From 8f8dc45f6d4c8d7b740eaa3d2ea09d0b531af9dd Mon Sep 17 00:00:00 2001 From: CodingCat Date: Tue, 14 Apr 2015 13:32:06 -0700 Subject: [PATCH 01/31] SPARK-1706: Allow multiple executors per worker in Standalone mode resubmit of https://github.com/apache/spark/pull/636 for a totally different algorithm https://issues.apache.org/jira/browse/SPARK-1706 In current implementation, the user has to start multiple workers in a server for starting multiple executors in a server, which introduces additional overhead due to the more JVM processes... In this patch, I changed the scheduling logic in master to enable the user to start multiple executor processes within the same JVM process. 1. user configure spark.executor.maxCoreNumPerExecutor to suggest the maximum core he/she would like to allocate to each executor 2. Master assigns the executors to the workers with the major consideration on the memoryPerExecutor and the worker.freeMemory, and tries to allocate as many as possible cores to the executor ```min(min(memoryPerExecutor, worker.freeCore), maxLeftCoreToAssign)``` where ```maxLeftCoreToAssign = maxExecutorCanAssign * maxCoreNumPerExecutor``` --------------------------------------- Other small changes include change memoryPerSlave in ApplicationDescription to memoryPerExecutor, as "Slave" is overrided to represent both worker and executor in the documents... (we have some discussion on this before?) Author: CodingCat Closes #731 from CodingCat/SPARK-1706-2 and squashes the following commits: 6dee808 [CodingCat] change filter predicate fbeb7e5 [CodingCat] address the comments 940cb42 [CodingCat] avoid unnecessary allocation b8ca561 [CodingCat] revert a change 45967b4 [CodingCat] remove unused method 2eeff77 [CodingCat] stylistic fixes 12a1b32 [CodingCat] change the semantic of coresPerExecutor to exact core number f035423 [CodingCat] stylistic fix d9c1685 [CodingCat] remove unused var f595bd6 [CodingCat] recover some unintentional changes 63b3df9 [CodingCat] change the description of the parameter in the submit script 4cf61f1 [CodingCat] improve the code and docs ff011e2 [CodingCat] start multiple executors on the worker by rewriting startExeuctor logic 2c2bcc5 [CodingCat] fix wrong usage info 497ec2c [CodingCat] address andrew's comments 878402c [CodingCat] change the launching executor code f64a28d [CodingCat] typo fix 387f4ec [CodingCat] bug fix 35c462c [CodingCat] address Andrew's comments 0b64fea [CodingCat] fix compilation issue 19d3da7 [CodingCat] address the comments 5b81466 [CodingCat] remove outdated comments ec7d421 [CodingCat] test commit e5efabb [CodingCat] more java docs and consolidate canUse function a26096d [CodingCat] stylistic fix a5d629a [CodingCat] java doc b34ec0c [CodingCat] make master support multiple executors per worker --- .../spark/deploy/ApplicationDescription.scala | 9 +- .../apache/spark/deploy/JsonProtocol.scala | 4 +- .../org/apache/spark/deploy/SparkSubmit.scala | 2 + .../spark/deploy/SparkSubmitArguments.scala | 5 +- .../spark/deploy/master/ApplicationInfo.scala | 8 +- .../apache/spark/deploy/master/Master.scala | 117 +++++++++--------- .../deploy/master/ui/ApplicationPage.scala | 2 +- .../spark/deploy/master/ui/MasterPage.scala | 4 +- .../cluster/SparkDeploySchedulerBackend.scala | 7 +- docs/configuration.md | 11 ++ 10 files changed, 96 insertions(+), 73 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/deploy/ApplicationDescription.scala b/core/src/main/scala/org/apache/spark/deploy/ApplicationDescription.scala index b7ae9c1fc0a23..ae99432f5ce86 100644 --- a/core/src/main/scala/org/apache/spark/deploy/ApplicationDescription.scala +++ b/core/src/main/scala/org/apache/spark/deploy/ApplicationDescription.scala @@ -22,12 +22,13 @@ import java.net.URI private[spark] class ApplicationDescription( val name: String, val maxCores: Option[Int], - val memoryPerSlave: Int, + val memoryPerExecutorMB: Int, val command: Command, var appUiUrl: String, val eventLogDir: Option[URI] = None, // short name of compression codec used when writing event logs, if any (e.g. lzf) - val eventLogCodec: Option[String] = None) + val eventLogCodec: Option[String] = None, + val coresPerExecutor: Option[Int] = None) extends Serializable { val user = System.getProperty("user.name", "") @@ -35,13 +36,13 @@ private[spark] class ApplicationDescription( def copy( name: String = name, maxCores: Option[Int] = maxCores, - memoryPerSlave: Int = memoryPerSlave, + memoryPerExecutorMB: Int = memoryPerExecutorMB, command: Command = command, appUiUrl: String = appUiUrl, eventLogDir: Option[URI] = eventLogDir, eventLogCodec: Option[String] = eventLogCodec): ApplicationDescription = new ApplicationDescription( - name, maxCores, memoryPerSlave, command, appUiUrl, eventLogDir, eventLogCodec) + name, maxCores, memoryPerExecutorMB, command, appUiUrl, eventLogDir, eventLogCodec) override def toString: String = "ApplicationDescription(" + name + ")" } diff --git a/core/src/main/scala/org/apache/spark/deploy/JsonProtocol.scala b/core/src/main/scala/org/apache/spark/deploy/JsonProtocol.scala index dfc5b97e6a6c8..2954f932b4f41 100644 --- a/core/src/main/scala/org/apache/spark/deploy/JsonProtocol.scala +++ b/core/src/main/scala/org/apache/spark/deploy/JsonProtocol.scala @@ -46,7 +46,7 @@ private[deploy] object JsonProtocol { ("name" -> obj.desc.name) ~ ("cores" -> obj.desc.maxCores) ~ ("user" -> obj.desc.user) ~ - ("memoryperslave" -> obj.desc.memoryPerSlave) ~ + ("memoryperslave" -> obj.desc.memoryPerExecutorMB) ~ ("submitdate" -> obj.submitDate.toString) ~ ("state" -> obj.state.toString) ~ ("duration" -> obj.duration) @@ -55,7 +55,7 @@ private[deploy] object JsonProtocol { def writeApplicationDescription(obj: ApplicationDescription): JObject = { ("name" -> obj.name) ~ ("cores" -> obj.maxCores) ~ - ("memoryperslave" -> obj.memoryPerSlave) ~ + ("memoryperslave" -> obj.memoryPerExecutorMB) ~ ("user" -> obj.user) ~ ("command" -> obj.command.toString) } diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala index 60bc243ebf40a..296a0764b8baf 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala @@ -406,6 +406,8 @@ object SparkSubmit { OptionAssigner(args.jars, YARN, CLUSTER, clOption = "--addJars"), // Other options + OptionAssigner(args.executorCores, STANDALONE, ALL_DEPLOY_MODES, + sysProp = "spark.executor.cores"), OptionAssigner(args.executorMemory, STANDALONE | MESOS | YARN, ALL_DEPLOY_MODES, sysProp = "spark.executor.memory"), OptionAssigner(args.totalExecutorCores, STANDALONE | MESOS, ALL_DEPLOY_MODES, diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala index 03ecf3fd99ec5..faa8780288ea3 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala @@ -482,10 +482,13 @@ private[deploy] class SparkSubmitArguments(args: Seq[String], env: Map[String, S | Spark standalone and Mesos only: | --total-executor-cores NUM Total cores for all executors. | + | Spark standalone and YARN only: + | --executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode, + | or all available cores on the worker in standalone mode) + | | YARN-only: | --driver-cores NUM Number of cores used by the driver, only in cluster mode | (Default: 1). - | --executor-cores NUM Number of cores per executor (Default: 1). | --queue QUEUE_NAME The YARN queue to submit to (Default: "default"). | --num-executors NUM Number of executors to launch (Default: 2). | --archives ARCHIVES Comma separated list of archives to be extracted into the diff --git a/core/src/main/scala/org/apache/spark/deploy/master/ApplicationInfo.scala b/core/src/main/scala/org/apache/spark/deploy/master/ApplicationInfo.scala index bc5b293379f2b..f59d550d4f3b3 100644 --- a/core/src/main/scala/org/apache/spark/deploy/master/ApplicationInfo.scala +++ b/core/src/main/scala/org/apache/spark/deploy/master/ApplicationInfo.scala @@ -75,9 +75,11 @@ private[deploy] class ApplicationInfo( } } - private[master] def addExecutor(worker: WorkerInfo, cores: Int, useID: Option[Int] = None): - ExecutorDesc = { - val exec = new ExecutorDesc(newExecutorId(useID), this, worker, cores, desc.memoryPerSlave) + private[master] def addExecutor( + worker: WorkerInfo, + cores: Int, + useID: Option[Int] = None): ExecutorDesc = { + val exec = new ExecutorDesc(newExecutorId(useID), this, worker, cores, desc.memoryPerExecutorMB) executors(exec.id) = exec coresGranted += cores exec diff --git a/core/src/main/scala/org/apache/spark/deploy/master/Master.scala b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala index 9a5d5877da86d..c5a6b1beac9be 100644 --- a/core/src/main/scala/org/apache/spark/deploy/master/Master.scala +++ b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala @@ -524,52 +524,28 @@ private[master] class Master( } /** - * Can an app use the given worker? True if the worker has enough memory and we haven't already - * launched an executor for the app on it (right now the standalone backend doesn't like having - * two executors on the same worker). - */ - private def canUse(app: ApplicationInfo, worker: WorkerInfo): Boolean = { - worker.memoryFree >= app.desc.memoryPerSlave && !worker.hasExecutor(app) - } - - /** - * Schedule the currently available resources among waiting apps. This method will be called - * every time a new app joins or resource availability changes. + * Schedule executors to be launched on the workers. + * + * There are two modes of launching executors. The first attempts to spread out an application's + * executors on as many workers as possible, while the second does the opposite (i.e. launch them + * on as few workers as possible). The former is usually better for data locality purposes and is + * the default. + * + * The number of cores assigned to each executor is configurable. When this is explicitly set, + * multiple executors from the same application may be launched on the same worker if the worker + * has enough cores and memory. Otherwise, each executor grabs all the cores available on the + * worker by default, in which case only one executor may be launched on each worker. */ - private def schedule() { - if (state != RecoveryState.ALIVE) { return } - - // First schedule drivers, they take strict precedence over applications - // Randomization helps balance drivers - val shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE)) - val numWorkersAlive = shuffledAliveWorkers.size - var curPos = 0 - - for (driver <- waitingDrivers.toList) { // iterate over a copy of waitingDrivers - // We assign workers to each waiting driver in a round-robin fashion. For each driver, we - // start from the last worker that was assigned a driver, and continue onwards until we have - // explored all alive workers. - var launched = false - var numWorkersVisited = 0 - while (numWorkersVisited < numWorkersAlive && !launched) { - val worker = shuffledAliveWorkers(curPos) - numWorkersVisited += 1 - if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) { - launchDriver(worker, driver) - waitingDrivers -= driver - launched = true - } - curPos = (curPos + 1) % numWorkersAlive - } - } - + private def startExecutorsOnWorkers(): Unit = { // Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app // in the queue, then the second app, etc. if (spreadOutApps) { - // Try to spread out each app among all the nodes, until it has all its cores + // Try to spread out each app among all the workers, until it has all its cores for (app <- waitingApps if app.coresLeft > 0) { val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE) - .filter(canUse(app, _)).sortBy(_.coresFree).reverse + .filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB && + worker.coresFree >= app.desc.coresPerExecutor.getOrElse(1)) + .sortBy(_.coresFree).reverse val numUsable = usableWorkers.length val assigned = new Array[Int](numUsable) // Number of cores to give on each node var toAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum) @@ -582,32 +558,61 @@ private[master] class Master( pos = (pos + 1) % numUsable } // Now that we've decided how many cores to give on each node, let's actually give them - for (pos <- 0 until numUsable) { - if (assigned(pos) > 0) { - val exec = app.addExecutor(usableWorkers(pos), assigned(pos)) - launchExecutor(usableWorkers(pos), exec) - app.state = ApplicationState.RUNNING - } + for (pos <- 0 until numUsable if assigned(pos) > 0) { + allocateWorkerResourceToExecutors(app, assigned(pos), usableWorkers(pos)) } } } else { - // Pack each app into as few nodes as possible until we've assigned all its cores + // Pack each app into as few workers as possible until we've assigned all its cores for (worker <- workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) { for (app <- waitingApps if app.coresLeft > 0) { - if (canUse(app, worker)) { - val coresToUse = math.min(worker.coresFree, app.coresLeft) - if (coresToUse > 0) { - val exec = app.addExecutor(worker, coresToUse) - launchExecutor(worker, exec) - app.state = ApplicationState.RUNNING - } - } + allocateWorkerResourceToExecutors(app, app.coresLeft, worker) + } + } + } + } + + /** + * Allocate a worker's resources to one or more executors. + * @param app the info of the application which the executors belong to + * @param coresToAllocate cores on this worker to be allocated to this application + * @param worker the worker info + */ + private def allocateWorkerResourceToExecutors( + app: ApplicationInfo, + coresToAllocate: Int, + worker: WorkerInfo): Unit = { + val memoryPerExecutor = app.desc.memoryPerExecutorMB + val coresPerExecutor = app.desc.coresPerExecutor.getOrElse(coresToAllocate) + var coresLeft = coresToAllocate + while (coresLeft >= coresPerExecutor && worker.memoryFree >= memoryPerExecutor) { + val exec = app.addExecutor(worker, coresPerExecutor) + coresLeft -= coresPerExecutor + launchExecutor(worker, exec) + app.state = ApplicationState.RUNNING + } + } + + /** + * Schedule the currently available resources among waiting apps. This method will be called + * every time a new app joins or resource availability changes. + */ + private def schedule(): Unit = { + if (state != RecoveryState.ALIVE) { return } + // Drivers take strict precedence over executors + val shuffledWorkers = Random.shuffle(workers) // Randomization helps balance drivers + for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) { + for (driver <- waitingDrivers) { + if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) { + launchDriver(worker, driver) + waitingDrivers -= driver } } } + startExecutorsOnWorkers() } - private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc) { + private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc): Unit = { logInfo("Launching executor " + exec.fullId + " on worker " + worker.id) worker.addExecutor(exec) worker.actor ! LaunchExecutor(masterUrl, diff --git a/core/src/main/scala/org/apache/spark/deploy/master/ui/ApplicationPage.scala b/core/src/main/scala/org/apache/spark/deploy/master/ui/ApplicationPage.scala index 761aa8f7b1ef6..273f077bd8f57 100644 --- a/core/src/main/scala/org/apache/spark/deploy/master/ui/ApplicationPage.scala +++ b/core/src/main/scala/org/apache/spark/deploy/master/ui/ApplicationPage.scala @@ -94,7 +94,7 @@ private[ui] class ApplicationPage(parent: MasterWebUI) extends WebUIPage("app")
  • Executor Memory: - {Utils.megabytesToString(app.desc.memoryPerSlave)} + {Utils.megabytesToString(app.desc.memoryPerExecutorMB)}
  • Submit Date: {app.submitDate}
  • State: {app.state}
  • diff --git a/core/src/main/scala/org/apache/spark/deploy/master/ui/MasterPage.scala b/core/src/main/scala/org/apache/spark/deploy/master/ui/MasterPage.scala index 45412a35e9a7d..399f07399a0aa 100644 --- a/core/src/main/scala/org/apache/spark/deploy/master/ui/MasterPage.scala +++ b/core/src/main/scala/org/apache/spark/deploy/master/ui/MasterPage.scala @@ -208,8 +208,8 @@ private[ui] class MasterPage(parent: MasterWebUI) extends WebUIPage("") { {app.coresGranted} - - {Utils.megabytesToString(app.desc.memoryPerSlave)} + + {Utils.megabytesToString(app.desc.memoryPerExecutorMB)} {UIUtils.formatDate(app.submitDate)} {app.desc.user} diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala index 7eb3fdc19b5b8..ed5b7c1088196 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala @@ -82,12 +82,11 @@ private[spark] class SparkDeploySchedulerBackend( val command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend", args, sc.executorEnvs, classPathEntries ++ testingClassPath, libraryPathEntries, javaOpts) val appUIAddress = sc.ui.map(_.appUIAddress).getOrElse("") - val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory, command, - appUIAddress, sc.eventLogDir, sc.eventLogCodec) - + val coresPerExecutor = conf.getOption("spark.executor.cores").map(_.toInt) + val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory, + command, appUIAddress, sc.eventLogDir, sc.eventLogCodec, coresPerExecutor) client = new AppClient(sc.env.actorSystem, masters, appDesc, this, conf) client.start() - waitForRegistration() } diff --git a/docs/configuration.md b/docs/configuration.md index 7169ec295ef7f..d9e9e67026cbb 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -723,6 +723,17 @@ Apart from these, the following properties are also available, and may be useful this duration will be cleared as well. + + spark.executor.cores + 1 in YARN mode, all the available cores on the worker in standalone mode. + + The number of cores to use on each executor. For YARN and standalone mode only. + + In standalone mode, setting this parameter allows an application to run multiple executors on + the same worker, provided that there are enough cores on that worker. Otherwise, only one + executor per application will run on each worker. + + spark.default.parallelism From b075e4b720221a8204cae93468065a6708348830 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Tue, 14 Apr 2015 13:34:44 -0700 Subject: [PATCH 02/31] [SPARK-6700] [yarn] Re-enable flaky test. Test runs have been successful on jenkins. So let's re-enable the test and look out for any failures, and fix things appropriately. Author: Marcelo Vanzin Closes #5459 from vanzin/SPARK-6700 and squashes the following commits: 2ead85b [Marcelo Vanzin] WIP: re-enable flaky test to catch failure in jenkins. --- .../scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala index c06c0105670c0..76952e3341cc4 100644 --- a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala +++ b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala @@ -144,7 +144,7 @@ class YarnClusterSuite extends FunSuite with BeforeAndAfterAll with Matchers wit } // Enable this once fix SPARK-6700 - ignore("run Python application in yarn-cluster mode") { + test("run Python application in yarn-cluster mode") { val primaryPyFile = new File(tempDir, "test.py") Files.write(TEST_PYFILE, primaryPyFile, UTF_8) val pyFile = new File(tempDir, "test2.py") From 6adb8bcbf0a1a7bfe2990de18c59c66cd7a0aeb8 Mon Sep 17 00:00:00 2001 From: Josh Rosen Date: Tue, 14 Apr 2015 13:40:07 -0700 Subject: [PATCH 03/31] [SPARK-6905] Upgrade to snappy-java 1.1.1.7 We should upgrade our snappy-java dependency to 1.1.1.7 in order to include a fix for a bug that results in worse compression in SnappyOutputStream (see https://github.com/xerial/snappy-java/issues/100). Author: Josh Rosen Closes #5512 from JoshRosen/snappy-1.1.1.7 and squashes the following commits: f1ac0f8 [Josh Rosen] Upgrade to snappy-java 1.1.1.7. --- pom.xml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pom.xml b/pom.xml index 0b8d664dbfe1b..261292d5b6cde 100644 --- a/pom.xml +++ b/pom.xml @@ -156,7 +156,7 @@ 3.6.3 1.8.8 2.4.4 - 1.1.1.6 + 1.1.1.7 1.1.2 ${java.home} From 65774370a1275e25cd8a3357e397d116767793a9 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Tue, 14 Apr 2015 13:41:38 -0700 Subject: [PATCH 04/31] [SPARK-5808] [build] Package pyspark files in sbt assembly. This turned out to be more complicated than I wanted because the layout of python/ doesn't really follow the usual maven conventions. So some extra code is needed to copy just the right things. Author: Marcelo Vanzin Closes #5461 from vanzin/SPARK-5808 and squashes the following commits: 7153dac [Marcelo Vanzin] Only try to create resource dir if it doesn't already exist. ee90e84 [Marcelo Vanzin] [SPARK-5808] [build] Package pyspark files in sbt assembly. --- project/SparkBuild.scala | 60 +++++++++++++++++++++++++++++++++++++++- 1 file changed, 59 insertions(+), 1 deletion(-) diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 5f51f4b58f97a..09b4976d10c26 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -15,7 +15,7 @@ * limitations under the License. */ -import java.io.File +import java.io._ import scala.util.Properties import scala.collection.JavaConversions._ @@ -166,6 +166,9 @@ object SparkBuild extends PomBuild { /* Enable Assembly for all assembly projects */ assemblyProjects.foreach(enable(Assembly.settings)) + /* Package pyspark artifacts in the main assembly. */ + enable(PySparkAssembly.settings)(assembly) + /* Enable unidoc only for the root spark project */ enable(Unidoc.settings)(spark) @@ -316,6 +319,7 @@ object Hive { } object Assembly { + import sbtassembly.AssemblyUtils._ import sbtassembly.Plugin._ import AssemblyKeys._ @@ -347,6 +351,60 @@ object Assembly { ) } +object PySparkAssembly { + import sbtassembly.Plugin._ + import AssemblyKeys._ + + lazy val settings = Seq( + unmanagedJars in Compile += { BuildCommons.sparkHome / "python/lib/py4j-0.8.2.1-src.zip" }, + // Use a resource generator to copy all .py files from python/pyspark into a managed directory + // to be included in the assembly. We can't just add "python/" to the assembly's resource dir + // list since that will copy unneeded / unwanted files. + resourceGenerators in Compile <+= resourceManaged in Compile map { outDir: File => + val dst = new File(outDir, "pyspark") + if (!dst.isDirectory()) { + require(dst.mkdirs()) + } + + val src = new File(BuildCommons.sparkHome, "python/pyspark") + copy(src, dst) + } + ) + + private def copy(src: File, dst: File): Seq[File] = { + src.listFiles().flatMap { f => + val child = new File(dst, f.getName()) + if (f.isDirectory()) { + child.mkdir() + copy(f, child) + } else if (f.getName().endsWith(".py")) { + var in: Option[FileInputStream] = None + var out: Option[FileOutputStream] = None + try { + in = Some(new FileInputStream(f)) + out = Some(new FileOutputStream(child)) + + val bytes = new Array[Byte](1024) + var read = 0 + while (read >= 0) { + read = in.get.read(bytes) + if (read > 0) { + out.get.write(bytes, 0, read) + } + } + + Some(child) + } finally { + in.foreach(_.close()) + out.foreach(_.close()) + } + } else { + None + } + } + } +} + object Unidoc { import BuildCommons._ From 4d4b24927417b2c17810e94d6d46c37491c68869 Mon Sep 17 00:00:00 2001 From: Kousuke Saruta Date: Tue, 14 Apr 2015 14:00:49 -0700 Subject: [PATCH 05/31] [SPARK-6769][YARN][TEST] Usage of the ListenerBus in YarnClusterSuite is wrong In YarnClusterSuite, a test case uses `SaveExecutorInfo` to handle ExecutorAddedEvent as follows. ``` private class SaveExecutorInfo extends SparkListener { val addedExecutorInfos = mutable.Map[String, ExecutorInfo]() override def onExecutorAdded(executor: SparkListenerExecutorAdded) { addedExecutorInfos(executor.executorId) = executor.executorInfo } } ... listener = new SaveExecutorInfo val sc = new SparkContext(new SparkConf() .setAppName("yarn \"test app\" 'with quotes' and \\back\\slashes and $dollarSigns")) sc.addSparkListener(listener) val status = new File(args(0)) var result = "failure" try { val data = sc.parallelize(1 to 4, 4).collect().toSet assert(sc.listenerBus.waitUntilEmpty(WAIT_TIMEOUT_MILLIS)) data should be (Set(1, 2, 3, 4)) result = "success" } finally { sc.stop() Files.write(result, status, UTF_8) } ``` But, the usage is wrong because Executors will spawn during initializing SparkContext and SparkContext#addSparkListener should be invoked after the initialization, thus after Executors spawn, so SaveExecutorInfo cannot handle ExecutorAddedEvent. Following code refers the result of the handling ExecutorAddedEvent. Because of the reason above, we cannot reach the assertion. ``` // verify log urls are present listener.addedExecutorInfos.values.foreach { info => assert(info.logUrlMap.nonEmpty) } ``` Author: Kousuke Saruta Closes #5417 from sarutak/SPARK-6769 and squashes the following commits: 8adc8ba [Kousuke Saruta] Fixed compile error e258530 [Kousuke Saruta] Fixed style 591cf3e [Kousuke Saruta] Fixed style 48ec89a [Kousuke Saruta] Merge branch 'master' of git://git.apache.org/spark into SPARK-6769 860c965 [Kousuke Saruta] Simplified code 207d325 [Kousuke Saruta] Added findListenersByClass method to ListenerBus 2408c84 [Kousuke Saruta] Merge branch 'master' of git://git.apache.org/spark into SPARK-6769 2d7e409 [Kousuke Saruta] Merge branch 'master' of git://git.apache.org/spark into SPARK-6769 3874adf [Kousuke Saruta] Fixed the usage of listener bus in LogUrlsStandaloneSuite 153a91b [Kousuke Saruta] Fixed the usage of listener bus in YarnClusterSuite --- .../org/apache/spark/util/ListenerBus.scala | 8 ++++++++ .../spark/deploy/LogUrlsStandaloneSuite.scala | 20 ++++++++++--------- .../spark/deploy/yarn/YarnClusterSuite.scala | 17 +++++++++------- 3 files changed, 29 insertions(+), 16 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/util/ListenerBus.scala b/core/src/main/scala/org/apache/spark/util/ListenerBus.scala index d60b8b9a31a9b..a725767d08cc2 100644 --- a/core/src/main/scala/org/apache/spark/util/ListenerBus.scala +++ b/core/src/main/scala/org/apache/spark/util/ListenerBus.scala @@ -19,9 +19,12 @@ package org.apache.spark.util import java.util.concurrent.CopyOnWriteArrayList +import scala.collection.JavaConversions._ +import scala.reflect.ClassTag import scala.util.control.NonFatal import org.apache.spark.Logging +import org.apache.spark.scheduler.SparkListener /** * An event bus which posts events to its listeners. @@ -64,4 +67,9 @@ private[spark] trait ListenerBus[L <: AnyRef, E] extends Logging { */ def onPostEvent(listener: L, event: E): Unit + private[spark] def findListenersByClass[T <: L : ClassTag](): Seq[T] = { + val c = implicitly[ClassTag[T]].runtimeClass + listeners.filter(_.getClass == c).map(_.asInstanceOf[T]).toSeq + } + } diff --git a/core/src/test/scala/org/apache/spark/deploy/LogUrlsStandaloneSuite.scala b/core/src/test/scala/org/apache/spark/deploy/LogUrlsStandaloneSuite.scala index 9cdb42814ca32..c93d16f8a1586 100644 --- a/core/src/test/scala/org/apache/spark/deploy/LogUrlsStandaloneSuite.scala +++ b/core/src/test/scala/org/apache/spark/deploy/LogUrlsStandaloneSuite.scala @@ -19,6 +19,7 @@ package org.apache.spark.deploy import java.net.URL +import scala.collection.JavaConversions._ import scala.collection.mutable import scala.io.Source @@ -65,16 +66,17 @@ class LogUrlsStandaloneSuite extends FunSuite with LocalSparkContext { new MySparkConf().setAll(getAll) } } - val conf = new MySparkConf() + val conf = new MySparkConf().set( + "spark.extraListeners", classOf[SaveExecutorInfo].getName) sc = new SparkContext("local-cluster[2,1,512]", "test", conf) - val listener = new SaveExecutorInfo - sc.addSparkListener(listener) - // Trigger a job so that executors get added sc.parallelize(1 to 100, 4).map(_.toString).count() assert(sc.listenerBus.waitUntilEmpty(WAIT_TIMEOUT_MILLIS)) + val listeners = sc.listenerBus.findListenersByClass[SaveExecutorInfo] + assert(listeners.size === 1) + val listener = listeners(0) listener.addedExecutorInfos.values.foreach { info => assert(info.logUrlMap.nonEmpty) info.logUrlMap.values.foreach { logUrl => @@ -82,12 +84,12 @@ class LogUrlsStandaloneSuite extends FunSuite with LocalSparkContext { } } } +} - private class SaveExecutorInfo extends SparkListener { - val addedExecutorInfos = mutable.Map[String, ExecutorInfo]() +private[spark] class SaveExecutorInfo extends SparkListener { + val addedExecutorInfos = mutable.Map[String, ExecutorInfo]() - override def onExecutorAdded(executor: SparkListenerExecutorAdded) { - addedExecutorInfos(executor.executorId) = executor.executorInfo - } + override def onExecutorAdded(executor: SparkListenerExecutorAdded) { + addedExecutorInfos(executor.executorId) = executor.executorInfo } } diff --git a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala index 76952e3341cc4..a18c94d4ab4a8 100644 --- a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala +++ b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala @@ -33,7 +33,7 @@ import org.scalatest.{BeforeAndAfterAll, FunSuite, Matchers} import org.apache.spark.{Logging, SparkConf, SparkContext, SparkException, TestUtils} import org.apache.spark.scheduler.cluster.ExecutorInfo -import org.apache.spark.scheduler.{SparkListener, SparkListenerExecutorAdded} +import org.apache.spark.scheduler.{SparkListenerJobStart, SparkListener, SparkListenerExecutorAdded} import org.apache.spark.util.Utils /** @@ -282,10 +282,10 @@ class YarnClusterSuite extends FunSuite with BeforeAndAfterAll with Matchers wit } -private class SaveExecutorInfo extends SparkListener { +private[spark] class SaveExecutorInfo extends SparkListener { val addedExecutorInfos = mutable.Map[String, ExecutorInfo]() - override def onExecutorAdded(executor : SparkListenerExecutorAdded) { + override def onExecutorAdded(executor: SparkListenerExecutorAdded) { addedExecutorInfos(executor.executorId) = executor.executorInfo } } @@ -293,7 +293,6 @@ private class SaveExecutorInfo extends SparkListener { private object YarnClusterDriver extends Logging with Matchers { val WAIT_TIMEOUT_MILLIS = 10000 - var listener: SaveExecutorInfo = null def main(args: Array[String]): Unit = { if (args.length != 1) { @@ -306,10 +305,9 @@ private object YarnClusterDriver extends Logging with Matchers { System.exit(1) } - listener = new SaveExecutorInfo val sc = new SparkContext(new SparkConf() + .set("spark.extraListeners", classOf[SaveExecutorInfo].getName) .setAppName("yarn \"test app\" 'with quotes' and \\back\\slashes and $dollarSigns")) - sc.addSparkListener(listener) val status = new File(args(0)) var result = "failure" try { @@ -323,7 +321,12 @@ private object YarnClusterDriver extends Logging with Matchers { } // verify log urls are present - listener.addedExecutorInfos.values.foreach { info => + val listeners = sc.listenerBus.findListenersByClass[SaveExecutorInfo] + assert(listeners.size === 1) + val listener = listeners(0) + val executorInfos = listener.addedExecutorInfos.values + assert(executorInfos.nonEmpty) + executorInfos.foreach { info => assert(info.logUrlMap.nonEmpty) } } From a76b921a923ac37d3c73ee18d24df4bb611daba3 Mon Sep 17 00:00:00 2001 From: Josh Rosen Date: Tue, 14 Apr 2015 14:07:25 -0700 Subject: [PATCH 06/31] Revert "[SPARK-6352] [SQL] Add DirectParquetOutputCommitter" This reverts commit b29663eeea440b1d1a288d41b5ddf67e77c5bd54. I'm reverting this because it broke test compilation for the Hadoop 1.x profiles. --- .../DirectParquetOutputCommitter.scala | 66 ------------------- .../sql/parquet/ParquetTableOperations.scala | 22 ------- .../spark/sql/parquet/ParquetIOSuite.scala | 21 ------ 3 files changed, 109 deletions(-) delete mode 100644 sql/core/src/main/scala/org/apache/spark/sql/parquet/DirectParquetOutputCommitter.scala diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/DirectParquetOutputCommitter.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/DirectParquetOutputCommitter.scala deleted file mode 100644 index 25a66cb488103..0000000000000 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/DirectParquetOutputCommitter.scala +++ /dev/null @@ -1,66 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.sql.parquet - -import org.apache.hadoop.fs.Path -import org.apache.hadoop.mapreduce.{JobContext, TaskAttemptContext} -import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter - -import parquet.Log -import parquet.hadoop.util.ContextUtil -import parquet.hadoop.{ParquetFileReader, ParquetFileWriter, ParquetOutputCommitter} - -private[parquet] class DirectParquetOutputCommitter(outputPath: Path, context: TaskAttemptContext) - extends ParquetOutputCommitter(outputPath, context) { - val LOG = Log.getLog(classOf[ParquetOutputCommitter]) - - override def getWorkPath(): Path = outputPath - override def abortTask(taskContext: TaskAttemptContext): Unit = {} - override def commitTask(taskContext: TaskAttemptContext): Unit = {} - override def needsTaskCommit(taskContext: TaskAttemptContext): Boolean = true - override def setupJob(jobContext: JobContext): Unit = {} - override def setupTask(taskContext: TaskAttemptContext): Unit = {} - - override def commitJob(jobContext: JobContext) { - try { - val configuration = ContextUtil.getConfiguration(jobContext) - val fileSystem = outputPath.getFileSystem(configuration) - val outputStatus = fileSystem.getFileStatus(outputPath) - val footers = ParquetFileReader.readAllFootersInParallel(configuration, outputStatus) - try { - ParquetFileWriter.writeMetadataFile(configuration, outputPath, footers) - if (configuration.getBoolean("mapreduce.fileoutputcommitter.marksuccessfuljobs", true)) { - val successPath = new Path(outputPath, FileOutputCommitter.SUCCEEDED_FILE_NAME) - fileSystem.create(successPath).close() - } - } catch { - case e: Exception => { - LOG.warn("could not write summary file for " + outputPath, e) - val metadataPath = new Path(outputPath, ParquetFileWriter.PARQUET_METADATA_FILE) - if (fileSystem.exists(metadataPath)) { - fileSystem.delete(metadataPath, true) - } - } - } - } catch { - case e: Exception => LOG.warn("could not write summary file for " + outputPath, e) - } - } - -} - diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala index 3724bda829d30..1c868da23e060 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableOperations.scala @@ -379,8 +379,6 @@ private[sql] case class InsertIntoParquetTable( */ private[parquet] class AppendingParquetOutputFormat(offset: Int) extends parquet.hadoop.ParquetOutputFormat[Row] { - var committer: OutputCommitter = null - // override to accept existing directories as valid output directory override def checkOutputSpecs(job: JobContext): Unit = {} @@ -405,26 +403,6 @@ private[parquet] class AppendingParquetOutputFormat(offset: Int) private def getTaskAttemptID(context: TaskAttemptContext): TaskAttemptID = { context.getClass.getMethod("getTaskAttemptID").invoke(context).asInstanceOf[TaskAttemptID] } - - // override to create output committer from configuration - override def getOutputCommitter(context: TaskAttemptContext): OutputCommitter = { - if (committer == null) { - val output = getOutputPath(context) - val cls = context.getConfiguration.getClass("spark.sql.parquet.output.committer.class", - classOf[ParquetOutputCommitter], classOf[ParquetOutputCommitter]) - val ctor = cls.getDeclaredConstructor(classOf[Path], classOf[TaskAttemptContext]) - committer = ctor.newInstance(output, context).asInstanceOf[ParquetOutputCommitter] - } - committer - } - - // FileOutputFormat.getOutputPath takes JobConf in hadoop-1 but JobContext in hadoop-2 - private def getOutputPath(context: TaskAttemptContext): Path = { - context.getConfiguration().get("mapred.output.dir") match { - case null => null - case name => new Path(name) - } - } } /** diff --git a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala index 4d0bf7cf99cdf..97c0f439acf13 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala @@ -381,27 +381,6 @@ class ParquetIOSuiteBase extends QueryTest with ParquetTest { } } } - - test("SPARK-6352 DirectParquetOutputCommitter") { - // Write to a parquet file and let it fail. - // _temporary should be missing if direct output committer works. - try { - configuration.set("spark.sql.parquet.output.committer.class", - "org.apache.spark.sql.parquet.DirectParquetOutputCommitter") - sqlContext.udf.register("div0", (x: Int) => x / 0) - withTempPath { dir => - intercept[org.apache.spark.SparkException] { - sqlContext.sql("select div0(1)").saveAsParquetFile(dir.getCanonicalPath) - } - val path = new Path(dir.getCanonicalPath, "_temporary") - val fs = path.getFileSystem(configuration) - assert(!fs.exists(path)) - } - } - finally { - configuration.unset("spark.sql.parquet.output.committer.class") - } - } } class ParquetDataSourceOnIOSuite extends ParquetIOSuiteBase with BeforeAndAfterAll { From 6de282e2de3cb69f9b746d03fde581429248824a Mon Sep 17 00:00:00 2001 From: zsxwing Date: Tue, 14 Apr 2015 16:51:36 -0700 Subject: [PATCH 07/31] [SPARK-6796][Streaming][WebUI] Add "Active Batches" and "Completed Batches" lists to StreamingPage This PR adds two lists, `Active Batches` and `Completed Batches`. Here is the screenshot: ![batch_list](https://cloud.githubusercontent.com/assets/1000778/7060458/d8898572-deb3-11e4-938b-6f8602c71a9f.png) Due to [SPARK-6766](https://issues.apache.org/jira/browse/SPARK-6766), I need to merge #5414 in my local machine to get the above screenshot. Author: zsxwing Closes #5434 from zsxwing/SPARK-6796 and squashes the following commits: be50fc6 [zsxwing] Fix the code style 51b792e [zsxwing] Fix the unit test 6f3078e [zsxwing] Make 'startTime' readable f40e0a9 [zsxwing] Merge branch 'master' into SPARK-6796 2525336 [zsxwing] Rename 'Processed batches' and 'Waiting batches' and also add links a69c091 [zsxwing] Show the number of total completed batches too a12ad7b [zsxwing] Change 'records' to 'events' in the UI 86b5e7f [zsxwing] Make BatchTableBase abstract b248787 [zsxwing] Add tests to verify the new tables d18ab7d [zsxwing] Fix the code style 6ceffb3 [zsxwing] Add "Active Batches" and "Completed Batches" lists to StreamingPage --- .../spark/streaming/ui/AllBatchesTable.scala | 114 ++++++++++++++++++ .../spark/streaming/ui/StreamingPage.scala | 44 +++++-- .../spark/streaming/UISeleniumSuite.scala | 11 ++ 3 files changed, 159 insertions(+), 10 deletions(-) create mode 100644 streaming/src/main/scala/org/apache/spark/streaming/ui/AllBatchesTable.scala diff --git a/streaming/src/main/scala/org/apache/spark/streaming/ui/AllBatchesTable.scala b/streaming/src/main/scala/org/apache/spark/streaming/ui/AllBatchesTable.scala new file mode 100644 index 0000000000000..df1c0a10704c3 --- /dev/null +++ b/streaming/src/main/scala/org/apache/spark/streaming/ui/AllBatchesTable.scala @@ -0,0 +1,114 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.ui + +import scala.xml.Node + +import org.apache.spark.streaming.scheduler.BatchInfo +import org.apache.spark.ui.UIUtils + +private[ui] abstract class BatchTableBase(tableId: String) { + + protected def columns: Seq[Node] = { + Batch Time + Input Size + Scheduling Delay + Processing Time + } + + protected def baseRow(batch: BatchInfo): Seq[Node] = { + val batchTime = batch.batchTime.milliseconds + val formattedBatchTime = UIUtils.formatDate(batch.batchTime.milliseconds) + val eventCount = batch.receivedBlockInfo.values.map { + receivers => receivers.map(_.numRecords).sum + }.sum + val schedulingDelay = batch.schedulingDelay + val formattedSchedulingDelay = schedulingDelay.map(UIUtils.formatDuration).getOrElse("-") + val processingTime = batch.processingDelay + val formattedProcessingTime = processingTime.map(UIUtils.formatDuration).getOrElse("-") + + {formattedBatchTime} + {eventCount.toString} events + + {formattedSchedulingDelay} + + + {formattedProcessingTime} + + } + + private def batchTable: Seq[Node] = { + + + {columns} + + + {renderRows} + +
    + } + + def toNodeSeq: Seq[Node] = { + batchTable + } + + /** + * Return HTML for all rows of this table. + */ + protected def renderRows: Seq[Node] +} + +private[ui] class ActiveBatchTable(runningBatches: Seq[BatchInfo], waitingBatches: Seq[BatchInfo]) + extends BatchTableBase("active-batches-table") { + + override protected def columns: Seq[Node] = super.columns ++ Status + + override protected def renderRows: Seq[Node] = { + // The "batchTime"s of "waitingBatches" must be greater than "runningBatches"'s, so display + // waiting batches before running batches + waitingBatches.flatMap(batch => {waitingBatchRow(batch)}) ++ + runningBatches.flatMap(batch => {runningBatchRow(batch)}) + } + + private def runningBatchRow(batch: BatchInfo): Seq[Node] = { + baseRow(batch) ++ processing + } + + private def waitingBatchRow(batch: BatchInfo): Seq[Node] = { + baseRow(batch) ++ queued + } +} + +private[ui] class CompletedBatchTable(batches: Seq[BatchInfo]) + extends BatchTableBase("completed-batches-table") { + + override protected def columns: Seq[Node] = super.columns ++ Total Delay + + override protected def renderRows: Seq[Node] = { + batches.flatMap(batch => {completedBatchRow(batch)}) + } + + private def completedBatchRow(batch: BatchInfo): Seq[Node] = { + val totalDelay = batch.totalDelay + val formattedTotalDelay = totalDelay.map(UIUtils.formatDuration).getOrElse("-") + baseRow(batch) ++ + + {formattedTotalDelay} + + } +} diff --git a/streaming/src/main/scala/org/apache/spark/streaming/ui/StreamingPage.scala b/streaming/src/main/scala/org/apache/spark/streaming/ui/StreamingPage.scala index b6dcb62bfeec8..07fa285642eec 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/ui/StreamingPage.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/ui/StreamingPage.scala @@ -41,7 +41,8 @@ private[ui] class StreamingPage(parent: StreamingTab) generateBasicStats() ++

    ++

    Statistics over last {listener.retainedCompletedBatches.size} processed batches

    ++ generateReceiverStats() ++ - generateBatchStatsTable() + generateBatchStatsTable() ++ + generateBatchListTables() } UIUtils.headerSparkPage("Streaming", content, parent, Some(5000)) } @@ -49,9 +50,10 @@ private[ui] class StreamingPage(parent: StreamingTab) /** Generate basic stats of the streaming program */ private def generateBasicStats(): Seq[Node] = { val timeSinceStart = System.currentTimeMillis() - startTime + // scalastyle:off
    • - Started at: {startTime.toString} + Started at: {UIUtils.formatDate(startTime)}
    • Time since start: {formatDurationVerbose(timeSinceStart)} @@ -63,18 +65,19 @@ private[ui] class StreamingPage(parent: StreamingTab) Batch interval: {formatDurationVerbose(listener.batchDuration)}
    • - Processed batches: {listener.numTotalCompletedBatches} + Completed batches: {listener.numTotalCompletedBatches}
    • - Waiting batches: {listener.numUnprocessedBatches} + Active batches: {listener.numUnprocessedBatches}
    • - Received records: {listener.numTotalReceivedRecords} + Received events: {listener.numTotalReceivedRecords}
    • - Processed records: {listener.numTotalProcessedRecords} + Processed events: {listener.numTotalProcessedRecords}
    + // scalastyle:on } /** Generate stats of data received by the receivers in the streaming program */ @@ -86,10 +89,10 @@ private[ui] class StreamingPage(parent: StreamingTab) "Receiver", "Status", "Location", - "Records in last batch\n[" + formatDate(Calendar.getInstance().getTime()) + "]", - "Minimum rate\n[records/sec]", - "Median rate\n[records/sec]", - "Maximum rate\n[records/sec]", + "Events in last batch\n[" + formatDate(Calendar.getInstance().getTime()) + "]", + "Minimum rate\n[events/sec]", + "Median rate\n[events/sec]", + "Maximum rate\n[events/sec]", "Last Error" ) val dataRows = (0 until listener.numReceivers).map { receiverId => @@ -190,5 +193,26 @@ private[ui] class StreamingPage(parent: StreamingTab) } UIUtils.listingTable(headers, generateDataRow, data, fixedWidth = true) } + + private def generateBatchListTables(): Seq[Node] = { + val runningBatches = listener.runningBatches.sortBy(_.batchTime.milliseconds).reverse + val waitingBatches = listener.waitingBatches.sortBy(_.batchTime.milliseconds).reverse + val completedBatches = listener.retainedCompletedBatches. + sortBy(_.batchTime.milliseconds).reverse + + val activeBatchesContent = { +

    Active Batches ({runningBatches.size + waitingBatches.size})

    ++ + new ActiveBatchTable(runningBatches, waitingBatches).toNodeSeq + } + + val completedBatchesContent = { +

    + Completed Batches (last {completedBatches.size} out of {listener.numTotalCompletedBatches}) +

    ++ + new CompletedBatchTable(completedBatches).toNodeSeq + } + + activeBatchesContent ++ completedBatchesContent + } } diff --git a/streaming/src/test/scala/org/apache/spark/streaming/UISeleniumSuite.scala b/streaming/src/test/scala/org/apache/spark/streaming/UISeleniumSuite.scala index 998426ebb82e5..205ddf6dbe9b0 100644 --- a/streaming/src/test/scala/org/apache/spark/streaming/UISeleniumSuite.scala +++ b/streaming/src/test/scala/org/apache/spark/streaming/UISeleniumSuite.scala @@ -75,6 +75,17 @@ class UISeleniumSuite val statisticText = findAll(cssSelector("li strong")).map(_.text).toSeq statisticText should contain("Network receivers:") statisticText should contain("Batch interval:") + + val h4Text = findAll(cssSelector("h4")).map(_.text).toSeq + h4Text should contain("Active Batches (0)") + h4Text should contain("Completed Batches (last 0 out of 0)") + + findAll(cssSelector("""#active-batches-table th""")).map(_.text).toSeq should be { + List("Batch Time", "Input Size", "Scheduling Delay", "Processing Time", "Status") + } + findAll(cssSelector("""#completed-batches-table th""")).map(_.text).toSeq should be { + List("Batch Time", "Input Size", "Scheduling Delay", "Processing Time", "Total Delay") + } } ssc.stop(false) From 9717389365772d218cd7c67f9a13c3440f3c6791 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Tue, 14 Apr 2015 18:51:39 -0700 Subject: [PATCH 08/31] [SPARK-6890] [core] Fix launcher lib work with SPARK_PREPEND_CLASSES. The fix for SPARK-6406 broke the case where sub-processes are launched when SPARK_PREPEND_CLASSES is set, because the code now would only add the launcher's build directory to the sub-process's classpath instead of the complete assembly. This patch fixes the problem by having the launch scripts stash the assembly's location in an environment variable. This is not the prettiest solution, but it avoids having to plumb that location all the way through the Worker code that launches executors. The env variable is always set by the launch scripts, so users cannot override it. Author: Marcelo Vanzin Closes #5504 from vanzin/SPARK-6890 and squashes the following commits: 7aec921 [Marcelo Vanzin] Fix tests. ff87a60 [Marcelo Vanzin] Merge branch 'master' into SPARK-6890 31d3ce8 [Marcelo Vanzin] [SPARK-6890] [core] Fix launcher lib work with SPARK_PREPEND_CLASSES. --- bin/spark-class | 11 ++++- bin/spark-class2.cmd | 11 ++++- .../launcher/AbstractCommandBuilder.java | 44 +++++++++++++++++-- .../spark/launcher/CommandBuilderUtils.java | 1 + .../SparkSubmitCommandBuilderSuite.java | 15 ++++--- 5 files changed, 71 insertions(+), 11 deletions(-) diff --git a/bin/spark-class b/bin/spark-class index c03946d92e2e4..c49d97ce5cf25 100755 --- a/bin/spark-class +++ b/bin/spark-class @@ -82,13 +82,22 @@ if [ $(command -v "$JAR_CMD") ] ; then fi fi +LAUNCH_CLASSPATH="$SPARK_ASSEMBLY_JAR" + +# Add the launcher build dir to the classpath if requested. +if [ -n "$SPARK_PREPEND_CLASSES" ]; then + LAUNCH_CLASSPATH="$SPARK_HOME/launcher/target/scala-$SPARK_SCALA_VERSION/classes:$LAUNCH_CLASSPATH" +fi + +export _SPARK_ASSEMBLY="$SPARK_ASSEMBLY_JAR" + # The launcher library will print arguments separated by a NULL character, to allow arguments with # characters that would be otherwise interpreted by the shell. Read that in a while loop, populating # an array that will be used to exec the final command. CMD=() while IFS= read -d '' -r ARG; do CMD+=("$ARG") -done < <("$RUNNER" -cp "$SPARK_ASSEMBLY_JAR" org.apache.spark.launcher.Main "$@") +done < <("$RUNNER" -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@") if [ "${CMD[0]}" = "usage" ]; then "${CMD[@]}" diff --git a/bin/spark-class2.cmd b/bin/spark-class2.cmd index 4b3401d745f2a..3d068dd3a2739 100644 --- a/bin/spark-class2.cmd +++ b/bin/spark-class2.cmd @@ -46,13 +46,22 @@ if "%SPARK_ASSEMBLY_JAR%"=="0" ( exit /b 1 ) +set LAUNCH_CLASSPATH=%SPARK_ASSEMBLY_JAR% + +rem Add the launcher build dir to the classpath if requested. +if not "x%SPARK_PREPEND_CLASSES%"=="x" ( + set LAUNCH_CLASSPATH=%SPARK_HOME%\launcher\target\scala-%SPARK_SCALA_VERSION%\classes;%LAUNCH_CLASSPATH% +) + +set _SPARK_ASSEMBLY=%SPARK_ASSEMBLY_JAR% + rem Figure out where java is. set RUNNER=java if not "x%JAVA_HOME%"=="x" set RUNNER=%JAVA_HOME%\bin\java rem The launcher library prints the command to be executed in a single line suitable for being rem executed by the batch interpreter. So read all the output of the launcher into a variable. -for /f "tokens=*" %%i in ('cmd /C ""%RUNNER%" -cp %SPARK_ASSEMBLY_JAR% org.apache.spark.launcher.Main %*"') do ( +for /f "tokens=*" %%i in ('cmd /C ""%RUNNER%" -cp %LAUNCH_CLASSPATH% org.apache.spark.launcher.Main %*"') do ( set SPARK_CMD=%%i ) %SPARK_CMD% diff --git a/launcher/src/main/java/org/apache/spark/launcher/AbstractCommandBuilder.java b/launcher/src/main/java/org/apache/spark/launcher/AbstractCommandBuilder.java index d8279145d8e90..b8f02b961113d 100644 --- a/launcher/src/main/java/org/apache/spark/launcher/AbstractCommandBuilder.java +++ b/launcher/src/main/java/org/apache/spark/launcher/AbstractCommandBuilder.java @@ -186,12 +186,24 @@ List buildClassPath(String appClassPath) throws IOException { addToClassPath(cp, String.format("%s/core/target/jars/*", sparkHome)); } - final String assembly = AbstractCommandBuilder.class.getProtectionDomain().getCodeSource(). - getLocation().getPath(); + // We can't rely on the ENV_SPARK_ASSEMBLY variable to be set. Certain situations, such as + // when running unit tests, or user code that embeds Spark and creates a SparkContext + // with a local or local-cluster master, will cause this code to be called from an + // environment where that env variable is not guaranteed to exist. + // + // For the testing case, we rely on the test code to set and propagate the test classpath + // appropriately. + // + // For the user code case, we fall back to looking for the Spark assembly under SPARK_HOME. + // That duplicates some of the code in the shell scripts that look for the assembly, though. + String assembly = getenv(ENV_SPARK_ASSEMBLY); + if (assembly == null && isEmpty(getenv("SPARK_TESTING"))) { + assembly = findAssembly(); + } addToClassPath(cp, assembly); - // Datanucleus jars must be included on the classpath. Datanucleus jars do not work if only - // included in the uber jar as plugin.xml metadata is lost. Both sbt and maven will populate + // Datanucleus jars must be included on the classpath. Datanucleus jars do not work if only + // included in the uber jar as plugin.xml metadata is lost. Both sbt and maven will populate // "lib_managed/jars/" with the datanucleus jars when Spark is built with Hive File libdir; if (new File(sparkHome, "RELEASE").isFile()) { @@ -299,6 +311,30 @@ String getenv(String key) { return firstNonEmpty(childEnv.get(key), System.getenv(key)); } + private String findAssembly() { + String sparkHome = getSparkHome(); + File libdir; + if (new File(sparkHome, "RELEASE").isFile()) { + libdir = new File(sparkHome, "lib"); + checkState(libdir.isDirectory(), "Library directory '%s' does not exist.", + libdir.getAbsolutePath()); + } else { + libdir = new File(sparkHome, String.format("assembly/target/scala-%s", getScalaVersion())); + } + + final Pattern re = Pattern.compile("spark-assembly.*hadoop.*\\.jar"); + FileFilter filter = new FileFilter() { + @Override + public boolean accept(File file) { + return file.isFile() && re.matcher(file.getName()).matches(); + } + }; + File[] assemblies = libdir.listFiles(filter); + checkState(assemblies != null && assemblies.length > 0, "No assemblies found in '%s'.", libdir); + checkState(assemblies.length == 1, "Multiple assemblies found in '%s'.", libdir); + return assemblies[0].getAbsolutePath(); + } + private String getConfDir() { String confDir = getenv("SPARK_CONF_DIR"); return confDir != null ? confDir : join(File.separator, getSparkHome(), "conf"); diff --git a/launcher/src/main/java/org/apache/spark/launcher/CommandBuilderUtils.java b/launcher/src/main/java/org/apache/spark/launcher/CommandBuilderUtils.java index f4ebc25bdd32b..8028e42ffb483 100644 --- a/launcher/src/main/java/org/apache/spark/launcher/CommandBuilderUtils.java +++ b/launcher/src/main/java/org/apache/spark/launcher/CommandBuilderUtils.java @@ -30,6 +30,7 @@ class CommandBuilderUtils { static final String DEFAULT_MEM = "512m"; static final String DEFAULT_PROPERTIES_FILE = "spark-defaults.conf"; static final String ENV_SPARK_HOME = "SPARK_HOME"; + static final String ENV_SPARK_ASSEMBLY = "_SPARK_ASSEMBLY"; /** Returns whether the given string is null or empty. */ static boolean isEmpty(String s) { diff --git a/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitCommandBuilderSuite.java b/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitCommandBuilderSuite.java index 626116a9e7477..97043a76cc612 100644 --- a/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitCommandBuilderSuite.java +++ b/launcher/src/test/java/org/apache/spark/launcher/SparkSubmitCommandBuilderSuite.java @@ -98,7 +98,7 @@ public void testShellCliParser() throws Exception { parser.NAME, "appName"); - List args = new SparkSubmitCommandBuilder(sparkSubmitArgs).buildSparkSubmitArgs(); + List args = newCommandBuilder(sparkSubmitArgs).buildSparkSubmitArgs(); List expected = Arrays.asList("spark-shell", "--app-arg", "bar", "--app-switch"); assertEquals(expected, args.subList(args.size() - expected.size(), args.size())); } @@ -110,7 +110,7 @@ public void testAlternateSyntaxParsing() throws Exception { parser.MASTER + "=foo", parser.DEPLOY_MODE + "=bar"); - List cmd = new SparkSubmitCommandBuilder(sparkSubmitArgs).buildSparkSubmitArgs(); + List cmd = newCommandBuilder(sparkSubmitArgs).buildSparkSubmitArgs(); assertEquals("org.my.Class", findArgValue(cmd, parser.CLASS)); assertEquals("foo", findArgValue(cmd, parser.MASTER)); assertEquals("bar", findArgValue(cmd, parser.DEPLOY_MODE)); @@ -153,7 +153,7 @@ private void testCmdBuilder(boolean isDriver) throws Exception { String deployMode = isDriver ? "client" : "cluster"; SparkSubmitCommandBuilder launcher = - new SparkSubmitCommandBuilder(Collections.emptyList()); + newCommandBuilder(Collections.emptyList()); launcher.childEnv.put(CommandBuilderUtils.ENV_SPARK_HOME, System.getProperty("spark.test.home")); launcher.master = "yarn"; @@ -273,10 +273,15 @@ private boolean findInStringList(String list, String sep, String needle) { return contains(needle, list.split(sep)); } - private List buildCommand(List args, Map env) throws Exception { + private SparkSubmitCommandBuilder newCommandBuilder(List args) { SparkSubmitCommandBuilder builder = new SparkSubmitCommandBuilder(args); builder.childEnv.put(CommandBuilderUtils.ENV_SPARK_HOME, System.getProperty("spark.test.home")); - return builder.buildCommand(env); + builder.childEnv.put(CommandBuilderUtils.ENV_SPARK_ASSEMBLY, "dummy"); + return builder; + } + + private List buildCommand(List args, Map env) throws Exception { + return newCommandBuilder(args).buildCommand(env); } } From 30a6e0dcc0bd298731c1387546779cddcc16bc72 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Tue, 14 Apr 2015 18:52:48 -0700 Subject: [PATCH 09/31] [SPARK-5634] [core] Show correct message in HS when no incomplete apps f... ...ound. Author: Marcelo Vanzin Closes #5515 from vanzin/SPARK-5634 and squashes the following commits: f74ecf1 [Marcelo Vanzin] [SPARK-5634] [core] Show correct message in HS when no incomplete apps found. --- .../scala/org/apache/spark/deploy/history/HistoryPage.scala | 2 ++ 1 file changed, 2 insertions(+) diff --git a/core/src/main/scala/org/apache/spark/deploy/history/HistoryPage.scala b/core/src/main/scala/org/apache/spark/deploy/history/HistoryPage.scala index 6e432d63c6b5a..3781b4e8c12bd 100644 --- a/core/src/main/scala/org/apache/spark/deploy/history/HistoryPage.scala +++ b/core/src/main/scala/org/apache/spark/deploy/history/HistoryPage.scala @@ -90,6 +90,8 @@ private[history] class HistoryPage(parent: HistoryServer) extends WebUIPage("") ++ appTable + } else if (requestedIncomplete) { +

    No incomplete applications found!

    } else {

    No completed applications found!

    ++

    Did you specify the correct logging directory? From 6be918942c4078692d169d72fa9c358f6e98e85e Mon Sep 17 00:00:00 2001 From: Liang-Chi Hsieh Date: Tue, 14 Apr 2015 23:47:16 -0700 Subject: [PATCH 10/31] [SPARK-6871][SQL] WITH clause in CTE can not following another WITH clause JIRA https://issues.apache.org/jira/browse/SPARK-6871 Author: Liang-Chi Hsieh Closes #5480 from viirya/no_cte_after_cte and squashes the following commits: 4da3712 [Liang-Chi Hsieh] Create new test. 40b38ed [Liang-Chi Hsieh] Merge remote-tracking branch 'upstream/master' into no_cte_after_cte 0edf568 [Liang-Chi Hsieh] for comments. 6591b79 [Liang-Chi Hsieh] WITH clause in CTE can not following another WITH clause. --- .../apache/spark/sql/catalyst/SqlParser.scala | 18 +++++++++--------- .../org/apache/spark/sql/SQLQuerySuite.scala | 6 ++++++ 2 files changed, 15 insertions(+), 9 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index bc8d3751f6616..9a3531ceb3343 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -121,14 +121,14 @@ class SqlParser extends AbstractSparkSQLParser with DataTypeParser { } protected lazy val start: Parser[LogicalPlan] = - ( (select | ("(" ~> select <~ ")")) * - ( UNION ~ ALL ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Union(q1, q2) } - | INTERSECT ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Intersect(q1, q2) } - | EXCEPT ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Except(q1, q2)} - | UNION ~ DISTINCT.? ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Distinct(Union(q1, q2)) } - ) - | insert - | cte + start1 | insert | cte + + protected lazy val start1: Parser[LogicalPlan] = + (select | ("(" ~> select <~ ")")) * + ( UNION ~ ALL ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Union(q1, q2) } + | INTERSECT ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Intersect(q1, q2) } + | EXCEPT ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Except(q1, q2)} + | UNION ~ DISTINCT.? ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Distinct(Union(q1, q2)) } ) protected lazy val select: Parser[LogicalPlan] = @@ -159,7 +159,7 @@ class SqlParser extends AbstractSparkSQLParser with DataTypeParser { } protected lazy val cte: Parser[LogicalPlan] = - WITH ~> rep1sep(ident ~ ( AS ~ "(" ~> start <~ ")"), ",") ~ start ^^ { + WITH ~> rep1sep(ident ~ ( AS ~ "(" ~> start1 <~ ")"), ",") ~ (start1 | insert) ^^ { case r ~ s => With(s, r.map({case n ~ s => (n, Subquery(n, s))}).toMap) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index 73fb791c3ead7..0174aaee94246 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -431,6 +431,12 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { } + test("Allow only a single WITH clause per query") { + intercept[RuntimeException] { + sql("with q1 as (select * from testData) with q2 as (select * from q1) select * from q2") + } + } + test("date row") { checkAnswer(sql( """select cast("2015-01-28" as date) from testData limit 1"""), From 29aabdd6c20197adb16706823a8c7f48a0074352 Mon Sep 17 00:00:00 2001 From: Daoyuan Wang Date: Wed, 15 Apr 2015 10:23:53 +0100 Subject: [PATCH 11/31] [HOTFIX] [SPARK-6896] [SQL] fix compile error in hive-thriftserver SPARK-6440 #5424 import guava but did not promote guava dependency to compile level. [INFO] compiler plugin: BasicArtifact(org.scalamacros,paradise_2.10.4,2.0.1,null) [info] Compiling 8 Scala sources to /root/projects/spark/sql/hive-thriftserver/target/scala-2.10/classes... [error] bad symbolic reference. A signature in Utils.class refers to term util [error] in package com.google.common which is not available. [error] It may be completely missing from the current classpath, or the version on [error] the classpath might be incompatible with the version used when compiling Utils.class. [error] [error] while compiling: /root/projects/spark/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLEnv.scala [error] during phase: erasure [error] library version: version 2.10.4 [error] compiler version: version 2.10.4 [error] reconstructed args: -deprecation -classpath Author: Daoyuan Wang Closes #5507 from adrian-wang/guava and squashes the following commits: c337dad [Daoyuan Wang] fix compile error --- sql/hive-thriftserver/pom.xml | 1 - 1 file changed, 1 deletion(-) diff --git a/sql/hive-thriftserver/pom.xml b/sql/hive-thriftserver/pom.xml index a96b1ffc26966..f38c796241df1 100644 --- a/sql/hive-thriftserver/pom.xml +++ b/sql/hive-thriftserver/pom.xml @@ -44,7 +44,6 @@ com.google.guava guava - runtime ${hive.group} From 6c5ed8a6d552abd967d27cdb94b68d46ccb57221 Mon Sep 17 00:00:00 2001 From: Sean Owen Date: Wed, 15 Apr 2015 15:17:58 +0100 Subject: [PATCH 12/31] SPARK-6861 [BUILD] Scalastyle config prevents building Maven child modules alone Move scalastyle-config.xml to dev/ (SBT config still doesn't work) to fix running mvn targets from subdirs; make scalastyle a verify stage target again in Maven; output results in target not project root; update to scalastyle 0.7.0 Author: Sean Owen Closes #5471 from srowen/SPARK-6861 and squashes the following commits: acac637 [Sean Owen] Oops, add back execution but leave it at the default verify phase 35a4fd2 [Sean Owen] Revert change to scalastyle-config.xml location, but return scalastyle Maven check to verify phase instead of package to get it farther out of the way, since the Maven invocation is optional c4fb42c [Sean Owen] Move scalastyle-config.xml to dev/ (SBT config still doesn't work) to fix running mvn targets from subdirs; make scalastyle a verify stage target again in Maven; output results in target not project root; update to scalastyle 0.7.0 --- pom.xml | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/pom.xml b/pom.xml index 261292d5b6cde..bcc2f57f1af5d 100644 --- a/pom.xml +++ b/pom.xml @@ -1447,7 +1447,7 @@ org.scalastyle scalastyle-maven-plugin - 0.4.0 + 0.7.0 false true @@ -1456,13 +1456,12 @@ ${basedir}/src/main/scala ${basedir}/src/test/scala scalastyle-config.xml - scalastyle-output.xml + ${basedir}/target/scalastyle-output.xml ${project.build.sourceEncoding} ${project.reporting.outputEncoding} - package check From f11288d5272bc18585b8cad4ee3bd59eade7c296 Mon Sep 17 00:00:00 2001 From: Davies Liu Date: Wed, 15 Apr 2015 12:58:02 -0700 Subject: [PATCH 13/31] [SPARK-6886] [PySpark] fix big closure with shuffle Currently, the created broadcast object will have same life cycle as RDD in Python. For multistage jobs, an PythonRDD will be created in JVM and the RDD in Python may be GCed, then the broadcast will be destroyed in JVM before the PythonRDD. This PR change to use PythonRDD to track the lifecycle of the broadcast object. It also have a refactor about getNumPartitions() to avoid unnecessary creation of PythonRDD, which could be heavy. cc JoshRosen Author: Davies Liu Closes #5496 from davies/big_closure and squashes the following commits: 9a0ea4c [Davies Liu] fix big closure with shuffle --- python/pyspark/rdd.py | 15 +++++---------- python/pyspark/tests.py | 6 ++---- 2 files changed, 7 insertions(+), 14 deletions(-) diff --git a/python/pyspark/rdd.py b/python/pyspark/rdd.py index c9ac95d117574..93e658eded9e2 100644 --- a/python/pyspark/rdd.py +++ b/python/pyspark/rdd.py @@ -1197,7 +1197,7 @@ def take(self, num): [91, 92, 93] """ items = [] - totalParts = self._jrdd.partitions().size() + totalParts = self.getNumPartitions() partsScanned = 0 while len(items) < num and partsScanned < totalParts: @@ -1260,7 +1260,7 @@ def isEmpty(self): >>> sc.parallelize([1]).isEmpty() False """ - return self._jrdd.partitions().size() == 0 or len(self.take(1)) == 0 + return self.getNumPartitions() == 0 or len(self.take(1)) == 0 def saveAsNewAPIHadoopDataset(self, conf, keyConverter=None, valueConverter=None): """ @@ -2235,11 +2235,9 @@ def _prepare_for_python_RDD(sc, command, obj=None): ser = CloudPickleSerializer() pickled_command = ser.dumps((command, sys.version_info[:2])) if len(pickled_command) > (1 << 20): # 1M + # The broadcast will have same life cycle as created PythonRDD broadcast = sc.broadcast(pickled_command) pickled_command = ser.dumps(broadcast) - # tracking the life cycle by obj - if obj is not None: - obj._broadcast = broadcast broadcast_vars = ListConverter().convert( [x._jbroadcast for x in sc._pickled_broadcast_vars], sc._gateway._gateway_client) @@ -2294,12 +2292,9 @@ def pipeline_func(split, iterator): self._jrdd_deserializer = self.ctx.serializer self._bypass_serializer = False self.partitioner = prev.partitioner if self.preservesPartitioning else None - self._broadcast = None - def __del__(self): - if self._broadcast: - self._broadcast.unpersist() - self._broadcast = None + def getNumPartitions(self): + return self._prev_jrdd.partitions().size() @property def _jrdd(self): diff --git a/python/pyspark/tests.py b/python/pyspark/tests.py index b938b9ce12395..ee67e80d539f8 100644 --- a/python/pyspark/tests.py +++ b/python/pyspark/tests.py @@ -550,10 +550,8 @@ def test_large_closure(self): data = [float(i) for i in xrange(N)] rdd = self.sc.parallelize(range(1), 1).map(lambda x: len(data)) self.assertEquals(N, rdd.first()) - self.assertTrue(rdd._broadcast is not None) - rdd = self.sc.parallelize(range(1), 1).map(lambda x: 1) - self.assertEqual(1, rdd.first()) - self.assertTrue(rdd._broadcast is None) + # regression test for SPARK-6886 + self.assertEqual(1, rdd.map(lambda x: (x, 1)).groupByKey().count()) def test_zip_with_different_serializers(self): a = self.sc.parallelize(range(5)) From b75b3070740803480d235b0c9a86673721344f30 Mon Sep 17 00:00:00 2001 From: Liang-Chi Hsieh Date: Wed, 15 Apr 2015 13:00:19 -0700 Subject: [PATCH 14/31] [SPARK-6730][SQL] Allow using keyword as identifier in OPTIONS JIRA: https://issues.apache.org/jira/browse/SPARK-6730 It is very possible that keyword will be used as identifier in `OPTIONS`, this pr makes it works. However, another approach is that we can request that `OPTIONS` can't include keywords and has to use alternative identifier (e.g. table -> cassandraTable) if needed. If so, please let me know to close this pr. Thanks. Author: Liang-Chi Hsieh Closes #5520 from viirya/relax_options and squashes the following commits: 339fd68 [Liang-Chi Hsieh] Use regex parser. 92be11c [Liang-Chi Hsieh] Allow using keyword as identifier in OPTIONS. --- .../scala/org/apache/spark/sql/sources/ddl.scala | 15 ++++++++++++++- .../apache/spark/sql/sources/DDLTestSuite.scala | 11 ++++++----- 2 files changed, 20 insertions(+), 6 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala index 319de710fbc3e..2e861b84b7133 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala @@ -18,6 +18,7 @@ package org.apache.spark.sql.sources import scala.language.existentials +import scala.util.matching.Regex import scala.language.implicitConversions import org.apache.spark.Logging @@ -155,7 +156,19 @@ private[sql] class DDLParser( protected lazy val className: Parser[String] = repsep(ident, ".") ^^ { case s => s.mkString(".")} - protected lazy val pair: Parser[(String, String)] = ident ~ stringLit ^^ { case k ~ v => (k,v) } + override implicit def regexToParser(regex: Regex): Parser[String] = acceptMatch( + s"identifier matching regex ${regex}", { + case lexical.Identifier(str) if regex.unapplySeq(str).isDefined => str + case lexical.Keyword(str) if regex.unapplySeq(str).isDefined => str + } + ) + + protected lazy val optionName: Parser[String] = "[_a-zA-Z][a-zA-Z0-9]*".r ^^ { + case name => name + } + + protected lazy val pair: Parser[(String, String)] = + optionName ~ stringLit ^^ { case k ~ v => (k,v) } protected lazy val column: Parser[StructField] = ident ~ dataType ~ (COMMENT ~> stringLit).? ^^ { case columnName ~ typ ~ cm => diff --git a/sql/core/src/test/scala/org/apache/spark/sql/sources/DDLTestSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/sources/DDLTestSuite.scala index 3f24a497390c1..ca25751b9583d 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/sources/DDLTestSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/sources/DDLTestSuite.scala @@ -25,17 +25,17 @@ class DDLScanSource extends RelationProvider { override def createRelation( sqlContext: SQLContext, parameters: Map[String, String]): BaseRelation = { - SimpleDDLScan(parameters("from").toInt, parameters("TO").toInt)(sqlContext) + SimpleDDLScan(parameters("from").toInt, parameters("TO").toInt, parameters("Table"))(sqlContext) } } -case class SimpleDDLScan(from: Int, to: Int)(@transient val sqlContext: SQLContext) +case class SimpleDDLScan(from: Int, to: Int, table: String)(@transient val sqlContext: SQLContext) extends BaseRelation with TableScan { override def schema: StructType = StructType(Seq( StructField("intType", IntegerType, nullable = false, - new MetadataBuilder().putString("comment", "test comment").build()), + new MetadataBuilder().putString("comment", s"test comment $table").build()), StructField("stringType", StringType, nullable = false), StructField("dateType", DateType, nullable = false), StructField("timestampType", TimestampType, nullable = false), @@ -73,7 +73,8 @@ class DDLTestSuite extends DataSourceTest { |USING org.apache.spark.sql.sources.DDLScanSource |OPTIONS ( | From '1', - | To '10' + | To '10', + | Table 'test1' |) """.stripMargin) } @@ -81,7 +82,7 @@ class DDLTestSuite extends DataSourceTest { sqlTest( "describe ddlPeople", Seq( - Row("intType", "int", "test comment"), + Row("intType", "int", "test comment test1"), Row("stringType", "string", ""), Row("dateType", "date", ""), Row("timestampType", "timestamp", ""), From e3e4e9a38b25174ed8bb460ba2b375813ebf3b4b Mon Sep 17 00:00:00 2001 From: Liang-Chi Hsieh Date: Wed, 15 Apr 2015 13:01:29 -0700 Subject: [PATCH 15/31] [SPARK-6800][SQL] Update doc for JDBCRelation's columnPartition JIRA https://issues.apache.org/jira/browse/SPARK-6800 Author: Liang-Chi Hsieh Closes #5488 from viirya/fix_jdbc_where and squashes the following commits: 51386c8 [Liang-Chi Hsieh] Update code comment. 1dcc929 [Liang-Chi Hsieh] Update document. 3eb74d6 [Liang-Chi Hsieh] Revert and modify doc. df11783 [Liang-Chi Hsieh] Merge remote-tracking branch 'upstream/master' into fix_jdbc_where 3e7db15 [Liang-Chi Hsieh] Fix wrong logic to generate WHERE clause for JDBC. --- docs/sql-programming-guide.md | 5 ++++- .../src/main/scala/org/apache/spark/sql/SQLContext.scala | 4 ++-- 2 files changed, 6 insertions(+), 3 deletions(-) diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 332618edf0c55..03500867df70f 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -1371,7 +1371,10 @@ the Data Sources API. The following options are supported: These options must all be specified if any of them is specified. They describe how to partition the table when reading in parallel from multiple workers. - partitionColumn must be a numeric column from the table in question. + partitionColumn must be a numeric column from the table in question. Notice + that lowerBound and upperBound are just used to decide the + partition stride, not for filtering the rows in table. So all rows in the table will be + partitioned and returned. diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index c25ef58e6f62a..b237fe684cdc1 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -873,8 +873,8 @@ class SQLContext(@transient val sparkContext: SparkContext) * passed to this function. * * @param columnName the name of a column of integral type that will be used for partitioning. - * @param lowerBound the minimum value of `columnName` to retrieve - * @param upperBound the maximum value of `columnName` to retrieve + * @param lowerBound the minimum value of `columnName` used to decide partition stride + * @param upperBound the maximum value of `columnName` used to decide partition stride * @param numPartitions the number of partitions. the range `minValue`-`maxValue` will be split * evenly into this many partitions * From 785f95586b951d7b05481ee925fb95c20c4d6b6f Mon Sep 17 00:00:00 2001 From: Yin Huai Date: Wed, 15 Apr 2015 13:04:03 -0700 Subject: [PATCH 16/31] [SPARK-6887][SQL] ColumnBuilder misses FloatType https://issues.apache.org/jira/browse/SPARK-6887 Author: Yin Huai Closes #5499 from yhuai/inMemFloat and squashes the following commits: 84cba38 [Yin Huai] Add test. 4b75ba6 [Yin Huai] Add FloatType back. --- .../spark/sql/columnar/ColumnBuilder.scala | 1 + .../org/apache/spark/sql/QueryTest.scala | 3 + .../columnar/InMemoryColumnarQuerySuite.scala | 59 ++++++++++++++++++- 3 files changed, 62 insertions(+), 1 deletion(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnBuilder.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnBuilder.scala index c881747751520..00ed70430b84d 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnBuilder.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnBuilder.scala @@ -153,6 +153,7 @@ private[sql] object ColumnBuilder { val builder: ColumnBuilder = dataType match { case IntegerType => new IntColumnBuilder case LongType => new LongColumnBuilder + case FloatType => new FloatColumnBuilder case DoubleType => new DoubleColumnBuilder case BooleanType => new BooleanColumnBuilder case ByteType => new ByteColumnBuilder diff --git a/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala b/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala index 9a81fc5d72819..59f9508444f25 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala @@ -104,9 +104,12 @@ object QueryTest { // Converts data to types that we can do equality comparison using Scala collections. // For BigDecimal type, the Scala type has a better definition of equality test (similar to // Java's java.math.BigDecimal.compareTo). + // For binary arrays, we convert it to Seq to avoid of calling java.util.Arrays.equals for + // equality test. val converted: Seq[Row] = answer.map { s => Row.fromSeq(s.toSeq.map { case d: java.math.BigDecimal => BigDecimal(d) + case b: Array[Byte] => b.toSeq case o => o }) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/InMemoryColumnarQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/InMemoryColumnarQuerySuite.scala index 479210d1c9c43..56591d9dba29e 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/InMemoryColumnarQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/InMemoryColumnarQuerySuite.scala @@ -17,11 +17,13 @@ package org.apache.spark.sql.columnar +import java.sql.{Date, Timestamp} + import org.apache.spark.sql.TestData._ import org.apache.spark.sql.catalyst.expressions.Row import org.apache.spark.sql.test.TestSQLContext._ import org.apache.spark.sql.test.TestSQLContext.implicits._ -import org.apache.spark.sql.types.{DecimalType, Decimal} +import org.apache.spark.sql.types._ import org.apache.spark.sql.