-
Notifications
You must be signed in to change notification settings - Fork 28.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-17514] df.take(1) and df.limit(1).collect() should perform the…
… same in Python ## What changes were proposed in this pull request? In PySpark, `df.take(1)` runs a single-stage job which computes only one partition of the DataFrame, while `df.limit(1).collect()` computes all partitions and runs a two-stage job. This difference in performance is confusing. The reason why `limit(1).collect()` is so much slower is that `collect()` internally maps to `df.rdd.<some-pyspark-conversions>.toLocalIterator`, which causes Spark SQL to build a query where a global limit appears in the middle of the plan; this, in turn, ends up being executed inefficiently because limits in the middle of plans are now implemented by repartitioning to a single task rather than by running a `take()` job on the driver (this was done in #7334, a patch which was a prerequisite to allowing partition-local limits to be pushed beneath unions, etc.). In order to fix this performance problem I think that we should generalize the fix from SPARK-10731 / #8876 so that `DataFrame.collect()` also delegates to the Scala implementation and shares the same performance properties. This patch modifies `DataFrame.collect()` to first collect all results to the driver and then pass them to Python, allowing this query to be planned using Spark's `CollectLimit` optimizations. ## How was this patch tested? Added a regression test in `sql/tests.py` which asserts that the expected number of jobs, stages, and tasks are run for both queries. Author: Josh Rosen <[email protected]> Closes #15068 from JoshRosen/pyspark-collect-limit.
- Loading branch information
Showing
4 changed files
with
26 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters