely identifies a blob data in the streaming application. + - Update external system with this blob transactionally (that is, exactly once, atomically) using the identifier. That is, if the identifier is not already committed, commit the partition data and the identifier atomically. Else if this was already committed, skip the update. *************************************************************************************************** @@ -2001,7 +2307,11 @@ package and renamed for better clarity. *************************************************************************************************** # Where to Go from Here - +* Additional guides + - [Kafka Integration Guide](streaming-kafka-integration.html) + - [Flume Integration Guide](streaming-flume-integration.html) + - [Kinesis Integration Guide](streaming-kinesis-integration.html) + - [Custom Receiver Guide](streaming-custom-receivers.html) * API documentation - Scala docs * [StreamingContext](api/scala/index.html#org.apache.spark.streaming.StreamingContext) and @@ -2023,8 +2333,8 @@ package and renamed for better clarity. [ZeroMQUtils](api/java/index.html?org/apache/spark/streaming/zeromq/ZeroMQUtils.html), and [MQTTUtils](api/java/index.html?org/apache/spark/streaming/mqtt/MQTTUtils.html) - Python docs - * [StreamingContext](api/python/pyspark.streaming.html#pyspark.streaming.StreamingContext) - * [DStream](api/python/pyspark.streaming.html#pyspark.streaming.DStream) + * [StreamingContext](api/python/pyspark.streaming.html#pyspark.streaming.StreamingContext) and [DStream](api/python/pyspark.streaming.html#pyspark.streaming.DStream) + * [KafkaUtils](api/python/pyspark.streaming.html#pyspark.streaming.kafka.KafkaUtils) * More examples in [Scala]({{site.SPARK_GITHUB_URL}}/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming) and [Java]({{site.SPARK_GITHUB_URL}}/tree/master/examples/src/main/java/org/apache/spark/examples/streaming) From e921a665c56950c03155f4b47500627265a4ba8e Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Wed, 11 Mar 2015 22:24:08 -0700 Subject: [PATCH 15/43] BUILD: Adding more known contributor names --- dev/create-release/known_translations | 34 +++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) diff --git a/dev/create-release/known_translations b/dev/create-release/known_translations index b74e4ee8a330b..0a599b5a65549 100644 --- a/dev/create-release/known_translations +++ b/dev/create-release/known_translations @@ -57,3 +57,37 @@ watermen - Yadong Qi witgo - Guoqiang Li xinyunh - Xinyun Huang zsxwing - Shixiong Zhu +Bilna - Bilna P +DoingDone9 - Doing Done +Earne - Ernest +FlytxtRnD - Meethu Mathew +GenTang - Gen TANG +JoshRosen - Josh Rosen +MechCoder - Manoj Kumar +OopsOutOfMemory - Sheng Li +Peishen-Jia - Peishen Jia +SaintBacchus - Huang Zhaowei +azagrebin - Andrey Zagrebin +bzz - Alexander Bezzubov +fjiang6 - Fan Jiang +gasparms - Gaspar Munoz +guowei2 - Guo Wei +hhbyyh - Yuhao Yang +hseagle - Peng Xu +javadba - Stephen Boesch +jbencook - Ben Cook +kul - Kuldeep +ligangty - Gang Li +marsishandsome - Liangliang Gu +medale - Markus Dale +nemccarthy - Nathan McCarthy +nxwhite-str - Nate Crosswhite +seayi - Xiaohua Yi +tianyi - Yi Tian +uncleGen - Uncle Gen +viper-kun - Xu Kun +x1- - Yuri Saito +zapletal-martin - Martin Zapletal +zuxqoj - Shekhar Bansal +mingyukim - Mingyu Kim +sigmoidanalytics - Mayur Rustagi From 25b71d8c15572f0f2b951c827c169f8c65f726ad Mon Sep 17 00:00:00 2001 From: Volodymyr Lyubinets Date: Thu, 12 Mar 2015 00:55:26 -0700 Subject: [PATCH 16/43] [SPARK-6296] [SQL] Added equals to Column Author: Volodymyr Lyubinets Closes #4988 from vlyubin/columncomp and squashes the following commits: 92d7c8f [Volodymyr Lyubinets] Added equals to Column --- sql/core/src/main/scala/org/apache/spark/sql/Column.scala | 7 +++++++ .../scala/org/apache/spark/sql/ColumnExpressionSuite.scala | 5 +++++ 2 files changed, 12 insertions(+) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala index a2cc9a9b93eb8..908c78a4d3f10 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala @@ -59,6 +59,13 @@ class Column(protected[sql] val expr: Expression) { override def toString: String = expr.prettyString + override def equals(that: Any) = that match { + case that: Column => that.expr.equals(this.expr) + case _ => false + } + + override def hashCode: Int = this.expr.hashCode + /** * Unary minus, i.e. negate the expression. * {{{ diff --git a/sql/core/src/test/scala/org/apache/spark/sql/ColumnExpressionSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/ColumnExpressionSuite.scala index 37c02aaa5460b..3036fbc05d021 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/ColumnExpressionSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/ColumnExpressionSuite.scala @@ -313,4 +313,9 @@ class ColumnExpressionSuite extends QueryTest { test("lift alias out of cast") { assert(col("1234").as("name").cast("int").expr === col("1234").cast("int").as("name").expr) } + + test("columns can be compared") { + assert('key.desc == 'key.desc) + assert('key.desc != 'key.asc) + } } From 712679a7b447346a365b38574d7a86d56a93f767 Mon Sep 17 00:00:00 2001 From: Davies Liu Date: Thu, 12 Mar 2015 01:34:38 -0700 Subject: [PATCH 17/43] [SPARK-6294] fix hang when call take() in JVM on PythonRDD The Thread.interrupt() can not terminate the thread in some cases, so we should not wait for the writerThread of PythonRDD. This PR also ignore some exception during clean up. cc JoshRosen mengxr Author: Davies Liu Closes #4987 from davies/fix_take and squashes the following commits: 4488f1a [Davies Liu] fix hang when call take() in JVM on PythonRDD --- .../scala/org/apache/spark/api/python/PythonRDD.scala | 9 ++++++--- python/pyspark/daemon.py | 5 ++++- python/pyspark/tests.py | 5 +++++ 3 files changed, 15 insertions(+), 4 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala b/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala index 8d4a53b4ca9b0..4c71b69069eb3 100644 --- a/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala +++ b/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala @@ -76,7 +76,6 @@ private[spark] class PythonRDD( context.addTaskCompletionListener { context => writerThread.shutdownOnTaskCompletion() - writerThread.join() if (!reuse_worker || !released) { try { worker.close() @@ -248,13 +247,17 @@ private[spark] class PythonRDD( } catch { case e: Exception if context.isCompleted || context.isInterrupted => logDebug("Exception thrown after task completion (likely due to cleanup)", e) - Utils.tryLog(worker.shutdownOutput()) + if (!worker.isClosed) { + Utils.tryLog(worker.shutdownOutput()) + } case e: Exception => // We must avoid throwing exceptions here, because the thread uncaught exception handler // will kill the whole executor (see org.apache.spark.executor.Executor). _exception = e - Utils.tryLog(worker.shutdownOutput()) + if (!worker.isClosed) { + Utils.tryLog(worker.shutdownOutput()) + } } finally { // Release memory used by this thread for shuffles env.shuffleMemoryManager.releaseMemoryForThisThread() diff --git a/python/pyspark/daemon.py b/python/pyspark/daemon.py index f09587f211708..93885985fe377 100644 --- a/python/pyspark/daemon.py +++ b/python/pyspark/daemon.py @@ -61,7 +61,10 @@ def worker(sock): except SystemExit as exc: exit_code = compute_real_exit_code(exc.code) finally: - outfile.flush() + try: + outfile.flush() + except Exception: + pass return exit_code diff --git a/python/pyspark/tests.py b/python/pyspark/tests.py index 06ba2b461d53e..dd8d3b1c53733 100644 --- a/python/pyspark/tests.py +++ b/python/pyspark/tests.py @@ -782,6 +782,11 @@ def test_narrow_dependency_in_join(self): jobId = tracker.getJobIdsForGroup("test4")[0] self.assertEqual(3, len(tracker.getJobInfo(jobId).stageIds)) + # Regression test for SPARK-6294 + def test_take_on_jrdd(self): + rdd = self.sc.parallelize(range(1 << 20)).map(lambda x: str(x)) + rdd._jrdd.first() + class ProfilerTests(PySparkTestCase): From 0cba802adf15f5ab8da24dd1e8a5e7214cc4e148 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Thu, 12 Mar 2015 01:39:04 -0700 Subject: [PATCH 18/43] [SPARK-5814][MLLIB][GRAPHX] Remove JBLAS from runtime The issue is discussed in https://issues.apache.org/jira/browse/SPARK-5669. Replacing all JBLAS usage by netlib-java gives us a simpler dependency tree and less license issues to worry about. I didn't touch the test scope in this PR. The user guide is not modified to avoid merge conflicts with branch-1.3. srowen ankurdave pwendell Author: Xiangrui Meng Closes #4699 from mengxr/SPARK-5814 and squashes the following commits: 48635c6 [Xiangrui Meng] move netlib-java version to parent pom ca21c74 [Xiangrui Meng] remove jblas from ml-guide 5f7767a [Xiangrui Meng] Merge remote-tracking branch 'apache/master' into SPARK-5814 c5c4183 [Xiangrui Meng] merge master 0f20cad [Xiangrui Meng] add mima excludes e53e9f4 [Xiangrui Meng] remove jblas from mllib runtime ceaa14d [Xiangrui Meng] replace jblas by netlib-java in graphx fa7c2ca [Xiangrui Meng] move jblas to test scope --- assembly/pom.xml | 10 -- docs/mllib-guide.md | 5 - graphx/pom.xml | 11 ++- .../apache/spark/graphx/lib/SVDPlusPlus.scala | 96 ++++++++++++------- .../spark/graphx/lib/SVDPlusPlusSuite.scala | 6 +- mllib/pom.xml | 3 +- .../apache/spark/ml/recommendation/ALS.scala | 14 ++- .../spark/mllib/optimization/NNLS.scala | 86 +++++++++-------- .../MatrixFactorizationModel.scala | 15 ++- .../mllib/util/LinearDataGenerator.scala | 9 +- .../spark/mllib/util/MFDataGenerator.scala | 26 ++--- .../spark/mllib/util/SVMDataGenerator.scala | 7 +- .../spark/mllib/optimization/NNLSSuite.scala | 6 +- .../spark/mllib/stat/KernelDensitySuite.scala | 4 +- pom.xml | 1 + project/MimaExcludes.scala | 28 ++++++ 16 files changed, 183 insertions(+), 144 deletions(-) diff --git a/assembly/pom.xml b/assembly/pom.xml index cbf5b6c4aa8df..d3bb4bde0c412 100644 --- a/assembly/pom.xml +++ b/assembly/pom.xml @@ -114,16 +114,6 @@ META-INF/*.RSA - - - org.jblas:jblas - - - lib/static/Linux/i386/** - lib/static/Mac OS X/** - lib/static/Windows/** - - diff --git a/docs/mllib-guide.md b/docs/mllib-guide.md index 4c7a7d9115ca1..598374f66df5e 100644 --- a/docs/mllib-guide.md +++ b/docs/mllib-guide.md @@ -80,11 +80,6 @@ include `netlib-java`'s native proxies by default. To configure [netlib-java](https://github.com/fommil/netlib-java) documentation for your platform's additional installation instructions. -MLlib also uses [jblas](https://github.com/mikiobraun/jblas) which -will require you to install the -[gfortran runtime library](https://github.com/mikiobraun/jblas/wiki/Missing-Libraries) -if it is not already present on your nodes. - To use MLlib in Python, you will need [NumPy](http://www.numpy.org) version 1.4 or newer. diff --git a/graphx/pom.xml b/graphx/pom.xml index 57e338c03ecf9..c0d534e185d7f 100644 --- a/graphx/pom.xml +++ b/graphx/pom.xml @@ -45,9 +45,14 @@ guava - org.jblas - jblas - ${jblas.version} + com.github.fommil.netlib + core + ${netlib.java.version} + + + net.sourceforge.f2j + arpack_combined_all + 0.1 org.scalacheck diff --git a/graphx/src/main/scala/org/apache/spark/graphx/lib/SVDPlusPlus.scala b/graphx/src/main/scala/org/apache/spark/graphx/lib/SVDPlusPlus.scala index 3e4157a63fd1c..1a7178b82e3af 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/lib/SVDPlusPlus.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/lib/SVDPlusPlus.scala @@ -18,7 +18,9 @@ package org.apache.spark.graphx.lib import scala.util.Random -import org.jblas.DoubleMatrix + +import com.github.fommil.netlib.BLAS.{getInstance => blas} + import org.apache.spark.rdd._ import org.apache.spark.graphx._ @@ -53,7 +55,7 @@ object SVDPlusPlus { * a Multifaceted Collaborative Filtering Model", * available at [[http://public.research.att.com/~volinsky/netflix/kdd08koren.pdf]]. * - * The prediction rule is rui = u + bu + bi + qi*(pu + |N(u)|^(-0.5)*sum(y)), + * The prediction rule is rui = u + bu + bi + qi*(pu + |N(u)|^^-0.5^^*sum(y)), * see the details on page 6. * * @param edges edges for constructing the graph @@ -66,13 +68,10 @@ object SVDPlusPlus { : (Graph[(Array[Double], Array[Double], Double, Double), Double], Double) = { // Generate default vertex attribute - def defaultF(rank: Int): (DoubleMatrix, DoubleMatrix, Double, Double) = { - val v1 = new DoubleMatrix(rank) - val v2 = new DoubleMatrix(rank) - for (i <- 0 until rank) { - v1.put(i, Random.nextDouble()) - v2.put(i, Random.nextDouble()) - } + def defaultF(rank: Int): (Array[Double], Array[Double], Double, Double) = { + // TODO: use a fixed random seed + val v1 = Array.fill(rank)(Random.nextDouble()) + val v2 = Array.fill(rank)(Random.nextDouble()) (v1, v2, 0.0, 0.0) } @@ -92,7 +91,7 @@ object SVDPlusPlus { (g1, g2) => (g1._1 + g2._1, g1._2 + g2._2)) val gJoinT0 = g.outerJoinVertices(t0) { - (vid: VertexId, vd: (DoubleMatrix, DoubleMatrix, Double, Double), + (vid: VertexId, vd: (Array[Double], Array[Double], Double, Double), msg: Option[(Long, Double)]) => (vd._1, vd._2, msg.get._2 / msg.get._1, 1.0 / scala.math.sqrt(msg.get._1)) }.cache() @@ -102,24 +101,28 @@ object SVDPlusPlus { def sendMsgTrainF(conf: Conf, u: Double) (ctx: EdgeContext[ - (DoubleMatrix, DoubleMatrix, Double, Double), + (Array[Double], Array[Double], Double, Double), Double, - (DoubleMatrix, DoubleMatrix, Double)]) { + (Array[Double], Array[Double], Double)]) { val (usr, itm) = (ctx.srcAttr, ctx.dstAttr) val (p, q) = (usr._1, itm._1) - var pred = u + usr._3 + itm._3 + q.dot(usr._2) + val rank = p.length + var pred = u + usr._3 + itm._3 + blas.ddot(rank, q, 1, usr._2, 1) pred = math.max(pred, conf.minVal) pred = math.min(pred, conf.maxVal) val err = ctx.attr - pred - val updateP = q.mul(err) - .subColumnVector(p.mul(conf.gamma7)) - .mul(conf.gamma2) - val updateQ = usr._2.mul(err) - .subColumnVector(q.mul(conf.gamma7)) - .mul(conf.gamma2) - val updateY = q.mul(err * usr._4) - .subColumnVector(itm._2.mul(conf.gamma7)) - .mul(conf.gamma2) + // updateP = (err * q - conf.gamma7 * p) * conf.gamma2 + val updateP = q.clone() + blas.dscal(rank, err * conf.gamma2, updateP, 1) + blas.daxpy(rank, -conf.gamma7 * conf.gamma2, p, 1, updateP, 1) + // updateQ = (err * usr._2 - conf.gamma7 * q) * conf.gamma2 + val updateQ = usr._2.clone() + blas.dscal(rank, err * conf.gamma2, updateQ, 1) + blas.daxpy(rank, -conf.gamma7 * conf.gamma2, q, 1, updateQ, 1) + // updateY = (err * usr._4 * q - conf.gamma7 * itm._2) * conf.gamma2 + val updateY = q.clone() + blas.dscal(rank, err * usr._4 * conf.gamma2, updateY, 1) + blas.daxpy(rank, -conf.gamma7 * conf.gamma2, itm._2, 1, updateY, 1) ctx.sendToSrc((updateP, updateY, (err - conf.gamma6 * usr._3) * conf.gamma1)) ctx.sendToDst((updateQ, updateY, (err - conf.gamma6 * itm._3) * conf.gamma1)) } @@ -127,14 +130,23 @@ object SVDPlusPlus { for (i <- 0 until conf.maxIters) { // Phase 1, calculate pu + |N(u)|^(-0.5)*sum(y) for user nodes g.cache() - val t1 = g.aggregateMessages[DoubleMatrix]( + val t1 = g.aggregateMessages[Array[Double]]( ctx => ctx.sendToSrc(ctx.dstAttr._2), - (g1, g2) => g1.addColumnVector(g2)) + (g1, g2) => { + val out = g1.clone() + blas.daxpy(out.length, 1.0, g2, 1, out, 1) + out + }) val gJoinT1 = g.outerJoinVertices(t1) { - (vid: VertexId, vd: (DoubleMatrix, DoubleMatrix, Double, Double), - msg: Option[DoubleMatrix]) => - if (msg.isDefined) (vd._1, vd._1 - .addColumnVector(msg.get.mul(vd._4)), vd._3, vd._4) else vd + (vid: VertexId, vd: (Array[Double], Array[Double], Double, Double), + msg: Option[Array[Double]]) => + if (msg.isDefined) { + val out = vd._1.clone() + blas.daxpy(out.length, vd._4, msg.get, 1, out, 1) + (vd._1, out, vd._3, vd._4) + } else { + vd + } }.cache() materialize(gJoinT1) g.unpersist() @@ -144,14 +156,24 @@ object SVDPlusPlus { g.cache() val t2 = g.aggregateMessages( sendMsgTrainF(conf, u), - (g1: (DoubleMatrix, DoubleMatrix, Double), g2: (DoubleMatrix, DoubleMatrix, Double)) => - (g1._1.addColumnVector(g2._1), g1._2.addColumnVector(g2._2), g1._3 + g2._3)) + (g1: (Array[Double], Array[Double], Double), g2: (Array[Double], Array[Double], Double)) => + { + val out1 = g1._1.clone() + blas.daxpy(out1.length, 1.0, g2._1, 1, out1, 1) + val out2 = g2._2.clone() + blas.daxpy(out2.length, 1.0, g2._2, 1, out2, 1) + (out1, out2, g1._3 + g2._3) + }) val gJoinT2 = g.outerJoinVertices(t2) { (vid: VertexId, - vd: (DoubleMatrix, DoubleMatrix, Double, Double), - msg: Option[(DoubleMatrix, DoubleMatrix, Double)]) => - (vd._1.addColumnVector(msg.get._1), vd._2.addColumnVector(msg.get._2), - vd._3 + msg.get._3, vd._4) + vd: (Array[Double], Array[Double], Double, Double), + msg: Option[(Array[Double], Array[Double], Double)]) => { + val out1 = vd._1.clone() + blas.daxpy(out1.length, 1.0, msg.get._1, 1, out1, 1) + val out2 = vd._2.clone() + blas.daxpy(out2.length, 1.0, msg.get._2, 1, out2, 1) + (out1, out2, vd._3 + msg.get._3, vd._4) + } }.cache() materialize(gJoinT2) g.unpersist() @@ -160,10 +182,10 @@ object SVDPlusPlus { // calculate error on training set def sendMsgTestF(conf: Conf, u: Double) - (ctx: EdgeContext[(DoubleMatrix, DoubleMatrix, Double, Double), Double, Double]) { + (ctx: EdgeContext[(Array[Double], Array[Double], Double, Double), Double, Double]) { val (usr, itm) = (ctx.srcAttr, ctx.dstAttr) val (p, q) = (usr._1, itm._1) - var pred = u + usr._3 + itm._3 + q.dot(usr._2) + var pred = u + usr._3 + itm._3 + blas.ddot(q.length, q, 1, usr._2, 1) pred = math.max(pred, conf.minVal) pred = math.min(pred, conf.maxVal) val err = (ctx.attr - pred) * (ctx.attr - pred) @@ -173,7 +195,7 @@ object SVDPlusPlus { g.cache() val t3 = g.aggregateMessages[Double](sendMsgTestF(conf, u), _ + _) val gJoinT3 = g.outerJoinVertices(t3) { - (vid: VertexId, vd: (DoubleMatrix, DoubleMatrix, Double, Double), msg: Option[Double]) => + (vid: VertexId, vd: (Array[Double], Array[Double], Double, Double), msg: Option[Double]) => if (msg.isDefined) (vd._1, vd._2, vd._3, msg.get) else vd }.cache() materialize(gJoinT3) diff --git a/graphx/src/test/scala/org/apache/spark/graphx/lib/SVDPlusPlusSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/lib/SVDPlusPlusSuite.scala index 9987a4b1a3c25..7bd6b7f3c4ab2 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/lib/SVDPlusPlusSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/lib/SVDPlusPlusSuite.scala @@ -32,11 +32,11 @@ class SVDPlusPlusSuite extends FunSuite with LocalSparkContext { Edge(fields(0).toLong * 2, fields(1).toLong * 2 + 1, fields(2).toDouble) } val conf = new SVDPlusPlus.Conf(10, 2, 0.0, 5.0, 0.007, 0.007, 0.005, 0.015) // 2 iterations - var (graph, u) = SVDPlusPlus.runSVDPlusPlus(edges, conf) + val (graph, _) = SVDPlusPlus.run(edges, conf) graph.cache() - val err = graph.vertices.collect().map{ case (vid, vd) => + val err = graph.vertices.map { case (vid, vd) => if (vid % 2 == 1) vd._4 else 0.0 - }.reduce(_ + _) / graph.triplets.collect().size + }.reduce(_ + _) / graph.numEdges assert(err <= svdppErr) } } diff --git a/mllib/pom.xml b/mllib/pom.xml index b5c949e155cfd..a76704a8c2c59 100644 --- a/mllib/pom.xml +++ b/mllib/pom.xml @@ -59,6 +59,7 @@ org.jblas jblas ${jblas.version} + test org.scalanlp @@ -116,7 +117,7 @@ com.github.fommil.netlib all - 1.1.2 + ${netlib.java.version} pom diff --git a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala index 7bb69df65362b..e3515ee81af3d 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala @@ -26,7 +26,6 @@ import scala.util.hashing.byteswap64 import com.github.fommil.netlib.BLAS.{getInstance => blas} import com.github.fommil.netlib.LAPACK.{getInstance => lapack} -import org.jblas.DoubleMatrix import org.netlib.util.intW import org.apache.spark.{Logging, Partitioner} @@ -361,14 +360,14 @@ object ALS extends Logging { private[recommendation] class NNLSSolver extends LeastSquaresNESolver { private var rank: Int = -1 private var workspace: NNLS.Workspace = _ - private var ata: DoubleMatrix = _ + private var ata: Array[Double] = _ private var initialized: Boolean = false private def initialize(rank: Int): Unit = { if (!initialized) { this.rank = rank workspace = NNLS.createWorkspace(rank) - ata = new DoubleMatrix(rank, rank) + ata = new Array[Double](rank * rank) initialized = true } else { require(this.rank == rank) @@ -385,7 +384,7 @@ object ALS extends Logging { val rank = ne.k initialize(rank) fillAtA(ne.ata, lambda * ne.n) - val x = NNLS.solve(ata, new DoubleMatrix(rank, 1, ne.atb: _*), workspace) + val x = NNLS.solve(ata, ne.atb, workspace) ne.reset() x.map(x => x.toFloat) } @@ -398,17 +397,16 @@ object ALS extends Logging { var i = 0 var pos = 0 var a = 0.0 - val data = ata.data while (i < rank) { var j = 0 while (j <= i) { a = triAtA(pos) - data(i * rank + j) = a - data(j * rank + i) = a + ata(i * rank + j) = a + ata(j * rank + i) = a pos += 1 j += 1 } - data(i * rank + i) += lambda + ata(i * rank + i) += lambda i += 1 } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala index ccd93b318bc23..4766f7708295d 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala @@ -17,7 +17,9 @@ package org.apache.spark.mllib.optimization -import org.jblas.{DoubleMatrix, SimpleBlas} +import java.{util => ju} + +import com.github.fommil.netlib.BLAS.{getInstance => blas} /** * Object used to solve nonnegative least squares problems using a modified @@ -25,20 +27,20 @@ import org.jblas.{DoubleMatrix, SimpleBlas} */ private[spark] object NNLS { class Workspace(val n: Int) { - val scratch = new DoubleMatrix(n, 1) - val grad = new DoubleMatrix(n, 1) - val x = new DoubleMatrix(n, 1) - val dir = new DoubleMatrix(n, 1) - val lastDir = new DoubleMatrix(n, 1) - val res = new DoubleMatrix(n, 1) - - def wipe() { - scratch.fill(0.0) - grad.fill(0.0) - x.fill(0.0) - dir.fill(0.0) - lastDir.fill(0.0) - res.fill(0.0) + val scratch = new Array[Double](n) + val grad = new Array[Double](n) + val x = new Array[Double](n) + val dir = new Array[Double](n) + val lastDir = new Array[Double](n) + val res = new Array[Double](n) + + def wipe(): Unit = { + ju.Arrays.fill(scratch, 0.0) + ju.Arrays.fill(grad, 0.0) + ju.Arrays.fill(x, 0.0) + ju.Arrays.fill(dir, 0.0) + ju.Arrays.fill(lastDir, 0.0) + ju.Arrays.fill(res, 0.0) } } @@ -60,18 +62,18 @@ private[spark] object NNLS { * direction, however, while this method only uses a conjugate gradient direction if the last * iteration did not cause a previously-inactive constraint to become active. */ - def solve(ata: DoubleMatrix, atb: DoubleMatrix, ws: Workspace): Array[Double] = { + def solve(ata: Array[Double], atb: Array[Double], ws: Workspace): Array[Double] = { ws.wipe() - val n = atb.rows + val n = atb.length val scratch = ws.scratch // find the optimal unconstrained step - def steplen(dir: DoubleMatrix, res: DoubleMatrix): Double = { - val top = SimpleBlas.dot(dir, res) - SimpleBlas.gemv(1.0, ata, dir, 0.0, scratch) + def steplen(dir: Array[Double], res: Array[Double]): Double = { + val top = blas.ddot(n, dir, 1, res, 1) + blas.dgemv("N", n, n, 1.0, ata, n, dir, 1, 0.0, scratch, 1) // Push the denominator upward very slightly to avoid infinities and silliness - top / (SimpleBlas.dot(scratch, dir) + 1e-20) + top / (blas.ddot(n, scratch, 1, dir, 1) + 1e-20) } // stopping condition @@ -96,52 +98,52 @@ private[spark] object NNLS { var i = 0 while (iterno < iterMax) { // find the residual - SimpleBlas.gemv(1.0, ata, x, 0.0, res) - SimpleBlas.axpy(-1.0, atb, res) - SimpleBlas.copy(res, grad) + blas.dgemv("N", n, n, 1.0, ata, n, x, 1, 0.0, res, 1) + blas.daxpy(n, -1.0, atb, 1, res, 1) + blas.dcopy(n, res, 1, grad, 1) // project the gradient i = 0 while (i < n) { - if (grad.data(i) > 0.0 && x.data(i) == 0.0) { - grad.data(i) = 0.0 + if (grad(i) > 0.0 && x(i) == 0.0) { + grad(i) = 0.0 } i = i + 1 } - val ngrad = SimpleBlas.dot(grad, grad) + val ngrad = blas.ddot(n, grad, 1, grad, 1) - SimpleBlas.copy(grad, dir) + blas.dcopy(n, grad, 1, dir, 1) // use a CG direction under certain conditions var step = steplen(grad, res) var ndir = 0.0 - val nx = SimpleBlas.dot(x, x) + val nx = blas.ddot(n, x, 1, x, 1) if (iterno > lastWall + 1) { val alpha = ngrad / lastNorm - SimpleBlas.axpy(alpha, lastDir, dir) + blas.daxpy(n, alpha, lastDir, 1, dir, 1) val dstep = steplen(dir, res) - ndir = SimpleBlas.dot(dir, dir) + ndir = blas.ddot(n, dir, 1, dir, 1) if (stop(dstep, ndir, nx)) { // reject the CG step if it could lead to premature termination - SimpleBlas.copy(grad, dir) - ndir = SimpleBlas.dot(dir, dir) + blas.dcopy(n, grad, 1, dir, 1) + ndir = blas.ddot(n, dir, 1, dir, 1) } else { step = dstep } } else { - ndir = SimpleBlas.dot(dir, dir) + ndir = blas.ddot(n, dir, 1, dir, 1) } // terminate? if (stop(step, ndir, nx)) { - return x.data.clone + return x.clone } // don't run through the walls i = 0 while (i < n) { - if (step * dir.data(i) > x.data(i)) { - step = x.data(i) / dir.data(i) + if (step * dir(i) > x(i)) { + step = x(i) / dir(i) } i = i + 1 } @@ -149,19 +151,19 @@ private[spark] object NNLS { // take the step i = 0 while (i < n) { - if (step * dir.data(i) > x.data(i) * (1 - 1e-14)) { - x.data(i) = 0 + if (step * dir(i) > x(i) * (1 - 1e-14)) { + x(i) = 0 lastWall = iterno } else { - x.data(i) -= step * dir.data(i) + x(i) -= step * dir(i) } i = i + 1 } iterno = iterno + 1 - SimpleBlas.copy(dir, lastDir) + blas.dcopy(n, dir, 1, lastDir, 1) lastNorm = ngrad } - x.data.clone + x.clone } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala index 5f5a996a87b81..36cbf060d9998 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala @@ -21,10 +21,10 @@ import java.io.IOException import java.lang.{Integer => JavaInteger} import org.apache.hadoop.fs.Path -import org.jblas.DoubleMatrix import org.json4s._ import org.json4s.JsonDSL._ import org.json4s.jackson.JsonMethods._ +import com.github.fommil.netlib.BLAS.{getInstance => blas} import org.apache.spark.{Logging, SparkContext} import org.apache.spark.api.java.{JavaPairRDD, JavaRDD} @@ -70,9 +70,9 @@ class MatrixFactorizationModel( /** Predict the rating of one user for one product. */ def predict(user: Int, product: Int): Double = { - val userVector = new DoubleMatrix(userFeatures.lookup(user).head) - val productVector = new DoubleMatrix(productFeatures.lookup(product).head) - userVector.dot(productVector) + val userVector = userFeatures.lookup(user).head + val productVector = productFeatures.lookup(product).head + blas.ddot(userVector.length, userVector, 1, productVector, 1) } /** @@ -89,9 +89,7 @@ class MatrixFactorizationModel( } users.join(productFeatures).map { case (product, ((user, uFeatures), pFeatures)) => - val userVector = new DoubleMatrix(uFeatures) - val productVector = new DoubleMatrix(pFeatures) - Rating(user, product, userVector.dot(productVector)) + Rating(user, product, blas.ddot(uFeatures.length, uFeatures, 1, pFeatures, 1)) } } @@ -143,9 +141,8 @@ class MatrixFactorizationModel( recommendToFeatures: Array[Double], recommendableFeatures: RDD[(Int, Array[Double])], num: Int): Array[(Int, Double)] = { - val recommendToVector = new DoubleMatrix(recommendToFeatures) val scored = recommendableFeatures.map { case (id,features) => - (id, recommendToVector.dot(new DoubleMatrix(features))) + (id, blas.ddot(features.length, recommendToFeatures, 1, features, 1)) } scored.top(num)(Ordering.by(_._2)) } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala index 97f54aa62d31c..c9d33787b0bb5 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala @@ -20,7 +20,7 @@ package org.apache.spark.mllib.util import scala.collection.JavaConversions._ import scala.util.Random -import org.jblas.DoubleMatrix +import com.github.fommil.netlib.BLAS.{getInstance => blas} import org.apache.spark.annotation.DeveloperApi import org.apache.spark.SparkContext @@ -72,11 +72,10 @@ object LinearDataGenerator { eps: Double = 0.1): Seq[LabeledPoint] = { val rnd = new Random(seed) - val weightsMat = new DoubleMatrix(1, weights.length, weights:_*) val x = Array.fill[Array[Double]](nPoints)( Array.fill[Double](weights.length)(2 * rnd.nextDouble - 1.0)) val y = x.map { xi => - new DoubleMatrix(1, xi.length, xi: _*).dot(weightsMat) + intercept + eps * rnd.nextGaussian() + blas.ddot(weights.length, xi, 1, weights, 1) + intercept + eps * rnd.nextGaussian() } y.zip(x).map(p => LabeledPoint(p._1, Vectors.dense(p._2))) } @@ -100,9 +99,9 @@ object LinearDataGenerator { eps: Double, nparts: Int = 2, intercept: Double = 0.0) : RDD[LabeledPoint] = { - org.jblas.util.Random.seed(42) + val random = new Random(42) // Random values distributed uniformly in [-0.5, 0.5] - val w = DoubleMatrix.rand(nfeatures, 1).subi(0.5) + val w = Array.fill(nfeatures)(random.nextDouble() - 0.5) val data: RDD[LabeledPoint] = sc.parallelize(0 until nparts, nparts).flatMap { p => val seed = 42 + p diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/MFDataGenerator.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/MFDataGenerator.scala index b76fbe89c3681..0c5b4f9d04a74 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/MFDataGenerator.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/MFDataGenerator.scala @@ -17,13 +17,14 @@ package org.apache.spark.mllib.util +import java.{util => ju} + import scala.language.postfixOps import scala.util.Random -import org.jblas.DoubleMatrix - -import org.apache.spark.annotation.DeveloperApi import org.apache.spark.SparkContext +import org.apache.spark.annotation.DeveloperApi +import org.apache.spark.mllib.linalg.{BLAS, DenseMatrix} import org.apache.spark.rdd.RDD /** @@ -72,24 +73,25 @@ object MFDataGenerator { val sc = new SparkContext(sparkMaster, "MFDataGenerator") - val A = DoubleMatrix.randn(m, rank) - val B = DoubleMatrix.randn(rank, n) - val z = 1 / scala.math.sqrt(scala.math.sqrt(rank)) - A.mmuli(z) - B.mmuli(z) - val fullData = A.mmul(B) + val random = new ju.Random(42L) + + val A = DenseMatrix.randn(m, rank, random) + val B = DenseMatrix.randn(rank, n, random) + val z = 1 / math.sqrt(rank) + val fullData = DenseMatrix.zeros(m, n) + BLAS.gemm(z, A, B, 1.0, fullData) val df = rank * (m + n - rank) val sampSize = scala.math.min(scala.math.round(trainSampFact * df), scala.math.round(.99 * m * n)).toInt val rand = new Random() val mn = m * n - val shuffled = rand.shuffle(1 to mn toList) + val shuffled = rand.shuffle((0 until mn).toList) val omega = shuffled.slice(0, sampSize) val ordered = omega.sortWith(_ < _).toArray val trainData: RDD[(Int, Int, Double)] = sc.parallelize(ordered) - .map(x => (fullData.indexRows(x - 1), fullData.indexColumns(x - 1), fullData.get(x - 1))) + .map(x => (x % m, x / m, fullData.values(x))) // optionally add gaussian noise if (noise) { @@ -105,7 +107,7 @@ object MFDataGenerator { val testOmega = shuffled.slice(sampSize, sampSize + testSampSize) val testOrdered = testOmega.sortWith(_ < _).toArray val testData: RDD[(Int, Int, Double)] = sc.parallelize(testOrdered) - .map(x => (fullData.indexRows(x - 1), fullData.indexColumns(x - 1), fullData.get(x - 1))) + .map(x => (x % m, x / m, fullData.values(x))) testData.map(x => x._1 + "," + x._2 + "," + x._3).saveAsTextFile(outputPath) } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala index 7db97e6bac688..a8e30cc9d730c 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala @@ -19,7 +19,7 @@ package org.apache.spark.mllib.util import scala.util.Random -import org.jblas.DoubleMatrix +import com.github.fommil.netlib.BLAS.{getInstance => blas} import org.apache.spark.annotation.DeveloperApi import org.apache.spark.SparkContext @@ -51,8 +51,7 @@ object SVMDataGenerator { val sc = new SparkContext(sparkMaster, "SVMGenerator") val globalRnd = new Random(94720) - val trueWeights = new DoubleMatrix(1, nfeatures + 1, - Array.fill[Double](nfeatures + 1)(globalRnd.nextGaussian()):_*) + val trueWeights = Array.fill[Double](nfeatures + 1)(globalRnd.nextGaussian()) val data: RDD[LabeledPoint] = sc.parallelize(0 until nexamples, parts).map { idx => val rnd = new Random(42 + idx) @@ -60,7 +59,7 @@ object SVMDataGenerator { val x = Array.fill[Double](nfeatures) { rnd.nextDouble() * 2.0 - 1.0 } - val yD = new DoubleMatrix(1, x.length, x: _*).dot(trueWeights) + rnd.nextGaussian() * 0.1 + val yD = blas.ddot(trueWeights.length, x, 1, trueWeights, 1) + rnd.nextGaussian() * 0.1 val y = if (yD < 0) 0.0 else 1.0 LabeledPoint(y, Vectors.dense(x)) } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/optimization/NNLSSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/optimization/NNLSSuite.scala index 82c327bd49fcd..22855e4e8f247 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/optimization/NNLSSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/optimization/NNLSSuite.scala @@ -55,7 +55,7 @@ class NNLSSuite extends FunSuite { for (k <- 0 until 100) { val (ata, atb) = genOnesData(n, rand) - val x = new DoubleMatrix(NNLS.solve(ata, atb, ws)) + val x = new DoubleMatrix(NNLS.solve(ata.data, atb.data, ws)) assert(x.length === n) val answer = DoubleMatrix.ones(n, 1) SimpleBlas.axpy(-1.0, answer, x) @@ -79,7 +79,7 @@ class NNLSSuite extends FunSuite { val goodx = Array(0.13025, 0.54506, 0.2874, 0.0, 0.028628) val ws = NNLS.createWorkspace(n) - val x = NNLS.solve(ata, atb, ws) + val x = NNLS.solve(ata.data, atb.data, ws) for (i <- 0 until n) { assert(x(i) ~== goodx(i) absTol 1E-3) assert(x(i) >= 0) @@ -104,7 +104,7 @@ class NNLSSuite extends FunSuite { val ws = NNLS.createWorkspace(n) - val x = new DoubleMatrix(NNLS.solve(ata, atb, ws)) + val x = new DoubleMatrix(NNLS.solve(ata.data, atb.data, ws)) val obj = computeObjectiveValue(ata, atb, x) assert(obj < refObj + 1E-5) diff --git a/mllib/src/test/scala/org/apache/spark/mllib/stat/KernelDensitySuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/stat/KernelDensitySuite.scala index f6a1e19f50296..16ecae23dd9d4 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/stat/KernelDensitySuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/stat/KernelDensitySuite.scala @@ -21,9 +21,9 @@ import org.scalatest.FunSuite import org.apache.commons.math3.distribution.NormalDistribution -import org.apache.spark.mllib.util.LocalClusterSparkContext +import org.apache.spark.mllib.util.MLlibTestSparkContext -class KernelDensitySuite extends FunSuite with LocalClusterSparkContext { +class KernelDensitySuite extends FunSuite with MLlibTestSparkContext { test("kernel density single sample") { val rdd = sc.parallelize(Array(5.0)) val evaluationPoints = Array(5.0, 6.0) diff --git a/pom.xml b/pom.xml index a19da73cf45b3..6fc56a86d44ac 100644 --- a/pom.xml +++ b/pom.xml @@ -157,6 +157,7 @@ 1.8.8 2.4.4 1.1.1.6 + 1.1.2 [Review on Reviewable](https://reviewable.io/reviews/apache/spark/5001) Author: Cheng Lian Closes #5001 from liancheng/parquet-doc and squashes the following commits: 89ad3db [Cheng Lian] Addresses @rxin's comments 7eb6955 [Cheng Lian] Docs for the new Parquet data source 415eefb [Cheng Lian] Some minor formatting improvements --- docs/sql-programming-guide.md | 237 ++++++++++++++++++++++++++-------- 1 file changed, 180 insertions(+), 57 deletions(-) diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 76aa1a533d56e..11c29e20632ae 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -21,14 +21,14 @@ The DataFrame API is available in [Scala](api/scala/index.html#org.apache.spark. All of the examples on this page use sample data included in the Spark distribution and can be run in the `spark-shell` or the `pyspark` shell. -## Starting Point: SQLContext +## Starting Point: `SQLContext`
The entry point into all functionality in Spark SQL is the -[SQLContext](api/scala/index.html#org.apache.spark.sql.SQLContext) class, or one of its -descendants. To create a basic SQLContext, all you need is a SparkContext. +[`SQLContext`](api/scala/index.html#org.apache.spark.sql.`SQLContext`) class, or one of its +descendants. To create a basic `SQLContext`, all you need is a SparkContext. {% highlight scala %} val sc: SparkContext // An existing SparkContext. @@ -43,8 +43,8 @@ import sqlContext.implicits._
The entry point into all functionality in Spark SQL is the -[SQLContext](api/java/index.html#org.apache.spark.sql.SQLContext) class, or one of its -descendants. To create a basic SQLContext, all you need is a SparkContext. +[`SQLContext`](api/java/index.html#org.apache.spark.sql.SQLContext) class, or one of its +descendants. To create a basic `SQLContext`, all you need is a SparkContext. {% highlight java %} JavaSparkContext sc = ...; // An existing JavaSparkContext. @@ -56,8 +56,8 @@ SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
The entry point into all relational functionality in Spark is the -[SQLContext](api/python/pyspark.sql.SQLContext-class.html) class, or one -of its decedents. To create a basic SQLContext, all you need is a SparkContext. +[`SQLContext`](api/python/pyspark.sql.SQLContext-class.html) class, or one +of its decedents. To create a basic `SQLContext`, all you need is a SparkContext. {% highlight python %} from pyspark.sql import SQLContext @@ -67,20 +67,20 @@ sqlContext = SQLContext(sc)
-In addition to the basic SQLContext, you can also create a HiveContext, which provides a -superset of the functionality provided by the basic SQLContext. Additional features include +In addition to the basic `SQLContext`, you can also create a `HiveContext`, which provides a +superset of the functionality provided by the basic `SQLContext`. Additional features include the ability to write queries using the more complete HiveQL parser, access to Hive UDFs, and the -ability to read data from Hive tables. To use a HiveContext, you do not need to have an -existing Hive setup, and all of the data sources available to a SQLContext are still available. -HiveContext is only packaged separately to avoid including all of Hive's dependencies in the default -Spark build. If these dependencies are not a problem for your application then using HiveContext -is recommended for the 1.3 release of Spark. Future releases will focus on bringing SQLContext up -to feature parity with a HiveContext. +ability to read data from Hive tables. To use a `HiveContext`, you do not need to have an +existing Hive setup, and all of the data sources available to a `SQLContext` are still available. +`HiveContext` is only packaged separately to avoid including all of Hive's dependencies in the default +Spark build. If these dependencies are not a problem for your application then using `HiveContext` +is recommended for the 1.3 release of Spark. Future releases will focus on bringing `SQLContext` up +to feature parity with a `HiveContext`. The specific variant of SQL that is used to parse queries can also be selected using the `spark.sql.dialect` option. This parameter can be changed using either the `setConf` method on -a SQLContext or by using a `SET key=value` command in SQL. For a SQLContext, the only dialect -available is "sql" which uses a simple SQL parser provided by Spark SQL. In a HiveContext, the +a `SQLContext` or by using a `SET key=value` command in SQL. For a `SQLContext`, the only dialect +available is "sql" which uses a simple SQL parser provided by Spark SQL. In a `HiveContext`, the default is "hiveql", though "sql" is also available. Since the HiveQL parser is much more complete, this is recommended for most use cases. @@ -100,7 +100,7 @@ val sqlContext = new org.apache.spark.sql.SQLContext(sc) val df = sqlContext.jsonFile("examples/src/main/resources/people.json") // Displays the content of the DataFrame to stdout -df.show() +df.show() {% endhighlight %}
@@ -151,10 +151,10 @@ val df = sqlContext.jsonFile("examples/src/main/resources/people.json") // Show the content of the DataFrame df.show() -// age name +// age name // null Michael -// 30 Andy -// 19 Justin +// 30 Andy +// 19 Justin // Print the schema in a tree format df.printSchema() @@ -164,17 +164,17 @@ df.printSchema() // Select only the "name" column df.select("name").show() -// name +// name // Michael -// Andy -// Justin +// Andy +// Justin // Select everybody, but increment the age by 1 df.select("name", df("age") + 1).show() // name (age + 1) -// Michael null -// Andy 31 -// Justin 20 +// Michael null +// Andy 31 +// Justin 20 // Select people older than 21 df.filter(df("name") > 21).show() @@ -201,10 +201,10 @@ DataFrame df = sqlContext.jsonFile("examples/src/main/resources/people.json"); // Show the content of the DataFrame df.show(); -// age name +// age name // null Michael -// 30 Andy -// 19 Justin +// 30 Andy +// 19 Justin // Print the schema in a tree format df.printSchema(); @@ -214,17 +214,17 @@ df.printSchema(); // Select only the "name" column df.select("name").show(); -// name +// name // Michael -// Andy -// Justin +// Andy +// Justin // Select everybody, but increment the age by 1 df.select("name", df.col("age").plus(1)).show(); // name (age + 1) -// Michael null -// Andy 31 -// Justin 20 +// Michael null +// Andy 31 +// Justin 20 // Select people older than 21 df.filter(df("name") > 21).show(); @@ -251,10 +251,10 @@ df = sqlContext.jsonFile("examples/src/main/resources/people.json") # Show the content of the DataFrame df.show() -## age name +## age name ## null Michael -## 30 Andy -## 19 Justin +## 30 Andy +## 19 Justin # Print the schema in a tree format df.printSchema() @@ -264,17 +264,17 @@ df.printSchema() # Select only the "name" column df.select("name").show() -## name +## name ## Michael -## Andy -## Justin +## Andy +## Justin # Select everybody, but increment the age by 1 df.select("name", df.age + 1).show() ## name (age + 1) -## Michael null -## Andy 31 -## Justin 20 +## Michael null +## Andy 31 +## Justin 20 # Select people older than 21 df.filter(df.name > 21).show() @@ -797,7 +797,7 @@ When working with a `HiveContext`, `DataFrames` can also be saved as persistent contents of the dataframe and create a pointer to the data in the HiveMetastore. Persistent tables will still exist even after your Spark program has restarted, as long as you maintain your connection to the same metastore. A DataFrame for a persistent table can be created by calling the `table` -method on a SQLContext with the name of the table. +method on a `SQLContext` with the name of the table. By default `saveAsTable` will create a "managed table", meaning that the location of the data will be controlled by the metastore. Managed tables will also have their data deleted automatically @@ -907,9 +907,132 @@ SELECT * FROM parquetTable
+### Partition discovery + +Table partitioning is a common optimization approach used in systems like Hive. In a partitioned +table, data are usually stored in different directories, with partitioning column values encoded in +the path of each partition directory. The Parquet data source is now able to discover and infer +partitioning information automatically. For exmaple, we can store all our previously used +population data into a partitioned table using the following directory structure, with two extra +columns, `gender` and `country` as partitioning columns: + +{% highlight text %} + +path +└── to + └── table + ├── gender=male + │   ├── ... + │   │ + │   ├── country=US + │   │   └── data.parquet + │   ├── country=CN + │   │   └── data.parquet + │   └── ... + └── gender=female +    ├── ... +    │ +    ├── country=US +    │   └── data.parquet +    ├── country=CN +    │   └── data.parquet +    └── ... + +{% endhighlight %} + +By passing `path/to/table` to either `SQLContext.parquetFile` or `SQLContext.load`, Spark SQL will +automatically extract the partitioning information from the paths. Now the schema of the returned +DataFrame becomes: + +{% highlight text %} + +root +|-- name: string (nullable = true) +|-- age: long (nullable = true) +|-- gender: string (nullable = true) +|-- country: string (nullable = true) + +{% endhighlight %} + +Notice that the data types of the partitioning columns are automatically inferred. Currently, +numeric data types and string type are supported. + +### Schema merging + +Like ProtocolBuffer, Avro, and Thrift, Parquet also supports schema evolution. Users can start with +a simple schema, and gradually add more columns to the schema as needed. In this way, users may end +up with multiple Parquet files with different but mutually compatible schemas. The Parquet data +source is now able to automatically detect this case and merge schemas of all these files. + +
+ +
+ +{% highlight scala %} +// sqlContext from the previous example is used in this example. +// This is used to implicitly convert an RDD to a DataFrame. +import sqlContext.implicits._ + +// Create a simple DataFrame, stored into a partition directory +val df1 = sparkContext.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double") +df1.saveAsParquetFile("data/test_table/key=1") + +// Create another DataFrame in a new partition directory, +// adding a new column and dropping an existing column +val df2 = sparkContext.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple") +df2.saveAsParquetFile("data/test_table/key=2") + +// Read the partitioned table +val df3 = sqlContext.parquetFile("data/test_table") +df3.printSchema() + +// The final schema consists of all 3 columns in the Parquet files together +// with the partiioning column appeared in the partition directory paths. +// root +// |-- single: int (nullable = true) +// |-- double: int (nullable = true) +// |-- triple: int (nullable = true) +// |-- key : int (nullable = true) +{% endhighlight %} + +
+ +
+ +{% highlight python %} +# sqlContext from the previous example is used in this example. + +# Create a simple DataFrame, stored into a partition directory +df1 = sqlContext.createDataFrame(sc.parallelize(range(1, 6))\ + .map(lambda i: Row(single=i, double=i * 2))) +df1.save("data/test_table/key=1", "parquet") + +# Create another DataFrame in a new partition directory, +# adding a new column and dropping an existing column +df2 = sqlContext.createDataFrame(sc.parallelize(range(6, 11)) + .map(lambda i: Row(single=i, triple=i * 3))) +df2.save("data/test_table/key=2", "parquet") + +# Read the partitioned table +df3 = sqlContext.parquetFile("data/test_table") +df3.printSchema() + +# The final schema consists of all 3 columns in the Parquet files together +# with the partiioning column appeared in the partition directory paths. +# root +# |-- single: int (nullable = true) +# |-- double: int (nullable = true) +# |-- triple: int (nullable = true) +# |-- key : int (nullable = true) +{% endhighlight %} + +
+ +
+ ### Configuration -Configuration of Parquet can be done using the `setConf` method on SQLContext or by running +Configuration of Parquet can be done using the `setConf` method on `SQLContext` or by running `SET key=value` commands using SQL. @@ -972,7 +1095,7 @@ Configuration of Parquet can be done using the `setConf` method on SQLContext or
Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. -This conversion can be done using one of two methods in a SQLContext: +This conversion can be done using one of two methods in a `SQLContext`: * `jsonFile` - loads data from a directory of JSON files where each line of the files is a JSON object. * `jsonRDD` - loads data from an existing RDD where each element of the RDD is a string containing a JSON object. @@ -1014,7 +1137,7 @@ val anotherPeople = sqlContext.jsonRDD(anotherPeopleRDD)
Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. -This conversion can be done using one of two methods in a SQLContext : +This conversion can be done using one of two methods in a `SQLContext` : * `jsonFile` - loads data from a directory of JSON files where each line of the files is a JSON object. * `jsonRDD` - loads data from an existing RDD where each element of the RDD is a string containing a JSON object. @@ -1056,7 +1179,7 @@ DataFrame anotherPeople = sqlContext.jsonRDD(anotherPeopleRDD);
Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. -This conversion can be done using one of two methods in a SQLContext: +This conversion can be done using one of two methods in a `SQLContext`: * `jsonFile` - loads data from a directory of JSON files where each line of the files is a JSON object. * `jsonRDD` - loads data from an existing RDD where each element of the RDD is a string containing a JSON object. @@ -1085,7 +1208,7 @@ people.printSchema() # Register this DataFrame as a table. people.registerTempTable("people") -# SQL statements can be run by using the sql methods provided by sqlContext. +# SQL statements can be run by using the sql methods provided by `sqlContext`. teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") # Alternatively, a DataFrame can be created for a JSON dataset represented by @@ -1131,7 +1254,7 @@ Configuration of Hive is done by placing your `hive-site.xml` file in `conf/`. When working with Hive one must construct a `HiveContext`, which inherits from `SQLContext`, and adds support for finding tables in the MetaStore and writing queries using HiveQL. Users who do -not have an existing Hive deployment can still create a HiveContext. When not configured by the +not have an existing Hive deployment can still create a `HiveContext`. When not configured by the hive-site.xml, the context automatically creates `metastore_db` and `warehouse` in the current directory. @@ -1318,7 +1441,7 @@ Spark SQL can cache tables using an in-memory columnar format by calling `sqlCon Then Spark SQL will scan only required columns and will automatically tune compression to minimize memory usage and GC pressure. You can call `sqlContext.uncacheTable("tableName")` to remove the table from memory. -Configuration of in-memory caching can be done using the `setConf` method on SQLContext or by running +Configuration of in-memory caching can be done using the `setConf` method on `SQLContext` or by running `SET key=value` commands using SQL.
@@ -1429,10 +1552,10 @@ Configuration of Hive is done by placing your `hive-site.xml` file in `conf/`. You may also use the beeline script that comes with Hive. -Thrift JDBC server also supports sending thrift RPC messages over HTTP transport. -Use the following setting to enable HTTP mode as system property or in `hive-site.xml` file in `conf/`: +Thrift JDBC server also supports sending thrift RPC messages over HTTP transport. +Use the following setting to enable HTTP mode as system property or in `hive-site.xml` file in `conf/`: - hive.server2.transport.mode - Set this to value: http + hive.server2.transport.mode - Set this to value: http hive.server2.thrift.http.port - HTTP port number fo listen on; default is 10001 hive.server2.http.endpoint - HTTP endpoint; default is cliservice @@ -1506,7 +1629,7 @@ When using function inside of the DSL (now replaced with the `DataFrame` API) us Spark 1.3 removes the type aliases that were present in the base sql package for `DataType`. Users should instead import the classes in `org.apache.spark.sql.types` -#### UDF Registration Moved to sqlContext.udf (Java & Scala) +#### UDF Registration Moved to `sqlContext.udf` (Java & Scala) Functions that are used to register UDFs, either for use in the DataFrame DSL or SQL, have been moved into the udf object in `SQLContext`. From 9048e8102e3f564842fa0dc6e82edce70b7dd3d7 Mon Sep 17 00:00:00 2001 From: "Zhang, Liye" Date: Fri, 13 Mar 2015 13:59:54 +0000 Subject: [PATCH 28/43] [SPARK-6197][CORE] handle json exception when hisotry file not finished writing For details, please refer to [SPARK-6197](https://issues.apache.org/jira/browse/SPARK-6197) Author: Zhang, Liye Closes #4927 from liyezhang556520/jsonParseError and squashes the following commits: 5cbdc82 [Zhang, Liye] without unnecessary wrap 2b48831 [Zhang, Liye] small changes with sean owen's comments 2973024 [Zhang, Liye] handle json exception when file not finished writing --- .../apache/spark/deploy/master/Master.scala | 3 ++- .../spark/scheduler/ReplayListenerBus.scala | 25 ++++++++++++++++--- 2 files changed, 23 insertions(+), 5 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/deploy/master/Master.scala b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala index 15814293227ab..22935c9b1d394 100644 --- a/core/src/main/scala/org/apache/spark/deploy/master/Master.scala +++ b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala @@ -764,8 +764,9 @@ private[spark] class Master( val replayBus = new ReplayListenerBus() val ui = SparkUI.createHistoryUI(new SparkConf, replayBus, new SecurityManager(conf), appName + status, HistoryServer.UI_PATH_PREFIX + s"/${app.id}") + val maybeTruncated = eventLogFile.endsWith(EventLoggingListener.IN_PROGRESS) try { - replayBus.replay(logInput, eventLogFile) + replayBus.replay(logInput, eventLogFile, maybeTruncated) } finally { logInput.close() } diff --git a/core/src/main/scala/org/apache/spark/scheduler/ReplayListenerBus.scala b/core/src/main/scala/org/apache/spark/scheduler/ReplayListenerBus.scala index 95273c716b3e2..86f357abb8723 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/ReplayListenerBus.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/ReplayListenerBus.scala @@ -21,6 +21,7 @@ import java.io.{InputStream, IOException} import scala.io.Source +import com.fasterxml.jackson.core.JsonParseException import org.json4s.jackson.JsonMethods._ import org.apache.spark.Logging @@ -40,15 +41,31 @@ private[spark] class ReplayListenerBus extends SparkListenerBus with Logging { * * @param logData Stream containing event log data. * @param sourceName Filename (or other source identifier) from whence @logData is being read + * @param maybeTruncated Indicate whether log file might be truncated (some abnormal situations + * encountered, log file might not finished writing) or not */ - def replay(logData: InputStream, sourceName: String): Unit = { + def replay( + logData: InputStream, + sourceName: String, + maybeTruncated: Boolean = false): Unit = { var currentLine: String = null var lineNumber: Int = 1 try { val lines = Source.fromInputStream(logData).getLines() - lines.foreach { line => - currentLine = line - postToAll(JsonProtocol.sparkEventFromJson(parse(line))) + while (lines.hasNext) { + currentLine = lines.next() + try { + postToAll(JsonProtocol.sparkEventFromJson(parse(currentLine))) + } catch { + case jpe: JsonParseException => + // We can only ignore exception from last line of the file that might be truncated + if (!maybeTruncated || lines.hasNext) { + throw jpe + } else { + logWarning(s"Got JsonParseException from log file $sourceName" + + s" at line $lineNumber, the file might not have finished writing cleanly.") + } + } lineNumber += 1 } } catch { From ea3d2eed9b0a94b34543d9a9df87dc63a279deb1 Mon Sep 17 00:00:00 2001 From: Wenchen Fan Date: Fri, 13 Mar 2015 14:08:56 +0000 Subject: [PATCH 29/43] [CORE][minor] remove unnecessary ClassTag in `DAGScheduler` This existed at the very beginning, but became unnecessary after [this commit](https://github.com/apache/spark/commit/37d8f37a8ec110416fba0d51d8ba70370ac380c1#diff-6a9ff7fb74fd490a50462d45db2d5e11L272). I think we should remove it if we don't plan to use it in the future. Author: Wenchen Fan Closes #4992 from cloud-fan/small and squashes the following commits: e857f2e [Wenchen Fan] remove unnecessary ClassTag --- .../main/scala/org/apache/spark/scheduler/DAGScheduler.scala | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala index bc84e2351ad74..e4170a55b7981 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala @@ -26,7 +26,6 @@ import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet, Map, Stack} import scala.concurrent.Await import scala.concurrent.duration._ import scala.language.postfixOps -import scala.reflect.ClassTag import scala.util.control.NonFatal import akka.pattern.ask @@ -497,7 +496,7 @@ class DAGScheduler( waiter } - def runJob[T, U: ClassTag]( + def runJob[T, U]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], From dc4abd4dc40deacab39bfa9572b06bf0ea6daa6d Mon Sep 17 00:00:00 2001 From: "Joseph K. Bradley" Date: Fri, 13 Mar 2015 10:26:09 -0700 Subject: [PATCH 30/43] [SPARK-6252] [mllib] Added getLambda to Scala NaiveBayes Note: not relevant for Python API since it only has a static train method Author: Joseph K. Bradley Author: Joseph K. Bradley Closes #4969 from jkbradley/SPARK-6252 and squashes the following commits: a471d90 [Joseph K. Bradley] small edits from review 63eff48 [Joseph K. Bradley] Added getLambda to Scala NaiveBayes --- .../apache/spark/mllib/classification/NaiveBayes.scala | 3 +++ .../spark/mllib/classification/NaiveBayesSuite.scala | 8 ++++++++ 2 files changed, 11 insertions(+) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala index b11fd4f128c56..2ebc7fa5d4234 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/NaiveBayes.scala @@ -166,6 +166,9 @@ class NaiveBayes private (private var lambda: Double) extends Serializable with this } + /** Get the smoothing parameter. Default: 1.0. */ + def getLambda: Double = lambda + /** * Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries. * diff --git a/mllib/src/test/scala/org/apache/spark/mllib/classification/NaiveBayesSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/classification/NaiveBayesSuite.scala index 64dcc0fb9f82c..5a27c7d2309c5 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/classification/NaiveBayesSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/classification/NaiveBayesSuite.scala @@ -85,6 +85,14 @@ class NaiveBayesSuite extends FunSuite with MLlibTestSparkContext { assert(numOfPredictions < input.length / 5) } + test("get, set params") { + val nb = new NaiveBayes() + nb.setLambda(2.0) + assert(nb.getLambda === 2.0) + nb.setLambda(3.0) + assert(nb.getLambda === 3.0) + } + test("Naive Bayes") { val nPoints = 10000 From 7f13434a5c52b815c584ec773ab0e5df1a35ea86 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Fri, 13 Mar 2015 10:27:28 -0700 Subject: [PATCH 31/43] [SPARK-6278][MLLIB] Mention the change of objective in linear regression As discussed in the RC3 vote thread, we should mention the change of objective in linear regression in the migration guide. srowen Author: Xiangrui Meng Closes #4978 from mengxr/SPARK-6278 and squashes the following commits: fb3bbe6 [Xiangrui Meng] mention regularization parameter bfd6cff [Xiangrui Meng] Merge remote-tracking branch 'apache/master' into SPARK-6278 375fd09 [Xiangrui Meng] address Sean's comments f87ae71 [Xiangrui Meng] mention step size change --- docs/mllib-guide.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/docs/mllib-guide.md b/docs/mllib-guide.md index 598374f66df5e..f8e879496c135 100644 --- a/docs/mllib-guide.md +++ b/docs/mllib-guide.md @@ -102,6 +102,8 @@ In the `spark.mllib` package, there were several breaking changes. The first ch * In `DecisionTree`, the deprecated class method `train` has been removed. (The object/static `train` methods remain.) * In `Strategy`, the `checkpointDir` parameter has been removed. Checkpointing is still supported, but the checkpoint directory must be set before calling tree and tree ensemble training. * `PythonMLlibAPI` (the interface between Scala/Java and Python for MLlib) was a public API but is now private, declared `private[python]`. This was never meant for external use. +* In linear regression (including Lasso and ridge regression), the squared loss is now divided by 2. + So in order to produce the same result as in 1.2, the regularization parameter needs to be divided by 2 and the step size needs to be multiplied by 2. ## Previous Spark Versions From b943f5d907df0607ecffb729f2bccfa436438d7e Mon Sep 17 00:00:00 2001 From: Brennon York Date: Fri, 13 Mar 2015 18:48:31 +0000 Subject: [PATCH 32/43] [SPARK-4600][GraphX]: org.apache.spark.graphx.VertexRDD.diff does not work Turns out, per the [convo on the JIRA](https://issues.apache.org/jira/browse/SPARK-4600), `diff` is acting exactly as should. It became a large misconception as I thought it meant set difference, when in fact it does not. To that extent I merely updated the `diff` documentation to, hopefully, better reflect its true intentions moving forward. Author: Brennon York Closes #5015 from brennonyork/SPARK-4600 and squashes the following commits: 1e1d1e5 [Brennon York] reverted internal diff docs 92288f7 [Brennon York] reverted both the test suite and the diff function back to its origin functionality f428623 [Brennon York] updated diff documentation to better represent its function cc16d65 [Brennon York] Merge remote-tracking branch 'upstream/master' into SPARK-4600 66818b9 [Brennon York] added small secondary diff test 99ad412 [Brennon York] Merge remote-tracking branch 'upstream/master' into SPARK-4600 74b8c95 [Brennon York] corrected method by leveraging bitmask operations to correctly return only the portions of that are different from the calling VertexRDD 9717120 [Brennon York] updated diff impl to cause fewer objects to be created 710a21c [Brennon York] working diff given test case aa57f83 [Brennon York] updated to set ShortestPaths to run 'forward' rather than 'backward' --- .../src/main/scala/org/apache/spark/graphx/VertexRDD.scala | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala b/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala index 09ae3f9f6c09b..40ecff7107109 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala @@ -122,8 +122,11 @@ abstract class VertexRDD[VD]( def mapValues[VD2: ClassTag](f: (VertexId, VD) => VD2): VertexRDD[VD2] /** - * Hides vertices that are the same between `this` and `other`; for vertices that are different, - * keeps the values from `other`. + * For each vertex present in both `this` and `other`, `diff` returns only those vertices with + * differing values; for values that are different, keeps the values from `other`. This is + * only guaranteed to work if the VertexRDDs share a common ancestor. + * + * @param other the other VertexRDD with which to diff against. */ def diff(other: VertexRDD[VD]): VertexRDD[VD] From cdc34ed9108688fea32ad170b1ba344fe047716b Mon Sep 17 00:00:00 2001 From: Cheng Lian Date: Sat, 14 Mar 2015 07:09:53 +0800 Subject: [PATCH 33/43] [SPARK-6285] [SQL] Removes unused ParquetTestData and duplicated TestGroupWriteSupport All the contents in this file are not referenced anywhere and should have been removed in #4116 when I tried to get rid of the old Parquet test suites. [Review on Reviewable](https://reviewable.io/reviews/apache/spark/5010) Author: Cheng Lian Closes #5010 from liancheng/spark-6285 and squashes the following commits: 06ed057 [Cheng Lian] Removes unused ParquetTestData and duplicated TestGroupWriteSupport --- .../spark/sql/parquet/ParquetTestData.scala | 466 ------------------ 1 file changed, 466 deletions(-) delete mode 100644 sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala deleted file mode 100644 index e4a10aa2ae6c3..0000000000000 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala +++ /dev/null @@ -1,466 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.sql.parquet - -import java.io.File - -import org.apache.hadoop.conf.Configuration -import org.apache.hadoop.fs.{FileStatus, FileSystem, Path} -import org.apache.hadoop.mapreduce.Job -import org.apache.spark.sql.test.TestSQLContext - -import parquet.example.data.{GroupWriter, Group} -import parquet.example.data.simple.{NanoTime, SimpleGroup} -import parquet.hadoop.{ParquetReader, ParquetFileReader, ParquetWriter} -import parquet.hadoop.api.WriteSupport -import parquet.hadoop.api.WriteSupport.WriteContext -import parquet.hadoop.example.GroupReadSupport -import parquet.hadoop.util.ContextUtil -import parquet.io.api.RecordConsumer -import parquet.schema.{MessageType, MessageTypeParser} - -import org.apache.spark.util.Utils - -// Write support class for nested groups: ParquetWriter initializes GroupWriteSupport -// with an empty configuration (it is after all not intended to be used in this way?) -// and members are private so we need to make our own in order to pass the schema -// to the writer. -private class TestGroupWriteSupport(schema: MessageType) extends WriteSupport[Group] { - var groupWriter: GroupWriter = null - override def prepareForWrite(recordConsumer: RecordConsumer): Unit = { - groupWriter = new GroupWriter(recordConsumer, schema) - } - override def init(configuration: Configuration): WriteContext = { - new WriteContext(schema, new java.util.HashMap[String, String]()) - } - override def write(record: Group) { - groupWriter.write(record) - } -} - -private[sql] object ParquetTestData { - - val testSchema = - """message myrecord { - optional boolean myboolean; - optional int32 myint; - optional binary mystring (UTF8); - optional int64 mylong; - optional float myfloat; - optional double mydouble; - optional int96 mytimestamp; - }""" - - // field names for test assertion error messages - val testSchemaFieldNames = Seq( - "myboolean:Boolean", - "myint:Int", - "mystring:String", - "mylong:Long", - "myfloat:Float", - "mydouble:Double", - "mytimestamp:Timestamp" - ) - - val subTestSchema = - """ - message myrecord { - optional boolean myboolean; - optional int64 mylong; - } - """ - - val testFilterSchema = - """ - message myrecord { - required boolean myboolean; - required int32 myint; - required binary mystring (UTF8); - required int64 mylong; - required float myfloat; - required double mydouble; - optional boolean myoptboolean; - optional int32 myoptint; - optional binary myoptstring (UTF8); - optional int64 myoptlong; - optional float myoptfloat; - optional double myoptdouble; - optional int96 mytimestamp; - } - """ - - // field names for test assertion error messages - val subTestSchemaFieldNames = Seq( - "myboolean:Boolean", - "mylong:Long" - ) - - val testDir = Utils.createTempDir() - val testFilterDir = Utils.createTempDir() - - lazy val testData = new ParquetRelation(testDir.toURI.toString, None, TestSQLContext) - - val testNestedSchema1 = - // based on blogpost example, source: - // https://blog.twitter.com/2013/dremel-made-simple-with-parquet - // note: instead of string we have to use binary (?) otherwise - // Parquet gives us: - // IllegalArgumentException: expected one of [INT64, INT32, BOOLEAN, - // BINARY, FLOAT, DOUBLE, INT96, FIXED_LEN_BYTE_ARRAY] - // Also repeated primitives seem tricky to convert (AvroParquet - // only uses them in arrays?) so only use at most one in each group - // and nothing else in that group (-> is mapped to array)! - // The "values" inside ownerPhoneNumbers is a keyword currently - // so that array types can be translated correctly. - """ - message AddressBook { - required binary owner (UTF8); - optional group ownerPhoneNumbers { - repeated binary array (UTF8); - } - optional group contacts { - repeated group array { - required binary name (UTF8); - optional binary phoneNumber (UTF8); - } - } - } - """ - - - val testNestedSchema2 = - """ - message TestNested2 { - required int32 firstInt; - optional int32 secondInt; - optional group longs { - repeated int64 array; - } - required group entries { - repeated group array { - required double value; - optional boolean truth; - } - } - optional group outerouter { - repeated group array { - repeated group array { - repeated int32 array; - } - } - } - } - """ - - val testNestedSchema3 = - """ - message TestNested3 { - required int32 x; - optional group booleanNumberPairs { - repeated group array { - required int32 key; - optional group value { - repeated group array { - required double nestedValue; - optional boolean truth; - } - } - } - } - } - """ - - val testNestedSchema4 = - """ - message TestNested4 { - required int32 x; - optional group data1 { - repeated group map { - required binary key (UTF8); - required int32 value; - } - } - required group data2 { - repeated group map { - required binary key (UTF8); - required group value { - required int64 payload1; - optional binary payload2 (UTF8); - } - } - } - } - """ - - val testNestedDir1 = Utils.createTempDir() - val testNestedDir2 = Utils.createTempDir() - val testNestedDir3 = Utils.createTempDir() - val testNestedDir4 = Utils.createTempDir() - - lazy val testNestedData1 = - new ParquetRelation(testNestedDir1.toURI.toString, None, TestSQLContext) - lazy val testNestedData2 = - new ParquetRelation(testNestedDir2.toURI.toString, None, TestSQLContext) - - def writeFile() = { - testDir.delete() - val path: Path = new Path(new Path(testDir.toURI), new Path("part-r-0.parquet")) - val job = new Job() - val schema: MessageType = MessageTypeParser.parseMessageType(testSchema) - val writeSupport = new TestGroupWriteSupport(schema) - val writer = new ParquetWriter[Group](path, writeSupport) - - for(i <- 0 until 15) { - val record = new SimpleGroup(schema) - if (i % 3 == 0) { - record.add(0, true) - } else { - record.add(0, false) - } - if (i % 5 == 0) { - record.add(1, 5) - } - record.add(2, "abc") - record.add(3, i.toLong << 33) - record.add(4, 2.5F) - record.add(5, 4.5D) - record.add(6, new NanoTime(1,2)) - writer.write(record) - } - writer.close() - } - - def writeFilterFile(records: Int = 200) = { - // for microbenchmark use: records = 300000000 - testFilterDir.delete - val path: Path = new Path(new Path(testFilterDir.toURI), new Path("part-r-0.parquet")) - val schema: MessageType = MessageTypeParser.parseMessageType(testFilterSchema) - val writeSupport = new TestGroupWriteSupport(schema) - val writer = new ParquetWriter[Group](path, writeSupport) - - for(i <- 0 to records) { - val record = new SimpleGroup(schema) - if (i % 4 == 0) { - record.add(0, true) - } else { - record.add(0, false) - } - record.add(1, i) - record.add(2, i.toString) - record.add(3, i.toLong) - record.add(4, i.toFloat + 0.5f) - record.add(5, i.toDouble + 0.5d) - if (i % 2 == 0) { - if (i % 3 == 0) { - record.add(6, true) - } else { - record.add(6, false) - } - record.add(7, i) - record.add(8, i.toString) - record.add(9, i.toLong) - record.add(10, i.toFloat + 0.5f) - record.add(11, i.toDouble + 0.5d) - } - - writer.write(record) - } - writer.close() - } - - def writeNestedFile1() { - // example data from https://blog.twitter.com/2013/dremel-made-simple-with-parquet - testNestedDir1.delete() - val path: Path = new Path(new Path(testNestedDir1.toURI), new Path("part-r-0.parquet")) - val schema: MessageType = MessageTypeParser.parseMessageType(testNestedSchema1) - - val r1 = new SimpleGroup(schema) - r1.add(0, "Julien Le Dem") - r1.addGroup(1) - .append(CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME, "555 123 4567") - .append(CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME, "555 666 1337") - .append(CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME, "XXX XXX XXXX") - val contacts = r1.addGroup(2) - contacts.addGroup(0) - .append("name", "Dmitriy Ryaboy") - .append("phoneNumber", "555 987 6543") - contacts.addGroup(0) - .append("name", "Chris Aniszczyk") - - val r2 = new SimpleGroup(schema) - r2.add(0, "A. Nonymous") - - val writeSupport = new TestGroupWriteSupport(schema) - val writer = new ParquetWriter[Group](path, writeSupport) - writer.write(r1) - writer.write(r2) - writer.close() - } - - def writeNestedFile2() { - testNestedDir2.delete() - val path: Path = new Path(new Path(testNestedDir2.toURI), new Path("part-r-0.parquet")) - val schema: MessageType = MessageTypeParser.parseMessageType(testNestedSchema2) - - val r1 = new SimpleGroup(schema) - r1.add(0, 1) - r1.add(1, 7) - val longs = r1.addGroup(2) - longs.add(CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME , 1.toLong << 32) - longs.add(CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME, 1.toLong << 33) - longs.add(CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME, 1.toLong << 34) - val booleanNumberPair = r1.addGroup(3).addGroup(0) - booleanNumberPair.add("value", 2.5) - booleanNumberPair.add("truth", false) - val top_level = r1.addGroup(4) - val second_level_a = top_level.addGroup(0) - val second_level_b = top_level.addGroup(0) - val third_level_aa = second_level_a.addGroup(0) - val third_level_ab = second_level_a.addGroup(0) - val third_level_c = second_level_b.addGroup(0) - third_level_aa.add( - CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME, - 7) - third_level_ab.add( - CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME, - 8) - third_level_c.add( - CatalystConverter.ARRAY_ELEMENTS_SCHEMA_NAME, - 9) - - val writeSupport = new TestGroupWriteSupport(schema) - val writer = new ParquetWriter[Group](path, writeSupport) - writer.write(r1) - writer.close() - } - - def writeNestedFile3() { - testNestedDir3.delete() - val path: Path = new Path(new Path(testNestedDir3.toURI), new Path("part-r-0.parquet")) - val schema: MessageType = MessageTypeParser.parseMessageType(testNestedSchema3) - - val r1 = new SimpleGroup(schema) - r1.add(0, 1) - val booleanNumberPairs = r1.addGroup(1) - val g1 = booleanNumberPairs.addGroup(0) - g1.add(0, 1) - val nested1 = g1.addGroup(1) - val ng1 = nested1.addGroup(0) - ng1.add(0, 1.5) - ng1.add(1, false) - val ng2 = nested1.addGroup(0) - ng2.add(0, 2.5) - ng2.add(1, true) - val g2 = booleanNumberPairs.addGroup(0) - g2.add(0, 2) - val ng3 = g2.addGroup(1) - .addGroup(0) - ng3.add(0, 3.5) - ng3.add(1, false) - - val writeSupport = new TestGroupWriteSupport(schema) - val writer = new ParquetWriter[Group](path, writeSupport) - writer.write(r1) - writer.close() - } - - def writeNestedFile4() { - testNestedDir4.delete() - val path: Path = new Path(new Path(testNestedDir4.toURI), new Path("part-r-0.parquet")) - val schema: MessageType = MessageTypeParser.parseMessageType(testNestedSchema4) - - val r1 = new SimpleGroup(schema) - r1.add(0, 7) - val map1 = r1.addGroup(1) - val keyValue1 = map1.addGroup(0) - keyValue1.add(0, "key1") - keyValue1.add(1, 1) - val keyValue2 = map1.addGroup(0) - keyValue2.add(0, "key2") - keyValue2.add(1, 2) - val map2 = r1.addGroup(2) - val keyValue3 = map2.addGroup(0) - // TODO: currently only string key type supported - keyValue3.add(0, "seven") - val valueGroup1 = keyValue3.addGroup(1) - valueGroup1.add(0, 42.toLong) - valueGroup1.add(1, "the answer") - val keyValue4 = map2.addGroup(0) - // TODO: currently only string key type supported - keyValue4.add(0, "eight") - val valueGroup2 = keyValue4.addGroup(1) - valueGroup2.add(0, 49.toLong) - - val writeSupport = new TestGroupWriteSupport(schema) - val writer = new ParquetWriter[Group](path, writeSupport) - writer.write(r1) - writer.close() - } - - // TODO: this is not actually used anywhere but useful for debugging - /* def readNestedFile(file: File, schemaString: String): Unit = { - val configuration = new Configuration() - val path = new Path(new Path(file.toURI), new Path("part-r-0.parquet")) - val fs: FileSystem = path.getFileSystem(configuration) - val schema: MessageType = MessageTypeParser.parseMessageType(schemaString) - assert(schema != null) - val outputStatus: FileStatus = fs.getFileStatus(new Path(path.toString)) - val footers = ParquetFileReader.readFooter(configuration, outputStatus) - assert(footers != null) - val reader = new ParquetReader(new Path(path.toString), new GroupReadSupport()) - val first = reader.read() - assert(first != null) - } */ - - // to test golb pattern (wild card pattern matching for parquetFile input - val testGlobDir = Utils.createTempDir() - val testGlobSubDir1 = Utils.createTempDir(testGlobDir.getPath) - val testGlobSubDir2 = Utils.createTempDir(testGlobDir.getPath) - val testGlobSubDir3 = Utils.createTempDir(testGlobDir.getPath) - - def writeGlobFiles() = { - val subDirs = Array(testGlobSubDir1, testGlobSubDir2, testGlobSubDir3) - - subDirs.foreach { dir => - val path: Path = new Path(new Path(dir.toURI), new Path("part-r-0.parquet")) - val job = new Job() - val schema: MessageType = MessageTypeParser.parseMessageType(testSchema) - val writeSupport = new TestGroupWriteSupport(schema) - val writer = new ParquetWriter[Group](path, writeSupport) - - for(i <- 0 until 15) { - val record = new SimpleGroup(schema) - if(i % 3 == 0) { - record.add(0, true) - } else { - record.add(0, false) - } - if(i % 5 == 0) { - record.add(1, 5) - } - record.add(2, "abc") - record.add(3, i.toLong << 33) - record.add(4, 2.5F) - record.add(5, 4.5D) - writer.write(record) - } - writer.close() - } - } -} - From e360d5e4adf287444c10e72f8e4d57548839bf6e Mon Sep 17 00:00:00 2001 From: vinodkc Date: Sat, 14 Mar 2015 07:17:54 +0800 Subject: [PATCH 34/43] [SPARK-6317][SQL]Fixed HIVE console startup issue Author: vinodkc Author: Vinod K C Closes #5011 from vinodkc/HIVE_console_startupError and squashes the following commits: b43925f [vinodkc] Changed order of import b4f5453 [Vinod K C] Fixed HIVE console startup issue --- project/SparkBuild.scala | 4 ++-- sql/README.md | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 4a06b9821bb98..f4c74c4051014 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -269,8 +269,8 @@ object SQL { |import org.apache.spark.sql.catalyst.plans.logical._ |import org.apache.spark.sql.catalyst.rules._ |import org.apache.spark.sql.catalyst.util._ - |import org.apache.spark.sql.Dsl._ |import org.apache.spark.sql.execution + |import org.apache.spark.sql.functions._ |import org.apache.spark.sql.test.TestSQLContext._ |import org.apache.spark.sql.types._ |import org.apache.spark.sql.parquet.ParquetTestData""".stripMargin, @@ -300,8 +300,8 @@ object Hive { |import org.apache.spark.sql.catalyst.plans.logical._ |import org.apache.spark.sql.catalyst.rules._ |import org.apache.spark.sql.catalyst.util._ - |import org.apache.spark.sql.Dsl._ |import org.apache.spark.sql.execution + |import org.apache.spark.sql.functions._ |import org.apache.spark.sql.hive._ |import org.apache.spark.sql.hive.test.TestHive._ |import org.apache.spark.sql.types._ diff --git a/sql/README.md b/sql/README.md index a79249965ee67..48f83340e37b3 100644 --- a/sql/README.md +++ b/sql/README.md @@ -36,8 +36,8 @@ import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.catalyst.rules._ import org.apache.spark.sql.catalyst.util._ -import org.apache.spark.sql.Dsl._ import org.apache.spark.sql.execution +import org.apache.spark.sql.functions._ import org.apache.spark.sql.hive._ import org.apache.spark.sql.hive.test.TestHive._ import org.apache.spark.sql.types._ From b38e073fee794188d5267f1812b095e51874839e Mon Sep 17 00:00:00 2001 From: Davies Liu Date: Sat, 14 Mar 2015 00:43:33 -0700 Subject: [PATCH 35/43] [SPARK-6210] [SQL] use prettyString as column name in agg() use prettyString instead of toString() (which include id of expression) as column name in agg() Author: Davies Liu Closes #5006 from davies/prettystring and squashes the following commits: cb1fdcf [Davies Liu] use prettyString as column name in agg() --- python/pyspark/sql/dataframe.py | 32 +++++++++---------- .../spark/sql/catalyst/trees/TreeNode.scala | 2 +- .../org/apache/spark/sql/GroupedData.scala | 8 ++--- 3 files changed, 21 insertions(+), 21 deletions(-) diff --git a/python/pyspark/sql/dataframe.py b/python/pyspark/sql/dataframe.py index e8ce4547455a5..94001aec3774b 100644 --- a/python/pyspark/sql/dataframe.py +++ b/python/pyspark/sql/dataframe.py @@ -631,11 +631,11 @@ def groupBy(self, *cols): for all the available aggregate functions. >>> df.groupBy().avg().collect() - [Row(AVG(age#0)=3.5)] + [Row(AVG(age)=3.5)] >>> df.groupBy('name').agg({'age': 'mean'}).collect() - [Row(name=u'Bob', AVG(age#0)=5.0), Row(name=u'Alice', AVG(age#0)=2.0)] + [Row(name=u'Bob', AVG(age)=5.0), Row(name=u'Alice', AVG(age)=2.0)] >>> df.groupBy(df.name).avg().collect() - [Row(name=u'Bob', AVG(age#0)=5.0), Row(name=u'Alice', AVG(age#0)=2.0)] + [Row(name=u'Bob', AVG(age)=5.0), Row(name=u'Alice', AVG(age)=2.0)] """ jcols = ListConverter().convert([_to_java_column(c) for c in cols], self._sc._gateway._gateway_client) @@ -647,10 +647,10 @@ def agg(self, *exprs): (shorthand for df.groupBy.agg()). >>> df.agg({"age": "max"}).collect() - [Row(MAX(age#0)=5)] + [Row(MAX(age)=5)] >>> from pyspark.sql import functions as F >>> df.agg(F.min(df.age)).collect() - [Row(MIN(age#0)=2)] + [Row(MIN(age)=2)] """ return self.groupBy().agg(*exprs) @@ -766,7 +766,7 @@ def agg(self, *exprs): >>> from pyspark.sql import functions as F >>> gdf.agg(F.min(df.age)).collect() - [Row(MIN(age#0)=5), Row(MIN(age#0)=2)] + [Row(MIN(age)=5), Row(MIN(age)=2)] """ assert exprs, "exprs should not be empty" if len(exprs) == 1 and isinstance(exprs[0], dict): @@ -795,9 +795,9 @@ def mean(self, *cols): for each group. This is an alias for `avg`. >>> df.groupBy().mean('age').collect() - [Row(AVG(age#0)=3.5)] + [Row(AVG(age)=3.5)] >>> df3.groupBy().mean('age', 'height').collect() - [Row(AVG(age#4L)=3.5, AVG(height#5L)=82.5)] + [Row(AVG(age)=3.5, AVG(height)=82.5)] """ @df_varargs_api @@ -806,9 +806,9 @@ def avg(self, *cols): for each group. >>> df.groupBy().avg('age').collect() - [Row(AVG(age#0)=3.5)] + [Row(AVG(age)=3.5)] >>> df3.groupBy().avg('age', 'height').collect() - [Row(AVG(age#4L)=3.5, AVG(height#5L)=82.5)] + [Row(AVG(age)=3.5, AVG(height)=82.5)] """ @df_varargs_api @@ -817,9 +817,9 @@ def max(self, *cols): each group. >>> df.groupBy().max('age').collect() - [Row(MAX(age#0)=5)] + [Row(MAX(age)=5)] >>> df3.groupBy().max('age', 'height').collect() - [Row(MAX(age#4L)=5, MAX(height#5L)=85)] + [Row(MAX(age)=5, MAX(height)=85)] """ @df_varargs_api @@ -828,9 +828,9 @@ def min(self, *cols): each group. >>> df.groupBy().min('age').collect() - [Row(MIN(age#0)=2)] + [Row(MIN(age)=2)] >>> df3.groupBy().min('age', 'height').collect() - [Row(MIN(age#4L)=2, MIN(height#5L)=80)] + [Row(MIN(age)=2, MIN(height)=80)] """ @df_varargs_api @@ -839,9 +839,9 @@ def sum(self, *cols): group. >>> df.groupBy().sum('age').collect() - [Row(SUM(age#0)=7)] + [Row(SUM(age)=7)] >>> df3.groupBy().sum('age', 'height').collect() - [Row(SUM(age#4L)=7, SUM(height#5L)=165)] + [Row(SUM(age)=7, SUM(height)=165)] """ diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala index 7e191ad0315a5..f84ffe4e176cc 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/trees/TreeNode.scala @@ -343,7 +343,7 @@ abstract class TreeNode[BaseType <: TreeNode[BaseType]] { }.mkString(", ") /** String representation of this node without any children */ - def simpleString = s"$nodeName $argString" + def simpleString = s"$nodeName $argString".trim override def toString: String = treeString diff --git a/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala b/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala index d00175265924c..45a63ae26ed71 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/GroupedData.scala @@ -37,7 +37,7 @@ class GroupedData protected[sql](df: DataFrame, groupingExprs: Seq[Expression]) private[this] implicit def toDF(aggExprs: Seq[NamedExpression]): DataFrame = { val namedGroupingExprs = groupingExprs.map { case expr: NamedExpression => expr - case expr: Expression => Alias(expr, expr.toString)() + case expr: Expression => Alias(expr, expr.prettyString)() } DataFrame( df.sqlContext, Aggregate(groupingExprs, namedGroupingExprs ++ aggExprs, df.logicalPlan)) @@ -63,7 +63,7 @@ class GroupedData protected[sql](df: DataFrame, groupingExprs: Seq[Expression]) } columnExprs.map { c => val a = f(c) - Alias(a, a.toString)() + Alias(a, a.prettyString)() } } @@ -115,7 +115,7 @@ class GroupedData protected[sql](df: DataFrame, groupingExprs: Seq[Expression]) def agg(exprs: Map[String, String]): DataFrame = { exprs.map { case (colName, expr) => val a = strToExpr(expr)(df(colName).expr) - Alias(a, a.toString)() + Alias(a, a.prettyString)() }.toSeq } @@ -159,7 +159,7 @@ class GroupedData protected[sql](df: DataFrame, groupingExprs: Seq[Expression]) def agg(expr: Column, exprs: Column*): DataFrame = { val aggExprs = (expr +: exprs).map(_.expr).map { case expr: NamedExpression => expr - case expr: Expression => Alias(expr, expr.toString)() + case expr: Expression => Alias(expr, expr.prettyString)() } DataFrame(df.sqlContext, Aggregate(groupingExprs, aggExprs, df.logicalPlan)) } From ee15404a2b0009fc70119ac7af69137b54890d48 Mon Sep 17 00:00:00 2001 From: ArcherShao Date: Sat, 14 Mar 2015 08:27:18 +0000 Subject: [PATCH 36/43] [SQL]Delete some dupliate code in HiveThriftServer2 Author: ArcherShao Author: ArcherShao Closes #5007 from ArcherShao/20150313 and squashes the following commits: ae422ae [ArcherShao] Updated 459efbd [ArcherShao] [SQL]Delete some dupliate code in HiveThriftServer2 --- .../sql/hive/thriftserver/HiveThriftServer2.scala | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/HiveThriftServer2.scala b/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/HiveThriftServer2.scala index 6e07df18b0e15..c3a3f8c0f41df 100644 --- a/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/HiveThriftServer2.scala +++ b/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/HiveThriftServer2.scala @@ -98,16 +98,14 @@ private[hive] class HiveThriftServer2(hiveContext: HiveContext) setSuperField(this, "cliService", sparkSqlCliService) addService(sparkSqlCliService) - if (isHTTPTransportMode(hiveConf)) { - val thriftCliService = new ThriftHttpCLIService(sparkSqlCliService) - setSuperField(this, "thriftCLIService", thriftCliService) - addService(thriftCliService) + val thriftCliService = if (isHTTPTransportMode(hiveConf)) { + new ThriftHttpCLIService(sparkSqlCliService) } else { - val thriftCliService = new ThriftBinaryCLIService(sparkSqlCliService) - setSuperField(this, "thriftCLIService", thriftCliService) - addService(thriftCliService) + new ThriftBinaryCLIService(sparkSqlCliService) } + setSuperField(this, "thriftCLIService", thriftCliService) + addService(thriftCliService) initCompositeService(hiveConf) } From 5be6b0e4f48aca12fcd47c1b77c4675ad651c332 Mon Sep 17 00:00:00 2001 From: Cheng Lian Date: Sat, 14 Mar 2015 19:53:54 +0800 Subject: [PATCH 37/43] [SPARK-6195] [SQL] Adds in-memory column type for fixed-precision decimals This PR adds a specialized in-memory column type for fixed-precision decimals. For all other column types, a single integer column type ID is enough to determine which column type to use. However, this doesn't apply to fixed-precision decimal types with different precision and scale parameters. Moreover, according to the previous design, there seems no trivial way to encode precision and scale information into the columnar byte buffer. On the other hand, considering we always know the data type of the column to be built / scanned ahead of time. This PR no longer use column type ID to construct `ColumnBuilder`s and `ColumnAccessor`s, but resorts to the actual column data type. In this way, we can pass precision / scale information along the way. The column type ID is now not used anymore and can be removed in a future PR. ### Micro benchmark result The following micro benchmark builds a simple table with 2 million decimals (precision = 10, scale = 0), cache it in memory, then count all the rows. Code (simply paste it into Spark shell): ```scala import sc._ import sqlContext._ import sqlContext.implicits._ import org.apache.spark.sql.types._ import com.google.common.base.Stopwatch def benchmark(n: Int)(f: => Long) { val stopwatch = new Stopwatch() def run() = { stopwatch.reset() stopwatch.start() f stopwatch.stop() stopwatch.elapsedMillis() } val records = (0 until n).map(_ => run()) (0 until n).foreach(i => println(s"Round $i: ${records(i)} ms")) println(s"Average: ${records.sum / n.toDouble} ms") } // Explicit casting is required because ScalaReflection can't inspect decimal precision parallelize(1 to 2000000) .map(i => Tuple1(Decimal(i, 10, 0))) .toDF("dec") .select($"dec" cast DecimalType(10, 0)) .registerTempTable("dec") sql("CACHE TABLE dec") val df = table("dec") // Warm up df.count() df.count() benchmark(5) { df.count() } ``` With `FIXED_DECIMAL` column type: - Round 0: 75 ms - Round 1: 97 ms - Round 2: 75 ms - Round 3: 70 ms - Round 4: 72 ms - Average: 77.8 ms Without `FIXED_DECIMAL` column type: - Round 0: 1233 ms - Round 1: 1170 ms - Round 2: 1171 ms - Round 3: 1141 ms - Round 4: 1141 ms - Average: 1171.2 ms [Review on Reviewable](https://reviewable.io/reviews/apache/spark/4938) Author: Cheng Lian Closes #4938 from liancheng/decimal-column-type and squashes the following commits: fef5338 [Cheng Lian] Updates fixed decimal column type related test cases e08ab5b [Cheng Lian] Only resorts to FIXED_DECIMAL when the value can be held in a long 4db713d [Cheng Lian] Adds in-memory column type for fixed-precision decimals --- .../spark/sql/columnar/ColumnAccessor.scala | 43 +++++++++------ .../spark/sql/columnar/ColumnBuilder.scala | 39 +++++++------ .../spark/sql/columnar/ColumnStats.scala | 17 ++++++ .../spark/sql/columnar/ColumnType.scala | 55 ++++++++++++++----- .../columnar/InMemoryColumnarTableScan.scala | 8 ++- .../spark/sql/columnar/ColumnStatsSuite.scala | 1 + .../spark/sql/columnar/ColumnTypeSuite.scala | 46 ++++++++++++---- .../sql/columnar/ColumnarTestUtils.scala | 23 ++++---- .../columnar/InMemoryColumnarQuerySuite.scala | 17 +++++- .../NullableColumnAccessorSuite.scala | 3 +- .../columnar/NullableColumnBuilderSuite.scala | 3 +- 11 files changed, 179 insertions(+), 76 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnAccessor.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnAccessor.scala index 91c4c105b14e6..b615eaa0dca0d 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnAccessor.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnAccessor.scala @@ -21,7 +21,7 @@ import java.nio.{ByteBuffer, ByteOrder} import org.apache.spark.sql.catalyst.expressions.MutableRow import org.apache.spark.sql.columnar.compression.CompressibleColumnAccessor -import org.apache.spark.sql.types.{BinaryType, DataType, NativeType} +import org.apache.spark.sql.types._ /** * An `Iterator` like trait used to extract values from columnar byte buffer. When a value is @@ -89,6 +89,9 @@ private[sql] class DoubleColumnAccessor(buffer: ByteBuffer) private[sql] class FloatColumnAccessor(buffer: ByteBuffer) extends NativeColumnAccessor(buffer, FLOAT) +private[sql] class FixedDecimalColumnAccessor(buffer: ByteBuffer, precision: Int, scale: Int) + extends NativeColumnAccessor(buffer, FIXED_DECIMAL(precision, scale)) + private[sql] class StringColumnAccessor(buffer: ByteBuffer) extends NativeColumnAccessor(buffer, STRING) @@ -107,24 +110,28 @@ private[sql] class GenericColumnAccessor(buffer: ByteBuffer) with NullableColumnAccessor private[sql] object ColumnAccessor { - def apply(buffer: ByteBuffer): ColumnAccessor = { + def apply(dataType: DataType, buffer: ByteBuffer): ColumnAccessor = { val dup = buffer.duplicate().order(ByteOrder.nativeOrder) - // The first 4 bytes in the buffer indicate the column type. - val columnTypeId = dup.getInt() - - columnTypeId match { - case INT.typeId => new IntColumnAccessor(dup) - case LONG.typeId => new LongColumnAccessor(dup) - case FLOAT.typeId => new FloatColumnAccessor(dup) - case DOUBLE.typeId => new DoubleColumnAccessor(dup) - case BOOLEAN.typeId => new BooleanColumnAccessor(dup) - case BYTE.typeId => new ByteColumnAccessor(dup) - case SHORT.typeId => new ShortColumnAccessor(dup) - case STRING.typeId => new StringColumnAccessor(dup) - case DATE.typeId => new DateColumnAccessor(dup) - case TIMESTAMP.typeId => new TimestampColumnAccessor(dup) - case BINARY.typeId => new BinaryColumnAccessor(dup) - case GENERIC.typeId => new GenericColumnAccessor(dup) + + // The first 4 bytes in the buffer indicate the column type. This field is not used now, + // because we always know the data type of the column ahead of time. + dup.getInt() + + dataType match { + case IntegerType => new IntColumnAccessor(dup) + case LongType => new LongColumnAccessor(dup) + case FloatType => new FloatColumnAccessor(dup) + case DoubleType => new DoubleColumnAccessor(dup) + case BooleanType => new BooleanColumnAccessor(dup) + case ByteType => new ByteColumnAccessor(dup) + case ShortType => new ShortColumnAccessor(dup) + case StringType => new StringColumnAccessor(dup) + case BinaryType => new BinaryColumnAccessor(dup) + case DateType => new DateColumnAccessor(dup) + case TimestampType => new TimestampColumnAccessor(dup) + case DecimalType.Fixed(precision, scale) if precision < 19 => + new FixedDecimalColumnAccessor(dup, precision, scale) + case _ => new GenericColumnAccessor(dup) } } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnBuilder.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnBuilder.scala index 3a4977b836af7..d8d24a577347c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnBuilder.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnBuilder.scala @@ -106,6 +106,13 @@ private[sql] class DoubleColumnBuilder extends NativeColumnBuilder(new DoubleCol private[sql] class FloatColumnBuilder extends NativeColumnBuilder(new FloatColumnStats, FLOAT) +private[sql] class FixedDecimalColumnBuilder( + precision: Int, + scale: Int) + extends NativeColumnBuilder( + new FixedDecimalColumnStats, + FIXED_DECIMAL(precision, scale)) + private[sql] class StringColumnBuilder extends NativeColumnBuilder(new StringColumnStats, STRING) private[sql] class DateColumnBuilder extends NativeColumnBuilder(new DateColumnStats, DATE) @@ -139,25 +146,25 @@ private[sql] object ColumnBuilder { } def apply( - typeId: Int, + dataType: DataType, initialSize: Int = 0, columnName: String = "", useCompression: Boolean = false): ColumnBuilder = { - - val builder = (typeId match { - case INT.typeId => new IntColumnBuilder - case LONG.typeId => new LongColumnBuilder - case FLOAT.typeId => new FloatColumnBuilder - case DOUBLE.typeId => new DoubleColumnBuilder - case BOOLEAN.typeId => new BooleanColumnBuilder - case BYTE.typeId => new ByteColumnBuilder - case SHORT.typeId => new ShortColumnBuilder - case STRING.typeId => new StringColumnBuilder - case BINARY.typeId => new BinaryColumnBuilder - case GENERIC.typeId => new GenericColumnBuilder - case DATE.typeId => new DateColumnBuilder - case TIMESTAMP.typeId => new TimestampColumnBuilder - }).asInstanceOf[ColumnBuilder] + val builder: ColumnBuilder = dataType match { + case IntegerType => new IntColumnBuilder + case LongType => new LongColumnBuilder + case DoubleType => new DoubleColumnBuilder + case BooleanType => new BooleanColumnBuilder + case ByteType => new ByteColumnBuilder + case ShortType => new ShortColumnBuilder + case StringType => new StringColumnBuilder + case BinaryType => new BinaryColumnBuilder + case DateType => new DateColumnBuilder + case TimestampType => new TimestampColumnBuilder + case DecimalType.Fixed(precision, scale) if precision < 19 => + new FixedDecimalColumnBuilder(precision, scale) + case _ => new GenericColumnBuilder + } builder.initialize(initialSize, columnName, useCompression) builder diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala index cad0667b46435..04047b9c062be 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala @@ -181,6 +181,23 @@ private[sql] class FloatColumnStats extends ColumnStats { def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) } +private[sql] class FixedDecimalColumnStats extends ColumnStats { + protected var upper: Decimal = null + protected var lower: Decimal = null + + override def gatherStats(row: Row, ordinal: Int): Unit = { + super.gatherStats(row, ordinal) + if (!row.isNullAt(ordinal)) { + val value = row(ordinal).asInstanceOf[Decimal] + if (upper == null || value.compareTo(upper) > 0) upper = value + if (lower == null || value.compareTo(lower) < 0) lower = value + sizeInBytes += FIXED_DECIMAL.defaultSize + } + } + + override def collectedStatistics: Row = Row(lower, upper, nullCount, count, sizeInBytes) +} + private[sql] class IntColumnStats extends ColumnStats { protected var upper = Int.MinValue protected var lower = Int.MaxValue diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala index db5bc0de363c7..36ea1c77e0470 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala @@ -373,6 +373,33 @@ private[sql] object TIMESTAMP extends NativeColumnType(TimestampType, 9, 12) { } } +private[sql] case class FIXED_DECIMAL(precision: Int, scale: Int) + extends NativeColumnType( + DecimalType(Some(PrecisionInfo(precision, scale))), + 10, + FIXED_DECIMAL.defaultSize) { + + override def extract(buffer: ByteBuffer): Decimal = { + Decimal(buffer.getLong(), precision, scale) + } + + override def append(v: Decimal, buffer: ByteBuffer): Unit = { + buffer.putLong(v.toUnscaledLong) + } + + override def getField(row: Row, ordinal: Int): Decimal = { + row(ordinal).asInstanceOf[Decimal] + } + + override def setField(row: MutableRow, ordinal: Int, value: Decimal): Unit = { + row(ordinal) = value + } +} + +private[sql] object FIXED_DECIMAL { + val defaultSize = 8 +} + private[sql] sealed abstract class ByteArrayColumnType[T <: DataType]( typeId: Int, defaultSize: Int) @@ -394,7 +421,7 @@ private[sql] sealed abstract class ByteArrayColumnType[T <: DataType]( } } -private[sql] object BINARY extends ByteArrayColumnType[BinaryType.type](10, 16) { +private[sql] object BINARY extends ByteArrayColumnType[BinaryType.type](11, 16) { override def setField(row: MutableRow, ordinal: Int, value: Array[Byte]): Unit = { row(ordinal) = value } @@ -405,7 +432,7 @@ private[sql] object BINARY extends ByteArrayColumnType[BinaryType.type](10, 16) // Used to process generic objects (all types other than those listed above). Objects should be // serialized first before appending to the column `ByteBuffer`, and is also extracted as serialized // byte array. -private[sql] object GENERIC extends ByteArrayColumnType[DataType](11, 16) { +private[sql] object GENERIC extends ByteArrayColumnType[DataType](12, 16) { override def setField(row: MutableRow, ordinal: Int, value: Array[Byte]): Unit = { row(ordinal) = SparkSqlSerializer.deserialize[Any](value) } @@ -416,18 +443,20 @@ private[sql] object GENERIC extends ByteArrayColumnType[DataType](11, 16) { private[sql] object ColumnType { def apply(dataType: DataType): ColumnType[_, _] = { dataType match { - case IntegerType => INT - case LongType => LONG - case FloatType => FLOAT - case DoubleType => DOUBLE - case BooleanType => BOOLEAN - case ByteType => BYTE - case ShortType => SHORT - case StringType => STRING - case BinaryType => BINARY - case DateType => DATE + case IntegerType => INT + case LongType => LONG + case FloatType => FLOAT + case DoubleType => DOUBLE + case BooleanType => BOOLEAN + case ByteType => BYTE + case ShortType => SHORT + case StringType => STRING + case BinaryType => BINARY + case DateType => DATE case TimestampType => TIMESTAMP - case _ => GENERIC + case DecimalType.Fixed(precision, scale) if precision < 19 => + FIXED_DECIMAL(precision, scale) + case _ => GENERIC } } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/InMemoryColumnarTableScan.