{QueryTest, TestData} import org.apache.spark.storage.StorageLevel.MEMORY_ONLY @@ -132,4 +134,59 @@ class InMemoryColumnarQuerySuite extends QueryTest { sql("SELECT * FROM test_fixed_decimal"), (1 to 10).map(i => Row(Decimal(i, 15, 10).toJavaBigDecimal))) } + + test("test different data types") { + // Create the schema. + val struct = + StructType( + StructField("f1", FloatType, true) :: + StructField("f2", ArrayType(BooleanType), true) :: Nil) + val dataTypes = + Seq(StringType, BinaryType, NullType, BooleanType, + ByteType, ShortType, IntegerType, LongType, + FloatType, DoubleType, DecimalType.Unlimited, DecimalType(6, 5), + DateType, TimestampType, + ArrayType(IntegerType), MapType(StringType, LongType), struct) + val fields = dataTypes.zipWithIndex.map { case (dataType, index) => + StructField(s"col$index", dataType, true) + } + val allColumns = fields.map(_.name).mkString(",") + val schema = StructType(fields) + + // Create a RDD for the schema + val rdd = + sparkContext.parallelize((1 to 100), 10).map { i => + Row( + s"str${i}: test cache.", + s"binary${i}: test cache.".getBytes("UTF-8"), + null, + i % 2 == 0, + i.toByte, + i.toShort, + i, + Long.MaxValue - i.toLong, + (i + 0.25).toFloat, + (i + 0.75), + BigDecimal(Long.MaxValue.toString + ".12345"), + new java.math.BigDecimal(s"${i % 9 + 1}" + ".23456"), + new Date(i), + new Timestamp(i), + (1 to i).toSeq, + (0 to i).map(j => s"map_key_$j" -> (Long.MaxValue - j)).toMap, + Row((i - 0.25).toFloat, (1 to i).toSeq)) + } + createDataFrame(rdd, schema).registerTempTable("InMemoryCache_different_data_types") + // Cache the table. + sql("cache table InMemoryCache_different_data_types") + // Make sure the table is indeed cached. + val tableScan = table("InMemoryCache_different_data_types").queryExecution.executedPlan + assert( + isCached("InMemoryCache_different_data_types"), + "InMemoryCache_different_data_types should be cached.") + // Issue a query and check the results. + checkAnswer( + sql(s"SELECT DISTINCT ${allColumns} FROM InMemoryCache_different_data_types"), + table("InMemoryCache_different_data_types").collect()) + dropTempTable("InMemoryCache_different_data_types") + } } From 85842760dc4616577162f44cc0fa9db9bd23bd9c Mon Sep 17 00:00:00 2001 From: Davies Liu Date: Wed, 15 Apr 2015 13:06:38 -0700 Subject: [PATCH 17/31] [SPARK-6638] [SQL] Improve performance of StringType in SQL This PR change the internal representation for StringType from java.lang.String to UTF8String, which is implemented use ArrayByte. This PR should not break any public API, Row.getString() will still return java.lang.String. This is the first step of improve the performance of String in SQL. cc rxin Author: Davies Liu Closes #5350 from davies/string and squashes the following commits: 3b7bfa8 [Davies Liu] fix schema of AddJar 2772f0d [Davies Liu] fix new test failure 6d776a9 [Davies Liu] Merge branch 'master' of github.com:apache/spark into string 59025c8 [Davies Liu] address comments from @marmbrus 341ec2c [Davies Liu] turn off scala style check in UTF8StringSuite 744788f [Davies Liu] Merge branch 'master' of github.com:apache/spark into string b04a19c [Davies Liu] add comment for getString/setString 08d897b [Davies Liu] Merge branch 'master' of github.com:apache/spark into string 5116b43 [Davies Liu] rollback unrelated changes 1314a37 [Davies Liu] address comments from Yin 867bf50 [Davies Liu] fix String filter push down 13d9d42 [Davies Liu] Merge branch 'master' of github.com:apache/spark into string 2089d24 [Davies Liu] add hashcode check back ac18ae6 [Davies Liu] address comment fd11364 [Davies Liu] optimize UTF8String 8d17f21 [Davies Liu] fix hive compatibility tests e5fa5b8 [Davies Liu] remove clone in UTF8String 28f3d81 [Davies Liu] Merge branch 'master' of github.com:apache/spark into string 28d6f32 [Davies Liu] refactor 537631c [Davies Liu] some comment about Date 9f4c194 [Davies Liu] convert data type for data source 956b0a4 [Davies Liu] fix hive tests 73e4363 [Davies Liu] Merge branch 'master' of github.com:apache/spark into string 9dc32d1 [Davies Liu] fix some hive tests 23a766c [Davies Liu] refactor 8b45864 [Davies Liu] fix codegen with UTF8String bb52e44 [Davies Liu] fix scala style c7dd4d2 [Davies Liu] fix some catalyst tests 38c303e [Davies Liu] fix python sql tests 5f9e120 [Davies Liu] fix sql tests 6b499ac [Davies Liu] fix style a85fb27 [Davies Liu] refactor d32abd1 [Davies Liu] fix utf8 for python api 4699c3a [Davies Liu] use Array[Byte] in UTF8String 21f67c6 [Davies Liu] cleanup 685fd07 [Davies Liu] use UTF8String instead of String for StringType --- python/pyspark/sql/dataframe.py | 10 +- .../main/scala/org/apache/spark/sql/Row.scala | 3 +- .../sql/catalyst/CatalystTypeConverters.scala | 37 +++ .../spark/sql/catalyst/ScalaReflection.scala | 1 + .../catalyst/analysis/HiveTypeCoercion.scala | 6 +- .../spark/sql/catalyst/expressions/Cast.scala | 36 +-- .../expressions/SpecificMutableRow.scala | 12 +- .../expressions/codegen/CodeGenerator.scala | 32 ++- .../codegen/GenerateProjection.scala | 46 ++-- .../sql/catalyst/expressions/generators.scala | 7 +- .../sql/catalyst/expressions/literals.scala | 7 +- .../sql/catalyst/expressions/predicates.scala | 3 +- .../spark/sql/catalyst/expressions/rows.scala | 14 +- .../expressions/stringOperations.scala | 90 ++++---- .../sql/catalyst/optimizer/Optimizer.scala | 21 +- .../apache/spark/sql/types/DateUtils.scala | 1 + .../apache/spark/sql/types/UTF8String.scala | 214 ++++++++++++++++++ .../apache/spark/sql/types/dataTypes.scala | 6 +- .../ExpressionEvaluationSuite.scala | 90 ++++---- .../GeneratedMutableEvaluationSuite.scala | 4 +- .../spark/sql/types/UTF8StringSuite.scala | 70 ++++++ .../org/apache/spark/sql/SQLContext.scala | 1 + .../spark/sql/columnar/ColumnStats.scala | 6 +- .../spark/sql/columnar/ColumnType.scala | 20 +- .../spark/sql/execution/ExistingRDD.scala | 31 ++- .../apache/spark/sql/execution/commands.scala | 13 +- .../spark/sql/execution/debug/package.scala | 2 +- .../spark/sql/execution/pythonUdfs.scala | 4 +- .../org/apache/spark/sql/jdbc/JDBCRDD.scala | 4 +- .../apache/spark/sql/jdbc/JDBCRelation.scala | 2 + .../org/apache/spark/sql/jdbc/jdbc.scala | 5 +- .../apache/spark/sql/json/JSONRelation.scala | 8 +- .../org/apache/spark/sql/json/JsonRDD.scala | 2 +- .../spark/sql/parquet/ParquetConverter.scala | 19 +- .../spark/sql/parquet/ParquetFilters.scala | 12 +- .../sql/parquet/ParquetTableSupport.scala | 7 +- .../apache/spark/sql/parquet/newParquet.scala | 11 +- .../sql/sources/DataSourceStrategy.scala | 37 +-- .../apache/spark/sql/sources/interfaces.scala | 10 + .../scala/org/apache/spark/sql/RowSuite.scala | 2 +- .../org/apache/spark/sql/SQLQuerySuite.scala | 10 +- .../spark/sql/columnar/ColumnTypeSuite.scala | 8 +- .../sql/columnar/ColumnarTestUtils.scala | 4 +- .../spark/sql/sources/TableScanSuite.scala | 10 +- .../spark/sql/hive/HiveInspectors.scala | 22 +- .../spark/sql/hive/HiveStrategies.scala | 13 +- .../hive/execution/ScriptTransformation.scala | 17 +- .../spark/sql/hive/execution/commands.scala | 10 +- .../org/apache/spark/sql/hive/Shim12.scala | 4 +- .../org/apache/spark/sql/hive/Shim13.scala | 36 ++- 50 files changed, 742 insertions(+), 298 deletions(-) create mode 100644 sql/catalyst/src/main/scala/org/apache/spark/sql/types/UTF8String.scala create mode 100644 sql/catalyst/src/test/scala/org/apache/spark/sql/types/UTF8StringSuite.scala diff --git a/python/pyspark/sql/dataframe.py b/python/pyspark/sql/dataframe.py index ef91a9c4f522d..f2c3b74a185cf 100644 --- a/python/pyspark/sql/dataframe.py +++ b/python/pyspark/sql/dataframe.py @@ -456,7 +456,7 @@ def join(self, other, joinExprs=None, joinType=None): One of `inner`, `outer`, `left_outer`, `right_outer`, `semijoin`. >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height).collect() - [Row(name=None, height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] + [Row(name=None, height=80), Row(name=u'Alice', height=None), Row(name=u'Bob', height=85)] """ if joinExprs is None: @@ -637,9 +637,9 @@ def groupBy(self, *cols): >>> df.groupBy().avg().collect() [Row(AVG(age)=3.5)] >>> df.groupBy('name').agg({'age': 'mean'}).collect() - [Row(name=u'Bob', AVG(age)=5.0), Row(name=u'Alice', AVG(age)=2.0)] + [Row(name=u'Alice', AVG(age)=2.0), Row(name=u'Bob', AVG(age)=5.0)] >>> df.groupBy(df.name).avg().collect() - [Row(name=u'Bob', AVG(age)=5.0), Row(name=u'Alice', AVG(age)=2.0)] + [Row(name=u'Alice', AVG(age)=2.0), Row(name=u'Bob', AVG(age)=5.0)] """ jcols = ListConverter().convert([_to_java_column(c) for c in cols], self._sc._gateway._gateway_client) @@ -867,11 +867,11 @@ def agg(self, *exprs): >>> gdf = df.groupBy(df.name) >>> gdf.agg({"*": "count"}).collect() - [Row(name=u'Bob', COUNT(1)=1), Row(name=u'Alice', COUNT(1)=1)] + [Row(name=u'Alice', COUNT(1)=1), Row(name=u'Bob', COUNT(1)=1)] >>> from pyspark.sql import functions as F >>> gdf.agg(F.min(df.age)).collect() - [Row(MIN(age)=5), Row(MIN(age)=2)] + [Row(MIN(age)=2), Row(MIN(age)=5)] """ assert exprs, "exprs should not be empty" if len(exprs) == 1 and isinstance(exprs[0], dict): diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala index d794f034f5578..ac8a782976465 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala @@ -20,7 +20,7 @@ package org.apache.spark.sql import scala.util.hashing.MurmurHash3 import org.apache.spark.sql.catalyst.expressions.GenericRow -import org.apache.spark.sql.types.{StructType, DateUtils} +import org.apache.spark.sql.types.StructType object Row { /** @@ -257,6 +257,7 @@ trait Row extends Serializable { * * @throws ClassCastException when data type does not match. */ + // TODO(davies): This is not the right default implementation, we use Int as Date internally def getDate(i: Int): java.sql.Date = apply(i).asInstanceOf[java.sql.Date] /** diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/CatalystTypeConverters.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/CatalystTypeConverters.scala index 91976fef6dc0d..d4f9fdacda4fb 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/CatalystTypeConverters.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/CatalystTypeConverters.scala @@ -77,6 +77,9 @@ object CatalystTypeConverters { } new GenericRowWithSchema(ar, structType) + case (d: String, _) => + UTF8String(d) + case (d: BigDecimal, _) => Decimal(d) @@ -175,6 +178,11 @@ object CatalystTypeConverters { case other => other } + case dataType: StringType => (item: Any) => extractOption(item) match { + case s: String => UTF8String(s) + case other => other + } + case _ => (item: Any) => extractOption(item) match { case d: BigDecimal => Decimal(d) @@ -184,6 +192,26 @@ object CatalystTypeConverters { } } + /** + * Converts Scala objects to catalyst rows / types. + * + * Note: This should be called before do evaluation on Row + * (It does not support UDT) + * This is used to create an RDD or test results with correct types for Catalyst. + */ + def convertToCatalyst(a: Any): Any = a match { + case s: String => UTF8String(s) + case d: java.sql.Date => DateUtils.fromJavaDate(d) + case d: BigDecimal => Decimal(d) + case d: java.math.BigDecimal => Decimal(d) + case seq: Seq[Any] => seq.map(convertToCatalyst) + case r: Row => Row(r.toSeq.map(convertToCatalyst): _*) + case arr: Array[Any] => arr.toSeq.map(convertToCatalyst).toArray + case m: Map[Any, Any] => + m.map { case (k, v) => (convertToCatalyst(k), convertToCatalyst(v)) }.toMap + case other => other + } + /** * Converts Catalyst types used internally in rows to standard Scala types * This method is slow, and for batch conversion you should be using converter @@ -211,6 +239,9 @@ object CatalystTypeConverters { case (i: Int, DateType) => DateUtils.toJavaDate(i) + case (s: UTF8String, StringType) => + s.toString() + case (other, _) => other } @@ -262,6 +293,12 @@ object CatalystTypeConverters { case other => other } + case StringType => + (item: Any) => item match { + case s: UTF8String => s.toString() + case other => other + } + case other => (item: Any) => item } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala index 01d5c1512201a..d9521953cad73 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala @@ -138,6 +138,7 @@ trait ScalaReflection { // The data type can be determined without ambiguity. case obj: BooleanType.JvmType => BooleanType case obj: BinaryType.JvmType => BinaryType + case obj: String => StringType case obj: StringType.JvmType => StringType case obj: ByteType.JvmType => ByteType case obj: ShortType.JvmType => ShortType diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala index 3aeb964994d37..35c7f00d4e42a 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala @@ -115,7 +115,7 @@ trait HiveTypeCoercion { * the appropriate numeric equivalent. */ object ConvertNaNs extends Rule[LogicalPlan] { - val stringNaN = Literal.create("NaN", StringType) + val stringNaN = Literal("NaN") def apply(plan: LogicalPlan): LogicalPlan = plan transform { case q: LogicalPlan => q transformExpressions { @@ -563,6 +563,10 @@ trait HiveTypeCoercion { case Sum(e @ TimestampType()) => Sum(Cast(e, DoubleType)) case Average(e @ TimestampType()) => Average(Cast(e, DoubleType)) + // Compatible with Hive + case Substring(e, start, len) if e.dataType != StringType => + Substring(Cast(e, StringType), start, len) + // Coalesce should return the first non-null value, which could be any column // from the list. So we need to make sure the return type is deterministic and // compatible with every child column. diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala index 31f1a5fdc7e53..adf941ab2a45f 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala @@ -21,7 +21,6 @@ import java.sql.{Date, Timestamp} import java.text.{DateFormat, SimpleDateFormat} import org.apache.spark.Logging -import org.apache.spark.sql.catalyst.errors.TreeNodeException import org.apache.spark.sql.types._ /** Cast the child expression to the target data type. */ @@ -112,21 +111,21 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // UDFToString private[this] def castToString(from: DataType): Any => Any = from match { - case BinaryType => buildCast[Array[Byte]](_, new String(_, "UTF-8")) - case DateType => buildCast[Int](_, d => DateUtils.toString(d)) - case TimestampType => buildCast[Timestamp](_, timestampToString) - case _ => buildCast[Any](_, _.toString) + case BinaryType => buildCast[Array[Byte]](_, UTF8String(_)) + case DateType => buildCast[Int](_, d => UTF8String(DateUtils.toString(d))) + case TimestampType => buildCast[Timestamp](_, t => UTF8String(timestampToString(t))) + case _ => buildCast[Any](_, o => UTF8String(o.toString)) } // BinaryConverter private[this] def castToBinary(from: DataType): Any => Any = from match { - case StringType => buildCast[String](_, _.getBytes("UTF-8")) + case StringType => buildCast[UTF8String](_, _.getBytes) } // UDFToBoolean private[this] def castToBoolean(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, _.length() != 0) + buildCast[UTF8String](_, _.length() != 0) case TimestampType => buildCast[Timestamp](_, t => t.getTime() != 0 || t.getNanos() != 0) case DateType => @@ -151,8 +150,9 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // TimestampConverter private[this] def castToTimestamp(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, s => { + buildCast[UTF8String](_, utfs => { // Throw away extra if more than 9 decimal places + val s = utfs.toString val periodIdx = s.indexOf(".") var n = s if (periodIdx != -1 && n.length() - periodIdx > 9) { @@ -227,8 +227,8 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // DateConverter private[this] def castToDate(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, s => - try DateUtils.fromJavaDate(Date.valueOf(s)) + buildCast[UTF8String](_, s => + try DateUtils.fromJavaDate(Date.valueOf(s.toString)) catch { case _: java.lang.IllegalArgumentException => null } ) case TimestampType => @@ -245,7 +245,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // LongConverter private[this] def castToLong(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, s => try s.toLong catch { + buildCast[UTF8String](_, s => try s.toString.toLong catch { case _: NumberFormatException => null }) case BooleanType => @@ -261,7 +261,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // IntConverter private[this] def castToInt(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, s => try s.toInt catch { + buildCast[UTF8String](_, s => try s.toString.toInt catch { case _: NumberFormatException => null }) case BooleanType => @@ -277,7 +277,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // ShortConverter private[this] def castToShort(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, s => try s.toShort catch { + buildCast[UTF8String](_, s => try s.toString.toShort catch { case _: NumberFormatException => null }) case BooleanType => @@ -293,7 +293,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // ByteConverter private[this] def castToByte(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, s => try s.toByte catch { + buildCast[UTF8String](_, s => try s.toString.toByte catch { case _: NumberFormatException => null }) case BooleanType => @@ -323,7 +323,9 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w private[this] def castToDecimal(from: DataType, target: DecimalType): Any => Any = from match { case StringType => - buildCast[String](_, s => try changePrecision(Decimal(s.toDouble), target) catch { + buildCast[UTF8String](_, s => try { + changePrecision(Decimal(s.toString.toDouble), target) + } catch { case _: NumberFormatException => null }) case BooleanType => @@ -348,7 +350,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // DoubleConverter private[this] def castToDouble(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, s => try s.toDouble catch { + buildCast[UTF8String](_, s => try s.toString.toDouble catch { case _: NumberFormatException => null }) case BooleanType => @@ -364,7 +366,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // FloatConverter private[this] def castToFloat(from: DataType): Any => Any = from match { case StringType => - buildCast[String](_, s => try s.toFloat catch { + buildCast[UTF8String](_, s => try s.toString.toFloat catch { case _: NumberFormatException => null }) case BooleanType => diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/SpecificMutableRow.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/SpecificMutableRow.scala index 47b6f358ed1b1..3475ed05f4454 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/SpecificMutableRow.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/SpecificMutableRow.scala @@ -230,13 +230,17 @@ final class SpecificMutableRow(val values: Array[MutableValue]) extends MutableR new GenericRow(newValues) } - override def update(ordinal: Int, value: Any): Unit = { - if (value == null) setNullAt(ordinal) else values(ordinal).update(value) + override def update(ordinal: Int, value: Any) { + if (value == null) { + setNullAt(ordinal) + } else { + values(ordinal).update(value) + } } - override def setString(ordinal: Int, value: String): Unit = update(ordinal, value) + override def setString(ordinal: Int, value: String): Unit = update(ordinal, UTF8String(value)) - override def getString(ordinal: Int): String = apply(ordinal).asInstanceOf[String] + override def getString(ordinal: Int): String = apply(ordinal).toString override def setInt(ordinal: Int, value: Int): Unit = { val currentValue = values(ordinal).asInstanceOf[MutableInt] diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala index d141354a0f427..be2c101d63a63 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala @@ -216,10 +216,11 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin val $primitiveTerm: ${termForType(dataType)} = $value """.children - case expressions.Literal(value: String, dataType) => + case expressions.Literal(value: UTF8String, dataType) => q""" val $nullTerm = ${value == null} - val $primitiveTerm: ${termForType(dataType)} = $value + val $primitiveTerm: ${termForType(dataType)} = + org.apache.spark.sql.types.UTF8String(${value.getBytes}) """.children case expressions.Literal(value: Int, dataType) => @@ -243,11 +244,14 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin if($nullTerm) ${defaultPrimitive(StringType)} else - new String(${eval.primitiveTerm}.asInstanceOf[Array[Byte]]) + org.apache.spark.sql.types.UTF8String(${eval.primitiveTerm}.asInstanceOf[Array[Byte]]) """.children case Cast(child @ DateType(), StringType) => - child.castOrNull(c => q"org.apache.spark.sql.types.DateUtils.toString($c)", StringType) + child.castOrNull(c => + q"""org.apache.spark.sql.types.UTF8String( + org.apache.spark.sql.types.DateUtils.toString($c))""", + StringType) case Cast(child @ NumericType(), IntegerType) => child.castOrNull(c => q"$c.toInt", IntegerType) @@ -272,9 +276,18 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin if($nullTerm) ${defaultPrimitive(StringType)} else - ${eval.primitiveTerm}.toString + org.apache.spark.sql.types.UTF8String(${eval.primitiveTerm}.toString) """.children + case EqualTo(e1: BinaryType, e2: BinaryType) => + (e1, e2).evaluateAs (BooleanType) { + case (eval1, eval2) => + q""" + java.util.Arrays.equals($eval1.asInstanceOf[Array[Byte]], + $eval2.asInstanceOf[Array[Byte]]) + """ + } + case EqualTo(e1, e2) => (e1, e2).evaluateAs (BooleanType) { case (eval1, eval2) => q"$eval1 == $eval2" } @@ -597,7 +610,8 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin val localLogger = log val localLoggerTree = reify { localLogger } q""" - $localLoggerTree.debug(${e.toString} + ": " + (if($nullTerm) "null" else $primitiveTerm)) + $localLoggerTree.debug( + ${e.toString} + ": " + (if ($nullTerm) "null" else $primitiveTerm.toString)) """ :: Nil } else { Nil @@ -608,6 +622,7 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin protected def getColumn(inputRow: TermName, dataType: DataType, ordinal: Int) = { dataType match { + case StringType => q"$inputRow($ordinal).asInstanceOf[org.apache.spark.sql.types.UTF8String]" case dt @ NativeType() => q"$inputRow.${accessorForType(dt)}($ordinal)" case _ => q"$inputRow.apply($ordinal).asInstanceOf[${termForType(dataType)}]" } @@ -619,6 +634,7 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin ordinal: Int, value: TermName) = { dataType match { + case StringType => q"$destinationRow.update($ordinal, $value)" case dt @ NativeType() => q"$destinationRow.${mutatorForType(dt)}($ordinal, $value)" case _ => q"$destinationRow.update($ordinal, $value)" } @@ -642,13 +658,13 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin case DoubleType => "Double" case FloatType => "Float" case BooleanType => "Boolean" - case StringType => "String" + case StringType => "org.apache.spark.sql.types.UTF8String" } protected def defaultPrimitive(dt: DataType) = dt match { case BooleanType => ru.Literal(Constant(false)) case FloatType => ru.Literal(Constant(-1.0.toFloat)) - case StringType => ru.Literal(Constant("")) + case StringType => q"""org.apache.spark.sql.types.UTF8String("")""" case ShortType => ru.Literal(Constant(-1.toShort)) case LongType => ru.Literal(Constant(-1L)) case ByteType => ru.Literal(Constant(-1.toByte)) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/GenerateProjection.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/GenerateProjection.scala index 69397a73a8880..6f572ff959fb4 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/GenerateProjection.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/GenerateProjection.scala @@ -111,36 +111,54 @@ object GenerateProjection extends CodeGenerator[Seq[Expression], Projection] { val specificAccessorFunctions = NativeType.all.map { dataType => val ifStatements = expressions.zipWithIndex.flatMap { - case (e, i) if e.dataType == dataType => + // getString() is not used by expressions + case (e, i) if e.dataType == dataType && dataType != StringType => val elementName = newTermName(s"c$i") // TODO: The string of ifs gets pretty inefficient as the row grows in size. // TODO: Optional null checks? q"if(i == $i) return $elementName" :: Nil case _ => Nil } - - q""" - override def ${accessorForType(dataType)}(i: Int):${termForType(dataType)} = { - ..$ifStatements; - $accessorFailure - }""" + dataType match { + // Row() need this interface to compile + case StringType => + q""" + override def getString(i: Int): String = { + $accessorFailure + }""" + case other => + q""" + override def ${accessorForType(dataType)}(i: Int): ${termForType(dataType)} = { + ..$ifStatements; + $accessorFailure + }""" + } } val specificMutatorFunctions = NativeType.all.map { dataType => val ifStatements = expressions.zipWithIndex.flatMap { - case (e, i) if e.dataType == dataType => + // setString() is not used by expressions + case (e, i) if e.dataType == dataType && dataType != StringType => val elementName = newTermName(s"c$i") // TODO: The string of ifs gets pretty inefficient as the row grows in size. // TODO: Optional null checks? q"if(i == $i) { nullBits($i) = false; $elementName = value; return }" :: Nil case _ => Nil } - - q""" - override def ${mutatorForType(dataType)}(i: Int, value: ${termForType(dataType)}): Unit = { - ..$ifStatements; - $accessorFailure - }""" + dataType match { + case StringType => + // MutableRow() need this interface to compile + q""" + override def setString(i: Int, value: String) { + $accessorFailure + }""" + case other => + q""" + override def ${mutatorForType(dataType)}(i: Int, value: ${termForType(dataType)}) { + ..$ifStatements; + $accessorFailure + }""" + } } val hashValues = expressions.zipWithIndex.map { case (e,i) => diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/generators.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/generators.scala index 860b72fad38b3..67caadb839ff9 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/generators.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/generators.scala @@ -19,7 +19,7 @@ package org.apache.spark.sql.catalyst.expressions import scala.collection.Map -import org.apache.spark.sql.catalyst.trees +import org.apache.spark.sql.catalyst.{CatalystTypeConverters, trees} import org.apache.spark.sql.types._ /** @@ -85,8 +85,11 @@ case class UserDefinedGenerator( override protected def makeOutput(): Seq[Attribute] = schema override def eval(input: Row): TraversableOnce[Row] = { + // TODO(davies): improve this + // Convert the objects into Scala Type before calling function, we need schema to support UDT + val inputSchema = StructType(children.map(e => StructField(e.simpleString, e.dataType, true))) val inputRow = new InterpretedProjection(children) - function(inputRow(input)) + function(CatalystTypeConverters.convertToScala(inputRow(input), inputSchema).asInstanceOf[Row]) } override def toString: String = s"UserDefinedGenerator(${children.mkString(",")})" diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala index 0e2d593e94124..18cba4cc46707 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala @@ -19,6 +19,7 @@ package org.apache.spark.sql.catalyst.expressions import java.sql.{Date, Timestamp} +import org.apache.spark.sql.catalyst.CatalystTypeConverters import org.apache.spark.sql.types._ object Literal { @@ -29,7 +30,7 @@ object Literal { case f: Float => Literal(f, FloatType) case b: Byte => Literal(b, ByteType) case s: Short => Literal(s, ShortType) - case s: String => Literal(s, StringType) + case s: String => Literal(UTF8String(s), StringType) case b: Boolean => Literal(b, BooleanType) case d: BigDecimal => Literal(Decimal(d), DecimalType.Unlimited) case d: java.math.BigDecimal => Literal(Decimal(d), DecimalType.Unlimited) @@ -42,7 +43,9 @@ object Literal { throw new RuntimeException("Unsupported literal type " + v.getClass + " " + v) } - def create(v: Any, dataType: DataType): Literal = Literal(v, dataType) + def create(v: Any, dataType: DataType): Literal = { + Literal(CatalystTypeConverters.convertToCatalyst(v), dataType) + } } /** diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/predicates.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/predicates.scala index 7e47cb3fffe12..fcd6352079b4d 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/predicates.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/predicates.scala @@ -179,8 +179,7 @@ case class EqualTo(left: Expression, right: Expression) extends BinaryComparison val r = right.eval(input) if (r == null) null else if (left.dataType != BinaryType) l == r - else BinaryType.ordering.compare( - l.asInstanceOf[Array[Byte]], r.asInstanceOf[Array[Byte]]) == 0 + else java.util.Arrays.equals(l.asInstanceOf[Array[Byte]], r.asInstanceOf[Array[Byte]]) } } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala index 0a275b84086cf..1b62e17ff47fd 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.catalyst.expressions -import org.apache.spark.sql.types.{StructType, NativeType} +import org.apache.spark.sql.types.{UTF8String, StructType, NativeType} /** @@ -37,6 +37,7 @@ trait MutableRow extends Row { def setByte(ordinal: Int, value: Byte) def setFloat(ordinal: Int, value: Float) def setString(ordinal: Int, value: String) + // TODO(davies): add setDate() and setDecimal() } /** @@ -114,9 +115,15 @@ class GenericRow(protected[sql] val values: Array[Any]) extends Row { } override def getString(i: Int): String = { - values(i).asInstanceOf[String] + values(i) match { + case null => null + case s: String => s + case utf8: UTF8String => utf8.toString + } } + // TODO(davies): add getDate and getDecimal + // Custom hashCode function that matches the efficient code generated version. override def hashCode: Int = { var result: Int = 37 @@ -189,8 +196,7 @@ class GenericMutableRow(v: Array[Any]) extends GenericRow(v) with MutableRow { override def setFloat(ordinal: Int, value: Float): Unit = { values(ordinal) = value } override def setInt(ordinal: Int, value: Int): Unit = { values(ordinal) = value } override def setLong(ordinal: Int, value: Long): Unit = { values(ordinal) = value } - override def setString(ordinal: Int, value: String): Unit = { values(ordinal) = value } - + override def setString(ordinal: Int, value: String) { values(ordinal) = UTF8String(value)} override def setNullAt(i: Int): Unit = { values(i) = null } override def setShort(ordinal: Int, value: Short): Unit = { values(ordinal) = value } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/stringOperations.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/stringOperations.scala index acfbbace608ef..d597bf7ce756a 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/stringOperations.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/stringOperations.scala @@ -19,11 +19,8 @@ package org.apache.spark.sql.catalyst.expressions import java.util.regex.Pattern -import scala.collection.IndexedSeqOptimized - - import org.apache.spark.sql.catalyst.analysis.UnresolvedException -import org.apache.spark.sql.types.{BinaryType, BooleanType, DataType, StringType} +import org.apache.spark.sql.types._ trait StringRegexExpression { self: BinaryExpression => @@ -60,38 +57,17 @@ trait StringRegexExpression { if(r == null) { null } else { - val regex = pattern(r.asInstanceOf[String]) + val regex = pattern(r.asInstanceOf[UTF8String].toString) if(regex == null) { null } else { - matches(regex, l.asInstanceOf[String]) + matches(regex, l.asInstanceOf[UTF8String].toString) } } } } } -trait CaseConversionExpression { - self: UnaryExpression => - - type EvaluatedType = Any - - def convert(v: String): String - - override def foldable: Boolean = child.foldable - def nullable: Boolean = child.nullable - def dataType: DataType = StringType - - override def eval(input: Row): Any = { - val evaluated = child.eval(input) - if (evaluated == null) { - null - } else { - convert(evaluated.toString) - } - } -} - /** * Simple RegEx pattern matching function */ @@ -134,12 +110,33 @@ case class RLike(left: Expression, right: Expression) override def matches(regex: Pattern, str: String): Boolean = regex.matcher(str).find(0) } +trait CaseConversionExpression { + self: UnaryExpression => + + type EvaluatedType = Any + + def convert(v: UTF8String): UTF8String + + override def foldable: Boolean = child.foldable + def nullable: Boolean = child.nullable + def dataType: DataType = StringType + + override def eval(input: Row): Any = { + val evaluated = child.eval(input) + if (evaluated == null) { + null + } else { + convert(evaluated.asInstanceOf[UTF8String]) + } + } +} + /** * A function that converts the characters of a string to uppercase. */ case class Upper(child: Expression) extends UnaryExpression with CaseConversionExpression { - override def convert(v: String): String = v.toUpperCase() + override def convert(v: UTF8String): UTF8String = v.toUpperCase override def toString: String = s"Upper($child)" } @@ -149,7 +146,7 @@ case class Upper(child: Expression) extends UnaryExpression with CaseConversionE */ case class Lower(child: Expression) extends UnaryExpression with CaseConversionExpression { - override def convert(v: String): String = v.toLowerCase() + override def convert(v: UTF8String): UTF8String = v.toLowerCase override def toString: String = s"Lower($child)" } @@ -162,15 +159,16 @@ trait StringComparison { override def nullable: Boolean = left.nullable || right.nullable - def compare(l: String, r: String): Boolean + def compare(l: UTF8String, r: UTF8String): Boolean override def eval(input: Row): Any = { - val leftEval = left.eval(input).asInstanceOf[String] + val leftEval = left.eval(input) if(leftEval == null) { null } else { - val rightEval = right.eval(input).asInstanceOf[String] - if (rightEval == null) null else compare(leftEval, rightEval) + val rightEval = right.eval(input) + if (rightEval == null) null + else compare(leftEval.asInstanceOf[UTF8String], rightEval.asInstanceOf[UTF8String]) } } @@ -184,7 +182,7 @@ trait StringComparison { */ case class Contains(left: Expression, right: Expression) extends BinaryPredicate with StringComparison { - override def compare(l: String, r: String): Boolean = l.contains(r) + override def compare(l: UTF8String, r: UTF8String): Boolean = l.contains(r) } /** @@ -192,7 +190,7 @@ case class Contains(left: Expression, right: Expression) */ case class StartsWith(left: Expression, right: Expression) extends BinaryPredicate with StringComparison { - override def compare(l: String, r: String): Boolean = l.startsWith(r) + override def compare(l: UTF8String, r: UTF8String): Boolean = l.startsWith(r) } /** @@ -200,7 +198,7 @@ case class StartsWith(left: Expression, right: Expression) */ case class EndsWith(left: Expression, right: Expression) extends BinaryPredicate with StringComparison { - override def compare(l: String, r: String): Boolean = l.endsWith(r) + override def compare(l: UTF8String, r: UTF8String): Boolean = l.endsWith(r) } /** @@ -224,9 +222,7 @@ case class Substring(str: Expression, pos: Expression, len: Expression) extends override def children: Seq[Expression] = str :: pos :: len :: Nil @inline - def slice[T, C <: Any](str: C, startPos: Int, sliceLen: Int) - (implicit ev: (C=>IndexedSeqOptimized[T,_])): Any = { - val len = str.length + def slicePos(startPos: Int, sliceLen: Int, length: () => Int): (Int, Int) = { // Hive and SQL use one-based indexing for SUBSTR arguments but also accept zero and // negative indices for start positions. If a start index i is greater than 0, it // refers to element i-1 in the sequence. If a start index i is less than 0, it refers @@ -235,7 +231,7 @@ case class Substring(str: Expression, pos: Expression, len: Expression) extends val start = startPos match { case pos if pos > 0 => pos - 1 - case neg if neg < 0 => len + neg + case neg if neg < 0 => length() + neg case _ => 0 } @@ -244,12 +240,11 @@ case class Substring(str: Expression, pos: Expression, len: Expression) extends case x => start + x } - str.slice(start, end) + (start, end) } override def eval(input: Row): Any = { val string = str.eval(input) - val po = pos.eval(input) val ln = len.eval(input) @@ -257,11 +252,14 @@ case class Substring(str: Expression, pos: Expression, len: Expression) extends null } else { val start = po.asInstanceOf[Int] - val length = ln.asInstanceOf[Int] - + val length = ln.asInstanceOf[Int] string match { - case ba: Array[Byte] => slice(ba, start, length) - case other => slice(other.toString, start, length) + case ba: Array[Byte] => + val (st, end) = slicePos(start, length, () => ba.length) + ba.slice(st, end) + case s: UTF8String => + val (st, end) = slicePos(start, length, () => s.length) + s.slice(st, end) } } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala index 93e69d409cb91..7c80634d2c852 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala @@ -198,14 +198,19 @@ object LikeSimplification extends Rule[LogicalPlan] { val equalTo = "([^_%]*)".r def apply(plan: LogicalPlan): LogicalPlan = plan transformAllExpressions { - case Like(l, Literal(startsWith(pattern), StringType)) if !pattern.endsWith("\\") => - StartsWith(l, Literal(pattern)) - case Like(l, Literal(endsWith(pattern), StringType)) => - EndsWith(l, Literal(pattern)) - case Like(l, Literal(contains(pattern), StringType)) if !pattern.endsWith("\\") => - Contains(l, Literal(pattern)) - case Like(l, Literal(equalTo(pattern), StringType)) => - EqualTo(l, Literal(pattern)) + case Like(l, Literal(utf, StringType)) => + utf.toString match { + case startsWith(pattern) if !pattern.endsWith("\\") => + StartsWith(l, Literal(pattern)) + case endsWith(pattern) => + EndsWith(l, Literal(pattern)) + case contains(pattern) if !pattern.endsWith("\\") => + Contains(l, Literal(pattern)) + case equalTo(pattern) => + EqualTo(l, Literal(pattern)) + case _ => + Like(l, Literal.create(utf, StringType)) + } } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala index 504fb05842505..d36a49159b87f 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala @@ -40,6 +40,7 @@ object DateUtils { millisToDays(d.getTime) } + // we should use the exact day as Int, for example, (year, month, day) -> day def millisToDays(millisLocal: Long): Int = { ((millisLocal + LOCAL_TIMEZONE.get().getOffset(millisLocal)) / MILLIS_PER_DAY).toInt } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/UTF8String.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/UTF8String.scala new file mode 100644 index 0000000000000..fc02ba6c9c43e --- /dev/null +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/UTF8String.scala @@ -0,0 +1,214 @@ +/* +* Licensed to the Apache Software Foundation (ASF) under one or more +* contributor license agreements. See the NOTICE file distributed with +* this work for additional information regarding copyright ownership. +* The ASF licenses this file to You under the Apache License, Version 2.0 +* (the "License"); you may not use this file except in compliance with +* the License. You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +package org.apache.spark.sql.types + +import java.util.Arrays + +/** + * A UTF-8 String, as internal representation of StringType in SparkSQL + * + * A String encoded in UTF-8 as an Array[Byte], which can be used for comparison, + * search, see http://en.wikipedia.org/wiki/UTF-8 for details. + * + * Note: This is not designed for general use cases, should not be used outside SQL. + */ + +final class UTF8String extends Ordered[UTF8String] with Serializable { + + private[this] var bytes: Array[Byte] = _ + + /** + * Update the UTF8String with String. + */ + def set(str: String): UTF8String = { + bytes = str.getBytes("utf-8") + this + } + + /** + * Update the UTF8String with Array[Byte], which should be encoded in UTF-8 + */ + def set(bytes: Array[Byte]): UTF8String = { + this.bytes = bytes + this + } + + /** + * Return the number of bytes for a code point with the first byte as `b` + * @param b The first byte of a code point + */ + @inline + private[this] def numOfBytes(b: Byte): Int = { + val offset = (b & 0xFF) - 192 + if (offset >= 0) UTF8String.bytesOfCodePointInUTF8(offset) else 1 + } + + /** + * Return the number of code points in it. + * + * This is only used by Substring() when `start` is negative. + */ + def length(): Int = { + var len = 0 + var i: Int = 0 + while (i < bytes.length) { + i += numOfBytes(bytes(i)) + len += 1 + } + len + } + + def getBytes: Array[Byte] = { + bytes + } + + /** + * Return a substring of this, + * @param start the position of first code point + * @param until the position after last code point + */ + def slice(start: Int, until: Int): UTF8String = { + if (until <= start || start >= bytes.length || bytes == null) { + new UTF8String + } + + var c = 0 + var i: Int = 0 + while (c < start && i < bytes.length) { + i += numOfBytes(bytes(i)) + c += 1 + } + var j = i + while (c < until && j < bytes.length) { + j += numOfBytes(bytes(j)) + c += 1 + } + UTF8String(Arrays.copyOfRange(bytes, i, j)) + } + + def contains(sub: UTF8String): Boolean = { + val b = sub.getBytes + if (b.length == 0) { + return true + } + var i: Int = 0 + while (i <= bytes.length - b.length) { + // In worst case, it's O(N*K), but should works fine with SQL + if (bytes(i) == b(0) && Arrays.equals(Arrays.copyOfRange(bytes, i, i + b.length), b)) { + return true + } + i += 1 + } + false + } + + def startsWith(prefix: UTF8String): Boolean = { + val b = prefix.getBytes + if (b.length > bytes.length) { + return false + } + Arrays.equals(Arrays.copyOfRange(bytes, 0, b.length), b) + } + + def endsWith(suffix: UTF8String): Boolean = { + val b = suffix.getBytes + if (b.length > bytes.length) { + return false + } + Arrays.equals(Arrays.copyOfRange(bytes, bytes.length - b.length, bytes.length), b) + } + + def toUpperCase(): UTF8String = { + // upper case depends on locale, fallback to String. + UTF8String(toString().toUpperCase) + } + + def toLowerCase(): UTF8String = { + // lower case depends on locale, fallback to String. + UTF8String(toString().toLowerCase) + } + + override def toString(): String = { + new String(bytes, "utf-8") + } + + override def clone(): UTF8String = new UTF8String().set(this.bytes) + + override def compare(other: UTF8String): Int = { + var i: Int = 0 + val b = other.getBytes + while (i < bytes.length && i < b.length) { + val res = bytes(i).compareTo(b(i)) + if (res != 0) return res + i += 1 + } + bytes.length - b.length + } + + override def compareTo(other: UTF8String): Int = { + compare(other) + } + + override def equals(other: Any): Boolean = other match { + case s: UTF8String => + Arrays.equals(bytes, s.getBytes) + case s: String => + // This is only used for Catalyst unit tests + // fail fast + bytes.length >= s.length && length() == s.length && toString() == s + case _ => + false + } + + override def hashCode(): Int = { + Arrays.hashCode(bytes) + } +} + +object UTF8String { + // number of tailing bytes in a UTF8 sequence for a code point + // see http://en.wikipedia.org/wiki/UTF-8, 192-256 of Byte 1 + private[types] val bytesOfCodePointInUTF8: Array[Int] = Array(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 4, 4, 4, 4, 4, 4, 4, 4, + 5, 5, 5, 5, + 6, 6, 6, 6) + + /** + * Create a UTF-8 String from String + */ + def apply(s: String): UTF8String = { + if (s != null) { + new UTF8String().set(s) + } else{ + null + } + } + + /** + * Create a UTF-8 String from Array[Byte], which should be encoded in UTF-8 + */ + def apply(bytes: Array[Byte]): UTF8String = { + if (bytes != null) { + new UTF8String().set(bytes) + } else { + null + } + } +} diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala index cdf2bc68d9c5e..c6fb22c26bd3c 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala @@ -350,7 +350,7 @@ class StringType private() extends NativeType with PrimitiveType { // The companion object and this class is separated so the companion object also subclasses // this type. Otherwise, the companion object would be of type "StringType$" in byte code. // Defined with a private constructor so the companion object is the only possible instantiation. - private[sql] type JvmType = String + private[sql] type JvmType = UTF8String @transient private[sql] lazy val tag = ScalaReflectionLock.synchronized { typeTag[JvmType] } private[sql] val ordering = implicitly[Ordering[JvmType]] @@ -1196,8 +1196,8 @@ abstract class UserDefinedType[UserType] extends DataType with Serializable { /** * Convert the user type to a SQL datum * - * TODO: Can we make this take obj: UserType? The issue is in ScalaReflection.convertToCatalyst, - * where we need to convert Any to UserType. + * TODO: Can we make this take obj: UserType? The issue is in + * CatalystTypeConverters.convertToCatalyst, where we need to convert Any to UserType. */ def serialize(obj: Any): Any diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala index d4362a91d992c..76298f03c94ae 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala @@ -25,8 +25,9 @@ import org.scalactic.TripleEqualsSupport.Spread import org.scalatest.FunSuite import org.scalatest.Matchers._ -import org.apache.spark.sql.catalyst.dsl.expressions._ +import org.apache.spark.sql.catalyst.CatalystTypeConverters import org.apache.spark.sql.catalyst.analysis.UnresolvedGetField +import org.apache.spark.sql.catalyst.dsl.expressions._ import org.apache.spark.sql.types._ @@ -59,6 +60,10 @@ class ExpressionEvaluationBaseSuite extends FunSuite { class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { + def create_row(values: Any*): Row = { + new GenericRow(values.map(CatalystTypeConverters.convertToCatalyst).toArray) + } + test("literals") { checkEvaluation(Literal(1), 1) checkEvaluation(Literal(true), true) @@ -265,24 +270,23 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { test("LIKE Non-literal Regular Expression") { val regEx = 'a.string.at(0) - checkEvaluation("abcd" like regEx, null, new GenericRow(Array[Any](null))) - checkEvaluation("abdef" like regEx, true, new GenericRow(Array[Any]("abdef"))) - checkEvaluation("a_%b" like regEx, true, new GenericRow(Array[Any]("a\\__b"))) - checkEvaluation("addb" like regEx, true, new GenericRow(Array[Any]("a_%b"))) - checkEvaluation("addb" like regEx, false, new GenericRow(Array[Any]("a\\__b"))) - checkEvaluation("addb" like regEx, false, new GenericRow(Array[Any]("a%\\%b"))) - checkEvaluation("a_%b" like regEx, true, new GenericRow(Array[Any]("a%\\%b"))) - checkEvaluation("addb" like regEx, true, new GenericRow(Array[Any]("a%"))) - checkEvaluation("addb" like regEx, false, new GenericRow(Array[Any]("**"))) - checkEvaluation("abc" like regEx, true, new GenericRow(Array[Any]("a%"))) - checkEvaluation("abc" like regEx, false, new GenericRow(Array[Any]("b%"))) - checkEvaluation("abc" like regEx, false, new GenericRow(Array[Any]("bc%"))) - checkEvaluation("a\nb" like regEx, true, new GenericRow(Array[Any]("a_b"))) - checkEvaluation("ab" like regEx, true, new GenericRow(Array[Any]("a%b"))) - checkEvaluation("a\nb" like regEx, true, new GenericRow(Array[Any]("a%b"))) - - checkEvaluation(Literal.create(null, StringType) like regEx, null, - new GenericRow(Array[Any]("bc%"))) + checkEvaluation("abcd" like regEx, null, create_row(null)) + checkEvaluation("abdef" like regEx, true, create_row("abdef")) + checkEvaluation("a_%b" like regEx, true, create_row("a\\__b")) + checkEvaluation("addb" like regEx, true, create_row("a_%b")) + checkEvaluation("addb" like regEx, false, create_row("a\\__b")) + checkEvaluation("addb" like regEx, false, create_row("a%\\%b")) + checkEvaluation("a_%b" like regEx, true, create_row("a%\\%b")) + checkEvaluation("addb" like regEx, true, create_row("a%")) + checkEvaluation("addb" like regEx, false, create_row("**")) + checkEvaluation("abc" like regEx, true, create_row("a%")) + checkEvaluation("abc" like regEx, false, create_row("b%")) + checkEvaluation("abc" like regEx, false, create_row("bc%")) + checkEvaluation("a\nb" like regEx, true, create_row("a_b")) + checkEvaluation("ab" like regEx, true, create_row("a%b")) + checkEvaluation("a\nb" like regEx, true, create_row("a%b")) + + checkEvaluation(Literal.create(null, StringType) like regEx, null, create_row("bc%")) } test("RLIKE literal Regular Expression") { @@ -313,14 +317,14 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { test("RLIKE Non-literal Regular Expression") { val regEx = 'a.string.at(0) - checkEvaluation("abdef" rlike regEx, true, new GenericRow(Array[Any]("abdef"))) - checkEvaluation("abbbbc" rlike regEx, true, new GenericRow(Array[Any]("a.*c"))) - checkEvaluation("fofo" rlike regEx, true, new GenericRow(Array[Any]("^fo"))) - checkEvaluation("fo\no" rlike regEx, true, new GenericRow(Array[Any]("^fo\no$"))) - checkEvaluation("Bn" rlike regEx, true, new GenericRow(Array[Any]("^Ba*n"))) + checkEvaluation("abdef" rlike regEx, true, create_row("abdef")) + checkEvaluation("abbbbc" rlike regEx, true, create_row("a.*c")) + checkEvaluation("fofo" rlike regEx, true, create_row("^fo")) + checkEvaluation("fo\no" rlike regEx, true, create_row("^fo\no$")) + checkEvaluation("Bn" rlike regEx, true, create_row("^Ba*n")) intercept[java.util.regex.PatternSyntaxException] { - evaluate("abbbbc" rlike regEx, new GenericRow(Array[Any]("**"))) + evaluate("abbbbc" rlike regEx, create_row("**")) } } @@ -763,7 +767,7 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { } test("null checking") { - val row = new GenericRow(Array[Any]("^Ba*n", null, true, null)) + val row = create_row("^Ba*n", null, true, null) val c1 = 'a.string.at(0) val c2 = 'a.string.at(1) val c3 = 'a.boolean.at(2) @@ -803,7 +807,7 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { } test("case when") { - val row = new GenericRow(Array[Any](null, false, true, "a", "b", "c")) + val row = create_row(null, false, true, "a", "b", "c") val c1 = 'a.boolean.at(0) val c2 = 'a.boolean.at(1) val c3 = 'a.boolean.at(2) @@ -846,13 +850,13 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { } test("complex type") { - val row = new GenericRow(Array[Any]( - "^Ba*n", // 0 - null.asInstanceOf[String], // 1 - new GenericRow(Array[Any]("aa", "bb")), // 2 - Map("aa"->"bb"), // 3 - Seq("aa", "bb") // 4 - )) + val row = create_row( + "^Ba*n", // 0 + null.asInstanceOf[UTF8String], // 1 + create_row("aa", "bb"), // 2 + Map("aa"->"bb"), // 3 + Seq("aa", "bb") // 4 + ) val typeS = StructType( StructField("a", StringType, true) :: StructField("b", StringType, true) :: Nil @@ -909,7 +913,7 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { } test("arithmetic") { - val row = new GenericRow(Array[Any](1, 2, 3, null)) + val row = create_row(1, 2, 3, null) val c1 = 'a.int.at(0) val c2 = 'a.int.at(1) val c3 = 'a.int.at(2) @@ -934,7 +938,7 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { } test("fractional arithmetic") { - val row = new GenericRow(Array[Any](1.1, 2.0, 3.1, null)) + val row = create_row(1.1, 2.0, 3.1, null) val c1 = 'a.double.at(0) val c2 = 'a.double.at(1) val c3 = 'a.double.at(2) @@ -958,7 +962,7 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { } test("BinaryComparison") { - val row = new GenericRow(Array[Any](1, 2, 3, null, 3, null)) + val row = create_row(1, 2, 3, null, 3, null) val c1 = 'a.int.at(0) val c2 = 'a.int.at(1) val c3 = 'a.int.at(2) @@ -988,7 +992,7 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { } test("StringComparison") { - val row = new GenericRow(Array[Any]("abc", null)) + val row = create_row("abc", null) val c1 = 'a.string.at(0) val c2 = 'a.string.at(1) @@ -1009,7 +1013,7 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { } test("Substring") { - val row = new GenericRow(Array[Any]("example", "example".toArray.map(_.toByte))) + val row = create_row("example", "example".toArray.map(_.toByte)) val s = 'a.string.at(0) @@ -1053,7 +1057,7 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { // substring(null, _, _) -> null checkEvaluation(Substring(s, Literal.create(100, IntegerType), Literal.create(4, IntegerType)), - null, new GenericRow(Array[Any](null))) + null, create_row(null)) // substring(_, null, _) -> null checkEvaluation(Substring(s, Literal.create(null, IntegerType), Literal.create(4, IntegerType)), @@ -1102,20 +1106,20 @@ class ExpressionEvaluationSuite extends ExpressionEvaluationBaseSuite { test("SQRT") { val inputSequence = (1 to (1<<24) by 511).map(_ * (1L<<24)) val expectedResults = inputSequence.map(l => math.sqrt(l.toDouble)) - val rowSequence = inputSequence.map(l => new GenericRow(Array[Any](l.toDouble))) + val rowSequence = inputSequence.map(l => create_row(l.toDouble)) val d = 'a.double.at(0) for ((row, expected) <- rowSequence zip expectedResults) { checkEvaluation(Sqrt(d), expected, row) } - checkEvaluation(Sqrt(Literal.create(null, DoubleType)), null, new GenericRow(Array[Any](null))) + checkEvaluation(Sqrt(Literal.create(null, DoubleType)), null, create_row(null)) checkEvaluation(Sqrt(-1), null, EmptyRow) checkEvaluation(Sqrt(-1.5), null, EmptyRow) } test("Bitwise operations") { - val row = new GenericRow(Array[Any](1, 2, 3, null)) + val row = create_row(1, 2, 3, null) val c1 = 'a.int.at(0) val c2 = 'a.int.at(1) val c3 = 'a.int.at(2) diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/GeneratedMutableEvaluationSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/GeneratedMutableEvaluationSuite.scala index 275ea2627ebcd..bcc0c404d2cfb 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/GeneratedMutableEvaluationSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/GeneratedMutableEvaluationSuite.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.catalyst.expressions -import org.apache.spark.sql.catalyst.dsl.expressions._ +import org.apache.spark.sql.catalyst.CatalystTypeConverters import org.apache.spark.sql.catalyst.expressions.codegen._ /** @@ -43,7 +43,7 @@ class GeneratedMutableEvaluationSuite extends ExpressionEvaluationSuite { } val actual = plan(inputRow) - val expectedRow = new GenericRow(Array[Any](expected)) + val expectedRow = new GenericRow(Array[Any](CatalystTypeConverters.convertToCatalyst(expected))) if (actual.hashCode() != expectedRow.hashCode()) { fail( s""" diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/UTF8StringSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/UTF8StringSuite.scala new file mode 100644 index 0000000000000..a22aa6f244c48 --- /dev/null +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/UTF8StringSuite.scala @@ -0,0 +1,70 @@ +/* +* Licensed to the Apache Software Foundation (ASF) under one or more +* contributor license agreements. See the NOTICE file distributed with +* this work for additional information regarding copyright ownership. +* The ASF licenses this file to You under the Apache License, Version 2.0 +* (the "License"); you may not use this file except in compliance with +* the License. You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +package org.apache.spark.sql.types + +import org.scalatest.FunSuite + +// scalastyle:off +class UTF8StringSuite extends FunSuite { + test("basic") { + def check(str: String, len: Int) { + + assert(UTF8String(str).length == len) + assert(UTF8String(str.getBytes("utf8")).length() == len) + + assert(UTF8String(str) == str) + assert(UTF8String(str.getBytes("utf8")) == str) + assert(UTF8String(str).toString == str) + assert(UTF8String(str.getBytes("utf8")).toString == str) + assert(UTF8String(str.getBytes("utf8")) == UTF8String(str)) + + assert(UTF8String(str).hashCode() == UTF8String(str.getBytes("utf8")).hashCode()) + } + + check("hello", 5) + check("世 界", 3) + } + + test("contains") { + assert(UTF8String("hello").contains(UTF8String("ello"))) + assert(!UTF8String("hello").contains(UTF8String("vello"))) + assert(UTF8String("大千世界").contains(UTF8String("千世"))) + assert(!UTF8String("大千世界").contains(UTF8String("世千"))) + } + + test("prefix") { + assert(UTF8String("hello").startsWith(UTF8String("hell"))) + assert(!UTF8String("hello").startsWith(UTF8String("ell"))) + assert(UTF8String("大千世界").startsWith(UTF8String("大千"))) + assert(!UTF8String("大千世界").startsWith(UTF8String("千"))) + } + + test("suffix") { + assert(UTF8String("hello").endsWith(UTF8String("ello"))) + assert(!UTF8String("hello").endsWith(UTF8String("ellov"))) + assert(UTF8String("大千世界").endsWith(UTF8String("世界"))) + assert(!UTF8String("大千世界").endsWith(UTF8String("世"))) + } + + test("slice") { + assert(UTF8String("hello").slice(1, 3) == UTF8String("el")) + assert(UTF8String("大千世界").slice(0, 1) == UTF8String("大")) + assert(UTF8String("大千世界").slice(1, 3) == UTF8String("千世")) + assert(UTF8String("大千世界").slice(3, 5) == UTF8String("界")) + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index b237fe684cdc1..89a4faf35e0d2 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -1195,6 +1195,7 @@ class SQLContext(@transient val sparkContext: SparkContext) case FloatType => true case DateType => true case TimestampType => true + case StringType => true case ArrayType(_, _) => true case MapType(_, _, _) => true case StructType(_) => true diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala index 87a6631da8300..b0f983c180673 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala @@ -216,13 +216,13 @@ private[sql] class IntColumnStats extends ColumnStats { } private[sql] class StringColumnStats extends ColumnStats { - protected var upper: String = null - protected var lower: String = null + protected var upper: UTF8String = null + protected var lower: UTF8String = null override def gatherStats(row: Row, ordinal: Int): Unit = { super.gatherStats(row, ordinal) if (!row.isNullAt(ordinal)) { - val value = row.getString(ordinal) + val value = row(ordinal).asInstanceOf[UTF8String] if (upper == null || value.compareTo(upper) > 0) upper = value if (lower == null || value.compareTo(lower) < 0) lower = value sizeInBytes += STRING.actualSize(row, ordinal) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala index c47497e0662d9..1b9e0df2dcb5e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.columnar import java.nio.ByteBuffer -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import scala.reflect.runtime.universe.TypeTag @@ -312,26 +312,28 @@ private[sql] object STRING extends NativeColumnType(StringType, 7, 8) { row.getString(ordinal).getBytes("utf-8").length + 4 } - override def append(v: String, buffer: ByteBuffer): Unit = { - val stringBytes = v.getBytes("utf-8") + override def append(v: UTF8String, buffer: ByteBuffer): Unit = { + val stringBytes = v.getBytes buffer.putInt(stringBytes.length).put(stringBytes, 0, stringBytes.length) } - override def extract(buffer: ByteBuffer): String = { + override def extract(buffer: ByteBuffer): UTF8String = { val length = buffer.getInt() val stringBytes = new Array[Byte](length) buffer.get(stringBytes, 0, length) - new String(stringBytes, "utf-8") + UTF8String(stringBytes) } - override def setField(row: MutableRow, ordinal: Int, value: String): Unit = { - row.setString(ordinal, value) + override def setField(row: MutableRow, ordinal: Int, value: UTF8String): Unit = { + row.update(ordinal, value) } - override def getField(row: Row, ordinal: Int): String = row.getString(ordinal) + override def getField(row: Row, ordinal: Int): UTF8String = { + row(ordinal).asInstanceOf[UTF8String] + } override def copyField(from: Row, fromOrdinal: Int, to: MutableRow, toOrdinal: Int): Unit = { - to.setString(toOrdinal, from.getString(fromOrdinal)) + to.update(toOrdinal, from(fromOrdinal)) } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/ExistingRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/ExistingRDD.scala index 656bdd7212f56..1fd387eec7e57 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/ExistingRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/ExistingRDD.scala @@ -19,12 +19,12 @@ package org.apache.spark.sql.execution import org.apache.spark.annotation.DeveloperApi import org.apache.spark.rdd.RDD -import org.apache.spark.sql.{Row, SQLContext} import org.apache.spark.sql.catalyst.CatalystTypeConverters import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation -import org.apache.spark.sql.catalyst.expressions.{SpecificMutableRow, Attribute} +import org.apache.spark.sql.catalyst.expressions.{Attribute, GenericMutableRow, SpecificMutableRow} import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, Statistics} import org.apache.spark.sql.types.StructType +import org.apache.spark.sql.{Row, SQLContext} /** * :: DeveloperApi :: @@ -54,6 +54,33 @@ object RDDConversions { } } } + + /** + * Convert the objects inside Row into the types Catalyst expected. + */ + def rowToRowRdd(data: RDD[Row], schema: StructType): RDD[Row] = { + data.mapPartitions { iterator => + if (iterator.isEmpty) { + Iterator.empty + } else { + val bufferedIterator = iterator.buffered + val mutableRow = new GenericMutableRow(bufferedIterator.head.toSeq.toArray) + val schemaFields = schema.fields.toArray + val converters = schemaFields.map { + f => CatalystTypeConverters.createToCatalystConverter(f.dataType) + } + bufferedIterator.map { r => + var i = 0 + while (i < mutableRow.length) { + mutableRow(i) = converters(i)(r(i)) + i += 1 + } + + mutableRow + } + } + } + } } /** Logical plan node for scanning data from an RDD. */ diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/commands.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/commands.scala index fad7a281dc1e2..99f24910fd61f 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/commands.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/commands.scala @@ -20,12 +20,13 @@ package org.apache.spark.sql.execution import org.apache.spark.Logging import org.apache.spark.annotation.DeveloperApi import org.apache.spark.rdd.RDD -import org.apache.spark.sql.types.{BooleanType, StructField, StructType, StringType} -import org.apache.spark.sql.{DataFrame, SQLConf, SQLContext} +import org.apache.spark.sql.catalyst.CatalystTypeConverters import org.apache.spark.sql.catalyst.errors.TreeNodeException -import org.apache.spark.sql.catalyst.expressions.{AttributeReference, Row, Attribute} +import org.apache.spark.sql.catalyst.expressions.{Attribute, AttributeReference, Row} import org.apache.spark.sql.catalyst.plans.logical import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan +import org.apache.spark.sql.types._ +import org.apache.spark.sql.{DataFrame, SQLConf, SQLContext} /** * A logical command that is executed for its side-effects. `RunnableCommand`s are @@ -61,7 +62,11 @@ case class ExecutedCommand(cmd: RunnableCommand) extends SparkPlan { override def executeTake(limit: Int): Array[Row] = sideEffectResult.take(limit).toArray - override def execute(): RDD[Row] = sqlContext.sparkContext.parallelize(sideEffectResult, 1) + override def execute(): RDD[Row] = { + val converted = sideEffectResult.map(r => + CatalystTypeConverters.convertToCatalyst(r, schema).asInstanceOf[Row]) + sqlContext.sparkContext.parallelize(converted, 1) + } } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/debug/package.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/debug/package.scala index e916e68e58b5d..710787096e6cb 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/debug/package.