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/InMemoryColumnarTableScan.scala index 8944a32bc3887..387faee12b3cd 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/InMemoryColumnarTableScan.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/InMemoryColumnarTableScan.scala @@ -113,7 +113,7 @@ private[sql] case class InMemoryRelation( val columnBuilders = output.map { attribute => val columnType = ColumnType(attribute.dataType) val initialBufferSize = columnType.defaultSize * batchSize - ColumnBuilder(columnType.typeId, initialBufferSize, attribute.name, useCompression) + ColumnBuilder(attribute.dataType, initialBufferSize, attribute.name, useCompression) }.toArray var rowCount = 0 @@ -274,8 +274,10 @@ private[sql] case class InMemoryColumnarTableScan( def cachedBatchesToRows(cacheBatches: Iterator[CachedBatch]) = { val rows = cacheBatches.flatMap { cachedBatch => // Build column accessors - val columnAccessors = requestedColumnIndices.map { batch => - ColumnAccessor(ByteBuffer.wrap(cachedBatch.buffers(batch))) + val columnAccessors = requestedColumnIndices.map { batchColumnIndex => + ColumnAccessor( + relation.output(batchColumnIndex).dataType, + ByteBuffer.wrap(cachedBatch.buffers(batchColumnIndex))) } // Extract rows via column accessors diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala index 581fccf8ee613..fec487f1d2c82 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala @@ -29,6 +29,7 @@ class ColumnStatsSuite extends FunSuite { testColumnStats(classOf[LongColumnStats], LONG, Row(Long.MaxValue, Long.MinValue, 0)) testColumnStats(classOf[FloatColumnStats], FLOAT, Row(Float.MaxValue, Float.MinValue, 0)) testColumnStats(classOf[DoubleColumnStats], DOUBLE, Row(Double.MaxValue, Double.MinValue, 0)) + testColumnStats(classOf[FixedDecimalColumnStats], FIXED_DECIMAL(15, 10), Row(null, null, 0)) testColumnStats(classOf[StringColumnStats], STRING, Row(null, null, 0)) testColumnStats(classOf[DateColumnStats], DATE, Row(Int.MaxValue, Int.MinValue, 0)) testColumnStats(classOf[TimestampColumnStats], TIMESTAMP, Row(null, null, 0)) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala index 9ce845912f1c7..5f08834f73c6b 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala @@ -33,8 +33,9 @@ class ColumnTypeSuite extends FunSuite with Logging { test("defaultSize") { val checks = Map( - INT -> 4, SHORT -> 2, LONG -> 8, BYTE -> 1, DOUBLE -> 8, FLOAT -> 4, BOOLEAN -> 1, - STRING -> 8, DATE -> 4, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) + INT -> 4, SHORT -> 2, LONG -> 8, BYTE -> 1, DOUBLE -> 8, FLOAT -> 4, + FIXED_DECIMAL(15, 10) -> 8, BOOLEAN -> 1, STRING -> 8, DATE -> 4, TIMESTAMP -> 12, + BINARY -> 16, GENERIC -> 16) checks.foreach { case (columnType, expectedSize) => assertResult(expectedSize, s"Wrong defaultSize for $columnType") { @@ -56,15 +57,16 @@ class ColumnTypeSuite extends FunSuite with Logging { } } - checkActualSize(INT, Int.MaxValue, 4) - checkActualSize(SHORT, Short.MaxValue, 2) - checkActualSize(LONG, Long.MaxValue, 8) - checkActualSize(BYTE, Byte.MaxValue, 1) - checkActualSize(DOUBLE, Double.MaxValue, 8) - checkActualSize(FLOAT, Float.MaxValue, 4) - checkActualSize(BOOLEAN, true, 1) - checkActualSize(STRING, "hello", 4 + "hello".getBytes("utf-8").length) - checkActualSize(DATE, 0, 4) + checkActualSize(INT, Int.MaxValue, 4) + checkActualSize(SHORT, Short.MaxValue, 2) + checkActualSize(LONG, Long.MaxValue, 8) + checkActualSize(BYTE, Byte.MaxValue, 1) + checkActualSize(DOUBLE, Double.MaxValue, 8) + checkActualSize(FLOAT, Float.MaxValue, 4) + checkActualSize(FIXED_DECIMAL(15, 10), Decimal(0, 15, 10), 8) + checkActualSize(BOOLEAN, true, 1) + checkActualSize(STRING, "hello", 4 + "hello".getBytes("utf-8").length) + checkActualSize(DATE, 0, 4) checkActualSize(TIMESTAMP, new Timestamp(0L), 12) val binary = Array.fill[Byte](4)(0: Byte) @@ -93,12 +95,20 @@ class ColumnTypeSuite extends FunSuite with Logging { testNativeColumnType[DoubleType.type](DOUBLE, _.putDouble(_), _.getDouble) + testNativeColumnType[DecimalType]( + FIXED_DECIMAL(15, 10), + (buffer: ByteBuffer, decimal: Decimal) => { + buffer.putLong(decimal.toUnscaledLong) + }, + (buffer: ByteBuffer) => { + Decimal(buffer.getLong(), 15, 10) + }) + testNativeColumnType[FloatType.type](FLOAT, _.putFloat(_), _.getFloat) testNativeColumnType[StringType.type]( STRING, (buffer: ByteBuffer, string: String) => { - val bytes = string.getBytes("utf-8") buffer.putInt(bytes.length) buffer.put(bytes) @@ -206,4 +216,16 @@ class ColumnTypeSuite extends FunSuite with Logging { if (sb.nonEmpty) sb.setLength(sb.length - 1) sb.toString() } + + test("column type for decimal types with different precision") { + (1 to 18).foreach { i => + assertResult(FIXED_DECIMAL(i, 0)) { + ColumnType(DecimalType(i, 0)) + } + } + + assertResult(GENERIC) { + ColumnType(DecimalType(19, 0)) + } + } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala index 60ed28cc97bf1..c7a40845db16c 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala @@ -24,7 +24,7 @@ import scala.util.Random import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.GenericMutableRow -import org.apache.spark.sql.types.{DataType, NativeType} +import org.apache.spark.sql.types.{Decimal, DataType, NativeType} object ColumnarTestUtils { def makeNullRow(length: Int) = { @@ -41,16 +41,17 @@ object ColumnarTestUtils { } (columnType match { - case BYTE => (Random.nextInt(Byte.MaxValue * 2) - Byte.MaxValue).toByte - case SHORT => (Random.nextInt(Short.MaxValue * 2) - Short.MaxValue).toShort - case INT => Random.nextInt() - case LONG => Random.nextLong() - case FLOAT => Random.nextFloat() - case DOUBLE => Random.nextDouble() - case STRING => Random.nextString(Random.nextInt(32)) - case BOOLEAN => Random.nextBoolean() - case BINARY => randomBytes(Random.nextInt(32)) - case DATE => Random.nextInt() + case BYTE => (Random.nextInt(Byte.MaxValue * 2) - Byte.MaxValue).toByte + case SHORT => (Random.nextInt(Short.MaxValue * 2) - Short.MaxValue).toShort + case INT => Random.nextInt() + case LONG => Random.nextLong() + case FLOAT => Random.nextFloat() + case DOUBLE => Random.nextDouble() + case FIXED_DECIMAL(precision, scale) => Decimal(Random.nextLong() % 100, precision, scale) + case STRING => Random.nextString(Random.nextInt(32)) + case BOOLEAN => Random.nextBoolean() + case BINARY => randomBytes(Random.nextInt(32)) + case DATE => Random.nextInt() case TIMESTAMP => val timestamp = new Timestamp(Random.nextLong()) timestamp.setNanos(Random.nextInt(999999999)) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/InMemoryColumnarQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/InMemoryColumnarQuerySuite.scala index 38b0f666ab90b..27dfabca90217 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/InMemoryColumnarQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/InMemoryColumnarQuerySuite.scala @@ -17,11 +17,11 @@ package org.apache.spark.sql.columnar -import org.apache.spark.sql.functions._ import org.apache.spark.sql.TestData._ import org.apache.spark.sql.catalyst.expressions.Row import org.apache.spark.sql.test.TestSQLContext._ import org.apache.spark.sql.test.TestSQLContext.implicits._ +import org.apache.spark.sql.types.{DecimalType, Decimal} import org.apache.spark.sql.{QueryTest, TestData} import org.apache.spark.storage.StorageLevel.MEMORY_ONLY @@ -117,4 +117,19 @@ class InMemoryColumnarQuerySuite extends QueryTest { complexData.count() complexData.unpersist() } + + test("decimal type") { + // Casting is required here because ScalaReflection can't capture decimal precision information. + val df = (1 to 10) + .map(i => Tuple1(Decimal(i, 15, 10))) + .toDF("dec") + .select($"dec" cast DecimalType(15, 10)) + + assert(df.schema.head.dataType === DecimalType(15, 10)) + + df.cache().registerTempTable("test_fixed_decimal") + checkAnswer( + sql("SELECT * FROM test_fixed_decimal"), + (1 to 10).map(i => Row(Decimal(i, 15, 10).toJavaBigDecimal))) + } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/NullableColumnAccessorSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/NullableColumnAccessorSuite.scala index f95c895587f3f..bb305355276bf 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/NullableColumnAccessorSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/NullableColumnAccessorSuite.scala @@ -42,7 +42,8 @@ class NullableColumnAccessorSuite extends FunSuite { import ColumnarTestUtils._ Seq( - INT, LONG, SHORT, BOOLEAN, BYTE, STRING, DOUBLE, FLOAT, BINARY, GENERIC, DATE, TIMESTAMP + INT, LONG, SHORT, BOOLEAN, BYTE, STRING, DOUBLE, FLOAT, FIXED_DECIMAL(15, 10), BINARY, GENERIC, + DATE, TIMESTAMP ).foreach { testNullableColumnAccessor(_) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/NullableColumnBuilderSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/NullableColumnBuilderSuite.scala index 80bd5c94570cb..75a47498683f4 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/NullableColumnBuilderSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/NullableColumnBuilderSuite.scala @@ -38,7 +38,8 @@ class NullableColumnBuilderSuite extends FunSuite { import ColumnarTestUtils._ Seq( - INT, LONG, SHORT, BOOLEAN, BYTE, STRING, DOUBLE, FLOAT, BINARY, GENERIC, DATE, TIMESTAMP + INT, LONG, SHORT, BOOLEAN, BYTE, STRING, DOUBLE, FLOAT, FIXED_DECIMAL(15, 10), BINARY, GENERIC, + DATE, TIMESTAMP ).foreach { testNullableColumnBuilder(_) } From 127268bc3999201ec1c0a040a29c7fa9ac25476b Mon Sep 17 00:00:00 2001 From: Brennon York Date: Sat, 14 Mar 2015 17:28:13 +0000 Subject: [PATCH 38/43] [SPARK-6329][Docs]: Minor doc changes for Mesos and TOC Updated the configuration docs from the minor items that Reynold had left over from SPARK-1182; specifically I updated the `running-on-mesos` link to point directly to `running-on-mesos#configuration` and upgraded the `yarn`, `mesos`, etc. bullets to `
` tags in hopes that they'll get pushed into the TOC. Author: Brennon York Closes #5022 from brennonyork/SPARK-6329 and squashes the following commits: 42a10a9 [Brennon York] minor doc fixes --- docs/configuration.md | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/docs/configuration.md b/docs/configuration.md index a7116fbece9bb..63fc99e7d3e29 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -1391,9 +1391,11 @@ Apart from these, the following properties are also available, and may be useful Each cluster manager in Spark has additional configuration options. Configurations can be found on the pages for each mode: - * [YARN](running-on-yarn.html#configuration) - * [Mesos](running-on-mesos.html) - * [Standalone Mode](spark-standalone.html#cluster-launch-scripts) +##### [YARN](running-on-yarn.html#configuration) + +##### [Mesos](running-on-mesos.html#configuration) + +##### [Standalone Mode](spark-standalone.html#cluster-launch-scripts) # Environment Variables From c49d156624624a719c0d1262a58933ea3e346963 Mon Sep 17 00:00:00 2001 From: Brennon York Date: Sat, 14 Mar 2015 17:38:12 +0000 Subject: [PATCH 39/43] [SPARK-5790][GraphX]: VertexRDD's won't zip properly for `diff` capability (added tests) Added tests that maropu [created](https://github.com/maropu/spark/blob/1f64794b2ce33e64f340e383d4e8a60639a7eb4b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala) for vertices with differing partition counts. Wanted to make sure his work got captured /merged as its not in the master branch and I don't believe there's a PR out already for it. Author: Brennon York Closes #5023 from brennonyork/SPARK-5790 and squashes the following commits: 83bbd29 [Brennon York] added maropu's tests for vertices with differing partition counts --- .../apache/spark/graphx/VertexRDDSuite.scala | 38 ++++++++++++++++++- 1 file changed, 37 insertions(+), 1 deletion(-) diff --git a/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala index 131959cea3ef7..97533dd3aa6ce 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala @@ -19,7 +19,7 @@ package org.apache.spark.graphx import org.scalatest.FunSuite -import org.apache.spark.SparkContext +import org.apache.spark.{HashPartitioner, SparkContext} import org.apache.spark.storage.StorageLevel class VertexRDDSuite extends FunSuite with LocalSparkContext { @@ -58,6 +58,16 @@ class VertexRDDSuite extends FunSuite with LocalSparkContext { } } + test("diff vertices with the non-equal number of partitions") { + withSpark { sc => + val vertexA = VertexRDD(sc.parallelize(0 until 24, 3).map(i => (i.toLong, 0))) + val vertexB = VertexRDD(sc.parallelize(8 until 16, 2).map(i => (i.toLong, 1))) + assert(vertexA.partitions.size != vertexB.partitions.size) + val vertexC = vertexA.diff(vertexB) + assert(vertexC.map(_._1).collect.toSet === (8 until 16).toSet) + } + } + test("leftJoin") { withSpark { sc => val n = 100 @@ -73,6 +83,19 @@ class VertexRDDSuite extends FunSuite with LocalSparkContext { } } + test("leftJoin vertices with the non-equal number of partitions") { + withSpark { sc => + val vertexA = VertexRDD(sc.parallelize(0 until 100, 2).map(i => (i.toLong, 1))) + val vertexB = VertexRDD( + vertexA.filter(v => v._1 % 2 == 0).partitionBy(new HashPartitioner(3))) + assert(vertexA.partitions.size != vertexB.partitions.size) + val vertexC = vertexA.leftJoin(vertexB) { (vid, old, newOpt) => + old - newOpt.getOrElse(0) + } + assert(vertexC.filter(v => v._2 != 0).map(_._1).collect.toSet == (1 to 99 by 2).toSet) + } + } + test("innerJoin") { withSpark { sc => val n = 100 @@ -87,6 +110,19 @@ class VertexRDDSuite extends FunSuite with LocalSparkContext { (0 to n by 2).map(x => (x.toLong, 0)).toSet) } } + test("innerJoin vertices with the non-equal number of partitions") { + withSpark { sc => + val vertexA = VertexRDD(sc.parallelize(0 until 100, 2).map(i => (i.toLong, 1))) + val vertexB = VertexRDD( + vertexA.filter(v => v._1 % 2 == 0).partitionBy(new HashPartitioner(3))) + assert(vertexA.partitions.size != vertexB.partitions.size) + val vertexC = vertexA.innerJoin(vertexB) { (vid, old, newVal) => + old - newVal + } + assert(vertexC.filter(v => v._2 == 0).map(_._1).collect.toSet == (0 to 98 by 2).toSet) + } + } + test("aggregateUsingIndex") { withSpark { sc => val n = 100 From 62ede5383f64b69570a66d46939638f4bf38d1b1 Mon Sep 17 00:00:00 2001 From: OopsOutOfMemory Date: Sun, 15 Mar 2015 20:44:45 +0800 Subject: [PATCH 40/43] [SPARK-6285][SQL]Remove ParquetTestData in SparkBuild.scala and in README.md This is a following clean up PR for #5010 This will resolve issues when launching `hive/console` like below: ``` :20: error: object ParquetTestData is not a member of package org.apache.spark.sql.parquet import org.apache.spark.sql.parquet.ParquetTestData ``` Author: OopsOutOfMemory Closes #5032 from OopsOutOfMemory/SPARK-6285 and squashes the following commits: 2996aeb [OopsOutOfMemory] remove ParquetTestData --- project/SparkBuild.scala | 6 ++---- sql/README.md | 1 - 2 files changed, 2 insertions(+), 5 deletions(-) diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index f4c74c4051014..ac37c605de4b6 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -272,8 +272,7 @@ object SQL { |import org.apache.spark.sql.execution |import org.apache.spark.sql.functions._ |import org.apache.spark.sql.test.TestSQLContext._ - |import org.apache.spark.sql.types._ - |import org.apache.spark.sql.parquet.ParquetTestData""".stripMargin, + |import org.apache.spark.sql.types._""".stripMargin, cleanupCommands in console := "sparkContext.stop()" ) } @@ -304,8 +303,7 @@ object Hive { |import org.apache.spark.sql.functions._ |import org.apache.spark.sql.hive._ |import org.apache.spark.sql.hive.test.TestHive._ - |import org.apache.spark.sql.types._ - |import org.apache.spark.sql.parquet.ParquetTestData""".stripMargin, + |import org.apache.spark.sql.types._""".stripMargin, cleanupCommands in console := "sparkContext.stop()", // Some of our log4j jars make it impossible to submit jobs from this JVM to Hive Map/Reduce // in order to generate golden files. This is only required for developers who are adding new diff --git a/sql/README.md b/sql/README.md index 48f83340e37b3..fbb3200a3a4b4 100644 --- a/sql/README.md +++ b/sql/README.md @@ -41,7 +41,6 @@ import org.apache.spark.sql.functions._ import org.apache.spark.sql.hive._ import org.apache.spark.sql.hive.test.TestHive._ import org.apache.spark.sql.types._ -import org.apache.spark.sql.parquet.ParquetTestData Type in expressions to have them evaluated. Type :help for more information. From aa6536fa3c2ed1cac47abc79fc22e273f0814858 Mon Sep 17 00:00:00 2001 From: Jongyoul Lee Date: Sun, 15 Mar 2015 15:46:55 +0000 Subject: [PATCH 41/43] [SPARK-3619] Part 2. Upgrade to Mesos 0.21 to work around MESOS-1688 - MESOS_NATIVE_LIBRARY become deprecated - Chagned MESOS_NATIVE_LIBRARY to MESOS_NATIVE_JAVA_LIBRARY Author: Jongyoul Lee Closes #4361 from jongyoul/SPARK-3619-1 and squashes the following commits: f1ea91f [Jongyoul Lee] Merge branch 'SPARK-3619-1' of https://github.com/jongyoul/spark into SPARK-3619-1 a6a00c2 [Jongyoul Lee] [SPARK-3619] Upgrade to Mesos 0.21 to work around MESOS-1688 - Removed 'Known issues' section 2e15a21 [Jongyoul Lee] [SPARK-3619] Upgrade to Mesos 0.21 to work around MESOS-1688 - MESOS_NATIVE_LIBRARY become deprecated - Chagned MESOS_NATIVE_LIBRARY to MESOS_NATIVE_JAVA_LIBRARY 0dace7b [Jongyoul Lee] [SPARK-3619] Upgrade to Mesos 0.21 to work around MESOS-1688 - MESOS_NATIVE_LIBRARY become deprecated - Chagned MESOS_NATIVE_LIBRARY to MESOS_NATIVE_JAVA_LIBRARY --- conf/spark-env.sh.template | 2 +- docs/running-on-mesos.md | 5 +---- .../src/test/scala/org/apache/spark/repl/ReplSuite.scala | 2 +- .../src/test/scala/org/apache/spark/repl/ReplSuite.scala | 2 +- 4 files changed, 4 insertions(+), 7 deletions(-) diff --git a/conf/spark-env.sh.template b/conf/spark-env.sh.template index 0886b0276fb90..67f81d33361e1 100755 --- a/conf/spark-env.sh.template +++ b/conf/spark-env.sh.template @@ -15,7 +15,7 @@ # - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program # - SPARK_CLASSPATH, default classpath entries to append # - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data -# - MESOS_NATIVE_LIBRARY, to point to your libmesos.so if you use Mesos +# - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos # Options read in YARN client mode # - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files diff --git a/docs/running-on-mesos.md b/docs/running-on-mesos.md index e509e4bf37396..59a3e9d25baf1 100644 --- a/docs/running-on-mesos.md +++ b/docs/running-on-mesos.md @@ -110,7 +110,7 @@ cluster, or `mesos://zk://host:2181` for a multi-master Mesos cluster using ZooK The driver also needs some configuration in `spark-env.sh` to interact properly with Mesos: 1. In `spark-env.sh` set some environment variables: - * `export MESOS_NATIVE_LIBRARY=`. This path is typically + * `export MESOS_NATIVE_JAVA_LIBRARY=`. This path is typically `/lib/libmesos.so` where the prefix is `/usr/local` by default. See Mesos installation instructions above. On Mac OS X, the library is called `libmesos.dylib` instead of `libmesos.so`. @@ -167,9 +167,6 @@ acquire. By default, it will acquire *all* cores in the cluster (that get offere only makes sense if you run just one application at a time. You can cap the maximum number of cores using `conf.set("spark.cores.max", "10")` (for example). -# Known issues -- When using the "fine-grained" mode, make sure that your executors always leave 32 MB free on the slaves. Otherwise it can happen that your Spark job does not proceed anymore. Currently, Apache Mesos only offers resources if there are at least 32 MB memory allocatable. But as Spark allocates memory only for the executor and cpu only for tasks, it can happen on high slave memory usage that no new tasks will be started anymore. More details can be found in [MESOS-1688](https://issues.apache.org/jira/browse/MESOS-1688). Alternatively use the "coarse-gained" mode, which is not affected by this issue. - # Running Alongside Hadoop You can run Spark and Mesos alongside your existing Hadoop cluster by just launching them as a diff --git a/repl/scala-2.10/src/test/scala/org/apache/spark/repl/ReplSuite.scala b/repl/scala-2.10/src/test/scala/org/apache/spark/repl/ReplSuite.scala index 529914a2b6141..249f438459300 100644 --- a/repl/scala-2.10/src/test/scala/org/apache/spark/repl/ReplSuite.scala +++ b/repl/scala-2.10/src/test/scala/org/apache/spark/repl/ReplSuite.scala @@ -281,7 +281,7 @@ class ReplSuite extends FunSuite { assertDoesNotContain("Exception", output) } - if (System.getenv("MESOS_NATIVE_LIBRARY") != null) { + if (System.getenv("MESOS_NATIVE_JAVA_LIBRARY") != null) { test("running on Mesos") { val output = runInterpreter("localquiet", """ diff --git a/repl/scala-2.11/src/test/scala/org/apache/spark/repl/ReplSuite.scala b/repl/scala-2.11/src/test/scala/org/apache/spark/repl/ReplSuite.scala index ed9b207a86a0b..b3bd135548124 100644 --- a/repl/scala-2.11/src/test/scala/org/apache/spark/repl/ReplSuite.scala +++ b/repl/scala-2.11/src/test/scala/org/apache/spark/repl/ReplSuite.scala @@ -289,7 +289,7 @@ class ReplSuite extends FunSuite { assertDoesNotContain("Exception", output) } - if (System.getenv("MESOS_NATIVE_LIBRARY") != null) { + if (System.getenv("MESOS_NATIVE_JAVA_LIBRARY") != null) { test("running on Mesos") { val output = runInterpreter("localquiet", """ From 45f4c66122c57011e74c694a424756812ab77d99 Mon Sep 17 00:00:00 2001 From: Brennon York Date: Mon, 16 Mar 2015 01:06:26 -0700 Subject: [PATCH 42/43] [SPARK-5922][GraphX]: Add diff(other: RDD[VertexId, VD]) in VertexRDD Changed method invocation of 'diff' to match that of 'innerJoin' and 'leftJoin' from VertexRDD[VD] to RDD[(VertexId, VD)]. This change maintains backwards compatibility and better unifies the VertexRDD methods to match each other. Author: Brennon York Closes #4733 from brennonyork/SPARK-5922 and squashes the following commits: e800f08 [Brennon York] fixed merge conflicts b9274af [Brennon York] fixed merge conflicts f86375c [Brennon York] fixed minor include line 398ddb4 [Brennon York] fixed merge conflicts aac1810 [Brennon York] updated to aggregateUsingIndex and added test to ensure that method works properly 2af0b88 [Brennon York] removed deprecation line 753c963 [Brennon York] fixed merge conflicts and set preference to use the diff(other: VertexRDD[VD]) method 2c678c6 [Brennon York] added mima exclude to exclude new public diff method from VertexRDD 93186f3 [Brennon York] added back the original diff method to sustain binary compatibility f18356e [Brennon York] changed method invocation of 'diff' to match that of 'innerJoin' and 'leftJoin' from VertexRDD[VD] to RDD[(VertexId, VD)] --- .../scala/org/apache/spark/graphx/VertexRDD.scala | 9 +++++++++ .../apache/spark/graphx/impl/VertexRDDImpl.scala | 4 ++++ .../org/apache/spark/graphx/VertexRDDSuite.scala | 13 +++++++++++++ project/MimaExcludes.scala | 3 +++ 4 files changed, 29 insertions(+) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala b/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala index 40ecff7107109..ad4bfe077293a 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/VertexRDD.scala @@ -121,6 +121,15 @@ abstract class VertexRDD[VD]( */ def mapValues[VD2: ClassTag](f: (VertexId, VD) => VD2): VertexRDD[VD2] + /** + * For each vertex present in both `this` and `other`, `diff` returns only those vertices with + * differing values; for values that are different, keeps the values from `other`. This is + * only guaranteed to work if the VertexRDDs share a common ancestor. + * + * @param other the other RDD[(VertexId, VD)] with which to diff against. + */ + def diff(other: RDD[(VertexId, VD)]): VertexRDD[VD] + /** * For each vertex present in both `this` and `other`, `diff` returns only those vertices with * differing values; for values that are different, keeps the values from `other`. This is diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala index 904be213147dc..125692ddaad83 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala @@ -103,6 +103,10 @@ class VertexRDDImpl[VD] private[graphx] ( override def mapValues[VD2: ClassTag](f: (VertexId, VD) => VD2): VertexRDD[VD2] = this.mapVertexPartitions(_.map(f)) + override def diff(other: RDD[(VertexId, VD)]): VertexRDD[VD] = { + diff(this.aggregateUsingIndex(other, (a: VD, b: VD) => a)) + } + override def diff(other: VertexRDD[VD]): VertexRDD[VD] = { val otherPartition = other match { case other: VertexRDD[_] if this.partitioner == other.partitioner => diff --git a/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala index 97533dd3aa6ce..4f7a442ab503d 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala @@ -20,6 +20,7 @@ package org.apache.spark.graphx import org.scalatest.FunSuite import org.apache.spark.{HashPartitioner, SparkContext} +import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel class VertexRDDSuite extends FunSuite with LocalSparkContext { @@ -58,6 +59,18 @@ class VertexRDDSuite extends FunSuite with LocalSparkContext { } } + test("diff with RDD[(VertexId, VD)]") { + withSpark { sc => + val n = 100 + val verts = vertices(sc, n).cache() + val flipEvens: RDD[(VertexId, Int)] = + sc.parallelize(0L to 100L) + .map(id => if (id % 2 == 0) (id, -id.toInt) else (id, id.toInt)).cache() + // diff should keep only the changed vertices + assert(verts.diff(flipEvens).map(_._2).collect().toSet === (2 to n by 2).map(-_).toSet) + } + } + test("diff vertices with the non-equal number of partitions") { withSpark { sc => val vertexA = VertexRDD(sc.parallelize(0 until 24, 3).map(i => (i.toLong, 0))) diff --git a/project/MimaExcludes.scala b/project/MimaExcludes.scala index 627b2cea4d020..a6b07fa7cddec 100644 --- a/project/MimaExcludes.scala +++ b/project/MimaExcludes.scala @@ -181,6 +181,9 @@ object MimaExcludes { ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.RealClock"), ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.Clock"), ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.TestClock") + ) ++ Seq( + // SPARK-5922 Adding a generalized diff(other: RDD[(VertexId, VD)]) to VertexRDD + ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.graphx.VertexRDD.diff") ) case v if v.startsWith("1.2") => From 00e730b94cba1202a73af1e2476ff5a44af4b6b2 Mon Sep 17 00:00:00 2001 From: DoingDone9 <799203320@qq.com> Date: Mon, 16 Mar 2015 12:27:15 +0000 Subject: [PATCH 43/43] [SPARK-6300][Spark Core] sc.addFile(path) does not support the relative path. when i run cmd like that sc.addFile("../test.txt"), it did not work and throwed an exception: java.lang.IllegalArgumentException: java.net.URISyntaxException: Relative path in absolute URI: file:../test.txt at org.apache.hadoop.fs.Path.initialize(Path.java:206) at org.apache.hadoop.fs.Path.(Path.java:172) ........ ....... Caused by: java.net.URISyntaxException: Relative path in absolute URI: file:../test.txt at java.net.URI.checkPath(URI.java:1804) at java.net.URI.(URI.java:752) at org.apache.hadoop.fs.Path.initialize(Path.java:203) Author: DoingDone9 <799203320@qq.com> Closes #4993 from DoingDone9/relativePath and squashes the following commits: ee375cd [DoingDone9] Update SparkContextSuite.scala d594e16 [DoingDone9] Update SparkContext.scala 0ff3fa8 [DoingDone9] test for add file dced8eb [DoingDone9] Update SparkContext.scala e4a13fe [DoingDone9] getCanonicalPath 161cae3 [DoingDone9] Merge pull request #4 from apache/master c87e8b6 [DoingDone9] Merge pull request #3 from apache/master cb1852d [DoingDone9] Merge pull request #2 from apache/master c3f046f [DoingDone9] Merge pull request #1 from apache/master --- .../scala/org/apache/spark/SparkContext.scala | 2 +- .../org/apache/spark/SparkContextSuite.scala | 51 ++++++++++++++----- 2 files changed, 38 insertions(+), 15 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 8121aab3b0b34..4457f40286fda 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -1093,7 +1093,7 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli def addFile(path: String, recursive: Boolean): Unit = { val uri = new URI(path) val schemeCorrectedPath = uri.getScheme match { - case null | "local" => "file:" + uri.getPath + case null | "local" => new File(path).getCanonicalFile.toURI.toString case _ => path } diff --git a/core/src/test/scala/org/apache/spark/SparkContextSuite.scala b/core/src/test/scala/org/apache/spark/SparkContextSuite.scala index 50f347f1954de..b8e3e83b5a47b 100644 --- a/core/src/test/scala/org/apache/spark/SparkContextSuite.scala +++ b/core/src/test/scala/org/apache/spark/SparkContextSuite.scala @@ -79,26 +79,49 @@ class SparkContextSuite extends FunSuite with LocalSparkContext { val byteArray2 = converter.convert(bytesWritable) assert(byteArray2.length === 0) } - + test("addFile works") { - val file = File.createTempFile("someprefix", "somesuffix") - val absolutePath = file.getAbsolutePath + val file1 = File.createTempFile("someprefix1", "somesuffix1") + val absolutePath1 = file1.getAbsolutePath + + val pluto = Utils.createTempDir() + val file2 = File.createTempFile("someprefix2", "somesuffix2", pluto) + val relativePath = file2.getParent + "/../" + file2.getParentFile.getName + "/" + file2.getName + val absolutePath2 = file2.getAbsolutePath + try { - Files.write("somewords", file, UTF_8) - val length = file.length() + Files.write("somewords1", file1, UTF_8) + Files.write("somewords2", file2, UTF_8) + val length1 = file1.length() + val length2 = file2.length() + sc = new SparkContext(new SparkConf().setAppName("test").setMaster("local")) - sc.addFile(file.getAbsolutePath) + sc.addFile(file1.getAbsolutePath) + sc.addFile(relativePath) sc.parallelize(Array(1), 1).map(x => { - val gotten = new File(SparkFiles.get(file.getName)) - if (!gotten.exists()) { - throw new SparkException("file doesn't exist") + val gotten1 = new File(SparkFiles.get(file1.getName)) + val gotten2 = new File(SparkFiles.get(file2.getName)) + if (!gotten1.exists()) { + throw new SparkException("file doesn't exist : " + absolutePath1) + } + if (!gotten2.exists()) { + throw new SparkException("file doesn't exist : " + absolutePath2) } - if (length != gotten.length()) { + + if (length1 != gotten1.length()) { + throw new SparkException( + s"file has different length $length1 than added file ${gotten1.length()} : " + absolutePath1) + } + if (length2 != gotten2.length()) { throw new SparkException( - s"file has different length $length than added file ${gotten.length()}") + s"file has different length $length2 than added file ${gotten2.length()} : " + absolutePath2) } - if (absolutePath == gotten.getAbsolutePath) { - throw new SparkException("file should have been copied") + + if (absolutePath1 == gotten1.getAbsolutePath) { + throw new SparkException("file should have been copied :" + absolutePath1) + } + if (absolutePath2 == gotten2.getAbsolutePath) { + throw new SparkException("file should have been copied : " + absolutePath2) } x }).count() @@ -106,7 +129,7 @@ class SparkContextSuite extends FunSuite with LocalSparkContext { sc.stop() } } - + test("addFile recursive works") { val pluto = Utils.createTempDir() val neptune = Utils.createTempDir(pluto.getAbsolutePath)