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/debug/package.scala @@ -164,7 +164,7 @@ package object debug { case (_: Long, LongType) => case (_: Int, IntegerType) => - case (_: String, StringType) => + case (_: UTF8String, StringType) => case (_: Float, FloatType) => case (_: Byte, ByteType) => case (_: Short, ShortType) => diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala index 5b308d88d4cdf..7a43bfd8bc8d9 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala @@ -140,6 +140,7 @@ object EvaluatePython { case (ud, udt: UserDefinedType[_]) => toJava(udt.serialize(ud), udt.sqlType) case (date: Int, DateType) => DateUtils.toJavaDate(date) + case (s: UTF8String, StringType) => s.toString // Pyrolite can handle Timestamp and Decimal case (other, _) => other @@ -192,7 +193,8 @@ object EvaluatePython { case (c: Long, IntegerType) => c.toInt case (c: Int, LongType) => c.toLong case (c: Double, FloatType) => c.toFloat - case (c, StringType) if !c.isInstanceOf[String] => c.toString + case (c: String, StringType) => UTF8String(c) + case (c, StringType) if !c.isInstanceOf[String] => UTF8String(c.toString) case (c, _) => c } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRDD.scala index 463e1dcc268bc..b9022fcd9e3ad 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRDD.scala @@ -233,7 +233,7 @@ private[sql] class JDBCRDD( * Converts value to SQL expression. */ private def compileValue(value: Any): Any = value match { - case stringValue: String => s"'${escapeSql(stringValue)}'" + case stringValue: UTF8String => s"'${escapeSql(stringValue.toString)}'" case _ => value } @@ -349,12 +349,14 @@ private[sql] class JDBCRDD( val pos = i + 1 conversions(i) match { case BooleanConversion => mutableRow.setBoolean(i, rs.getBoolean(pos)) + // TODO(davies): convert Date into Int case DateConversion => mutableRow.update(i, rs.getDate(pos)) case DecimalConversion => mutableRow.update(i, rs.getBigDecimal(pos)) case DoubleConversion => mutableRow.setDouble(i, rs.getDouble(pos)) case FloatConversion => mutableRow.setFloat(i, rs.getFloat(pos)) case IntegerConversion => mutableRow.setInt(i, rs.getInt(pos)) case LongConversion => mutableRow.setLong(i, rs.getLong(pos)) + // TODO(davies): use getBytes for better performance, if the encoding is UTF-8 case StringConversion => mutableRow.setString(i, rs.getString(pos)) case TimestampConversion => mutableRow.update(i, rs.getTimestamp(pos)) case BinaryConversion => mutableRow.update(i, rs.getBytes(pos)) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRelation.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRelation.scala index 4fa84dc076f7e..99b755c9f25d0 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRelation.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRelation.scala @@ -130,6 +130,8 @@ private[sql] case class JDBCRelation( extends BaseRelation with PrunedFilteredScan { + override val needConversion: Boolean = false + override val schema: StructType = JDBCRDD.resolveTable(url, table, properties) override def buildScan(requiredColumns: Array[String], filters: Array[Filter]): RDD[Row] = { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/jdbc.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/jdbc.scala index 34f864f5fda7a..d4e0abc040bc6 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/jdbc.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/jdbc.scala @@ -18,11 +18,8 @@ package org.apache.spark.sql import java.sql.{Connection, DriverManager, PreparedStatement} -import org.apache.spark.{Logging, Partition} -import org.apache.spark.sql._ -import org.apache.spark.sql.sources.LogicalRelation -import org.apache.spark.sql.jdbc.{JDBCPartitioningInfo, JDBCRelation, JDBCPartition} +import org.apache.spark.Logging import org.apache.spark.sql.types._ package object jdbc { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala index f4c99b4b56606..e3352d02787fd 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala @@ -20,12 +20,12 @@ package org.apache.spark.sql.json import java.io.IOException import org.apache.hadoop.fs.Path + import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.expressions.Row - -import org.apache.spark.sql.{SaveMode, DataFrame, SQLContext} import org.apache.spark.sql.sources._ -import org.apache.spark.sql.types.{DataType, StructType} +import org.apache.spark.sql.types.StructType +import org.apache.spark.sql.{DataFrame, SQLContext, SaveMode} private[sql] class DefaultSource @@ -113,6 +113,8 @@ private[sql] case class JSONRelation( // TODO: Support partitioned JSON relation. private def baseRDD = sqlContext.sparkContext.textFile(path) + override val needConversion: Boolean = false + override val schema = userSpecifiedSchema.getOrElse( JsonRDD.nullTypeToStringType( JsonRDD.inferSchema( diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala index b1e8521383756..29de7401dda71 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala @@ -409,7 +409,7 @@ private[sql] object JsonRDD extends Logging { null } else { desiredType match { - case StringType => toString(value) + case StringType => UTF8String(toString(value)) case _ if value == null || value == "" => null // guard the non string type case IntegerType => value.asInstanceOf[IntegerType.JvmType] case LongType => toLong(value) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetConverter.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetConverter.scala index 43ca359b51735..bc108e37dfb0f 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetConverter.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetConverter.scala @@ -219,8 +219,8 @@ private[parquet] abstract class CatalystConverter extends GroupConverter { protected[parquet] def updateBinary(fieldIndex: Int, value: Binary): Unit = updateField(fieldIndex, value.getBytes) - protected[parquet] def updateString(fieldIndex: Int, value: String): Unit = - updateField(fieldIndex, value) + protected[parquet] def updateString(fieldIndex: Int, value: Array[Byte]): Unit = + updateField(fieldIndex, UTF8String(value)) protected[parquet] def updateTimestamp(fieldIndex: Int, value: Binary): Unit = updateField(fieldIndex, readTimestamp(value)) @@ -418,8 +418,8 @@ private[parquet] class CatalystPrimitiveRowConverter( override protected[parquet] def updateBinary(fieldIndex: Int, value: Binary): Unit = current.update(fieldIndex, value.getBytes) - override protected[parquet] def updateString(fieldIndex: Int, value: String): Unit = - current.setString(fieldIndex, value) + override protected[parquet] def updateString(fieldIndex: Int, value: Array[Byte]): Unit = + current.update(fieldIndex, UTF8String(value)) override protected[parquet] def updateTimestamp(fieldIndex: Int, value: Binary): Unit = current.update(fieldIndex, readTimestamp(value)) @@ -475,19 +475,18 @@ private[parquet] class CatalystPrimitiveConverter( private[parquet] class CatalystPrimitiveStringConverter(parent: CatalystConverter, fieldIndex: Int) extends CatalystPrimitiveConverter(parent, fieldIndex) { - private[this] var dict: Array[String] = null + private[this] var dict: Array[Array[Byte]] = null override def hasDictionarySupport: Boolean = true override def setDictionary(dictionary: Dictionary):Unit = - dict = Array.tabulate(dictionary.getMaxId + 1) {dictionary.decodeToBinary(_).toStringUsingUTF8} - + dict = Array.tabulate(dictionary.getMaxId + 1) { dictionary.decodeToBinary(_).getBytes } override def addValueFromDictionary(dictionaryId: Int): Unit = parent.updateString(fieldIndex, dict(dictionaryId)) override def addBinary(value: Binary): Unit = - parent.updateString(fieldIndex, value.toStringUsingUTF8) + parent.updateString(fieldIndex, value.getBytes) } private[parquet] object CatalystArrayConverter { @@ -714,9 +713,9 @@ private[parquet] class CatalystNativeArrayConverter( elements += 1 } - override protected[parquet] def updateString(fieldIndex: Int, value: String): Unit = { + override protected[parquet] def updateString(fieldIndex: Int, value: Array[Byte]): Unit = { checkGrowBuffer() - buffer(elements) = value.asInstanceOf[NativeType] + buffer(elements) = UTF8String(value).asInstanceOf[NativeType] elements += 1 } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetFilters.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetFilters.scala index 0357dcc4688be..5eb1c6abc2432 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetFilters.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetFilters.scala @@ -55,7 +55,7 @@ private[sql] object ParquetFilters { case StringType => (n: String, v: Any) => FilterApi.eq( binaryColumn(n), - Option(v).map(s => Binary.fromString(s.asInstanceOf[String])).orNull) + Option(v).map(s => Binary.fromByteArray(s.asInstanceOf[UTF8String].getBytes)).orNull) case BinaryType => (n: String, v: Any) => FilterApi.eq( binaryColumn(n), @@ -76,7 +76,7 @@ private[sql] object ParquetFilters { case StringType => (n: String, v: Any) => FilterApi.notEq( binaryColumn(n), - Option(v).map(s => Binary.fromString(s.asInstanceOf[String])).orNull) + Option(v).map(s => Binary.fromByteArray(s.asInstanceOf[UTF8String].getBytes)).orNull) case BinaryType => (n: String, v: Any) => FilterApi.notEq( binaryColumn(n), @@ -94,7 +94,7 @@ private[sql] object ParquetFilters { (n: String, v: Any) => FilterApi.lt(doubleColumn(n), v.asInstanceOf[java.lang.Double]) case StringType => (n: String, v: Any) => - FilterApi.lt(binaryColumn(n), Binary.fromString(v.asInstanceOf[String])) + FilterApi.lt(binaryColumn(n), Binary.fromByteArray(v.asInstanceOf[UTF8String].getBytes)) case BinaryType => (n: String, v: Any) => FilterApi.lt(binaryColumn(n), Binary.fromByteArray(v.asInstanceOf[Array[Byte]])) @@ -111,7 +111,7 @@ private[sql] object ParquetFilters { (n: String, v: Any) => FilterApi.ltEq(doubleColumn(n), v.asInstanceOf[java.lang.Double]) case StringType => (n: String, v: Any) => - FilterApi.ltEq(binaryColumn(n), Binary.fromString(v.asInstanceOf[String])) + FilterApi.ltEq(binaryColumn(n), Binary.fromByteArray(v.asInstanceOf[UTF8String].getBytes)) case BinaryType => (n: String, v: Any) => FilterApi.ltEq(binaryColumn(n), Binary.fromByteArray(v.asInstanceOf[Array[Byte]])) @@ -128,7 +128,7 @@ private[sql] object ParquetFilters { (n: String, v: Any) => FilterApi.gt(doubleColumn(n), v.asInstanceOf[java.lang.Double]) case StringType => (n: String, v: Any) => - FilterApi.gt(binaryColumn(n), Binary.fromString(v.asInstanceOf[String])) + FilterApi.gt(binaryColumn(n), Binary.fromByteArray(v.asInstanceOf[UTF8String].getBytes)) case BinaryType => (n: String, v: Any) => FilterApi.gt(binaryColumn(n), Binary.fromByteArray(v.asInstanceOf[Array[Byte]])) @@ -145,7 +145,7 @@ private[sql] object ParquetFilters { (n: String, v: Any) => FilterApi.gtEq(doubleColumn(n), v.asInstanceOf[java.lang.Double]) case StringType => (n: String, v: Any) => - FilterApi.gtEq(binaryColumn(n), Binary.fromString(v.asInstanceOf[String])) + FilterApi.gtEq(binaryColumn(n), Binary.fromByteArray(v.asInstanceOf[UTF8String].getBytes)) case BinaryType => (n: String, v: Any) => FilterApi.gtEq(binaryColumn(n), Binary.fromByteArray(v.asInstanceOf[Array[Byte]])) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala index 5a1b15490d273..e05a4c20b0d41 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala @@ -198,10 +198,7 @@ private[parquet] class RowWriteSupport extends WriteSupport[Row] with Logging { if (value != null) { schema match { case StringType => writer.addBinary( - Binary.fromByteArray( - value.asInstanceOf[String].getBytes("utf-8") - ) - ) + Binary.fromByteArray(value.asInstanceOf[UTF8String].getBytes)) case BinaryType => writer.addBinary( Binary.fromByteArray(value.asInstanceOf[Array[Byte]])) case IntegerType => writer.addInteger(value.asInstanceOf[Int]) @@ -349,7 +346,7 @@ private[parquet] class MutableRowWriteSupport extends RowWriteSupport { index: Int): Unit = { ctype match { case StringType => writer.addBinary( - Binary.fromByteArray(record(index).asInstanceOf[String].getBytes("utf-8"))) + Binary.fromByteArray(record(index).asInstanceOf[UTF8String].getBytes)) case BinaryType => writer.addBinary( Binary.fromByteArray(record(index).asInstanceOf[Array[Byte]])) case IntegerType => writer.addInteger(record.getInt(index)) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala index 20fdf5e58ef82..af7b3c81ae7b2 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala @@ -33,7 +33,6 @@ import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce.lib.input.FileInputFormat import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat import org.apache.hadoop.mapreduce.{InputSplit, Job, JobContext} - import parquet.filter2.predicate.FilterApi import parquet.format.converter.ParquetMetadataConverter import parquet.hadoop.metadata.CompressionCodecName @@ -45,13 +44,13 @@ import org.apache.spark.deploy.SparkHadoopUtil import org.apache.spark.mapred.SparkHadoopMapRedUtil import org.apache.spark.mapreduce.SparkHadoopMapReduceUtil import org.apache.spark.rdd.{NewHadoopPartition, NewHadoopRDD, RDD} -import org.apache.spark.sql.catalyst.expressions import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.{CatalystTypeConverters, expressions} import org.apache.spark.sql.parquet.ParquetTypesConverter._ import org.apache.spark.sql.sources._ import org.apache.spark.sql.types.{IntegerType, StructField, StructType, _} import org.apache.spark.sql.{DataFrame, Row, SQLConf, SQLContext, SaveMode} -import org.apache.spark.{Logging, Partition => SparkPartition, SerializableWritable, SparkException, TaskContext} +import org.apache.spark.{Logging, SerializableWritable, SparkException, TaskContext, Partition => SparkPartition} /** * Allows creation of Parquet based tables using the syntax: @@ -409,6 +408,9 @@ private[sql] case class ParquetRelation2( file.getName == ParquetFileWriter.PARQUET_METADATA_FILE } + // Skip type conversion + override val needConversion: Boolean = false + // TODO Should calculate per scan size // It's common that a query only scans a fraction of a large Parquet file. Returning size of the // whole Parquet file disables some optimizations in this case (e.g. broadcast join). @@ -550,7 +552,8 @@ private[sql] case class ParquetRelation2( baseRDD.mapPartitionsWithInputSplit { case (split: ParquetInputSplit, iterator) => val partValues = selectedPartitions.collectFirst { - case p if split.getPath.getParent.toString == p.path => p.values + case p if split.getPath.getParent.toString == p.path => + CatalystTypeConverters.convertToCatalyst(p.values).asInstanceOf[Row] }.get val requiredPartOrdinal = partitionKeyLocations.keys.toSeq diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/DataSourceStrategy.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/DataSourceStrategy.scala index 34d048e426d10..b3d71f687a60a 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/DataSourceStrategy.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/DataSourceStrategy.scala @@ -23,7 +23,8 @@ import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.planning.PhysicalOperation import org.apache.spark.sql.catalyst.plans.logical import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan -import org.apache.spark.sql.types.StringType +import org.apache.spark.sql.execution.SparkPlan +import org.apache.spark.sql.types.{UTF8String, StringType} import org.apache.spark.sql.{Row, Strategy, execution, sources} /** @@ -53,7 +54,7 @@ private[sql] object DataSourceStrategy extends Strategy { (a, _) => t.buildScan(a)) :: Nil case l @ LogicalRelation(t: TableScan) => - execution.PhysicalRDD(l.output, t.buildScan()) :: Nil + createPhysicalRDD(l.relation, l.output, t.buildScan()) :: Nil case i @ logical.InsertIntoTable( l @ LogicalRelation(t: InsertableRelation), part, query, overwrite, false) if part.isEmpty => @@ -102,20 +103,30 @@ private[sql] object DataSourceStrategy extends Strategy { projectList.asInstanceOf[Seq[Attribute]] // Safe due to if above. .map(relation.attributeMap) // Match original case of attributes. - val scan = - execution.PhysicalRDD( - projectList.map(_.toAttribute), + val scan = createPhysicalRDD(relation.relation, projectList.map(_.toAttribute), scanBuilder(requestedColumns, pushedFilters)) filterCondition.map(execution.Filter(_, scan)).getOrElse(scan) } else { val requestedColumns = (projectSet ++ filterSet).map(relation.attributeMap).toSeq - val scan = - execution.PhysicalRDD(requestedColumns, scanBuilder(requestedColumns, pushedFilters)) + val scan = createPhysicalRDD(relation.relation, requestedColumns, + scanBuilder(requestedColumns, pushedFilters)) execution.Project(projectList, filterCondition.map(execution.Filter(_, scan)).getOrElse(scan)) } } + private[this] def createPhysicalRDD( + relation: BaseRelation, + output: Seq[Attribute], + rdd: RDD[Row]): SparkPlan = { + val converted = if (relation.needConversion) { + execution.RDDConversions.rowToRowRdd(rdd, relation.schema) + } else { + rdd + } + execution.PhysicalRDD(output, converted) + } + /** * Selects Catalyst predicate [[Expression]]s which are convertible into data source [[Filter]]s, * and convert them. @@ -167,14 +178,14 @@ private[sql] object DataSourceStrategy extends Strategy { case expressions.Not(child) => translate(child).map(sources.Not) - case expressions.StartsWith(a: Attribute, Literal(v: String, StringType)) => - Some(sources.StringStartsWith(a.name, v)) + case expressions.StartsWith(a: Attribute, Literal(v: UTF8String, StringType)) => + Some(sources.StringStartsWith(a.name, v.toString)) - case expressions.EndsWith(a: Attribute, Literal(v: String, StringType)) => - Some(sources.StringEndsWith(a.name, v)) + case expressions.EndsWith(a: Attribute, Literal(v: UTF8String, StringType)) => + Some(sources.StringEndsWith(a.name, v.toString)) - case expressions.Contains(a: Attribute, Literal(v: String, StringType)) => - Some(sources.StringContains(a.name, v)) + case expressions.Contains(a: Attribute, Literal(v: UTF8String, StringType)) => + Some(sources.StringContains(a.name, v.toString)) case _ => None } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala index 8f9946a5a801e..ca53dcdb92c52 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala @@ -126,6 +126,16 @@ abstract class BaseRelation { * could lead to execution plans that are suboptimal (i.e. broadcasting a very large table). */ def sizeInBytes: Long = sqlContext.conf.defaultSizeInBytes + + /** + * Whether does it need to convert the objects in Row to internal representation, for example: + * java.lang.String -> UTF8String + * java.lang.Decimal -> Decimal + * + * Note: The internal representation is not stable across releases and thus data sources outside + * of Spark SQL should leave this as true. + */ + def needConversion: Boolean = true } /** diff --git a/sql/core/src/test/scala/org/apache/spark/sql/RowSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/RowSuite.scala index 36465cc2fa11a..bf6cf1321a056 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/RowSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/RowSuite.scala @@ -30,7 +30,7 @@ class RowSuite extends FunSuite { test("create row") { val expected = new GenericMutableRow(4) expected.update(0, 2147483647) - expected.update(1, "this is a string") + expected.setString(1, "this is a string") expected.update(2, false) expected.update(3, null) val actual1 = Row(2147483647, "this is a string", false, null) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index 0174aaee94246..4c48dca44498b 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -17,18 +17,14 @@ package org.apache.spark.sql -import org.apache.spark.sql.execution.GeneratedAggregate -import org.apache.spark.sql.test.TestSQLContext import org.scalatest.BeforeAndAfterAll +import org.apache.spark.sql.TestData._ import org.apache.spark.sql.execution.GeneratedAggregate import org.apache.spark.sql.functions._ -import org.apache.spark.sql.catalyst.errors.TreeNodeException -import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan -import org.apache.spark.sql.types._ - -import org.apache.spark.sql.TestData._ +import org.apache.spark.sql.test.TestSQLContext import org.apache.spark.sql.test.TestSQLContext.{udf => _, _} +import org.apache.spark.sql.types._ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala index 5f08834f73c6b..c86ef338fc644 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala @@ -65,7 +65,7 @@ class ColumnTypeSuite extends FunSuite with Logging { checkActualSize(FLOAT, Float.MaxValue, 4) checkActualSize(FIXED_DECIMAL(15, 10), Decimal(0, 15, 10), 8) checkActualSize(BOOLEAN, true, 1) - checkActualSize(STRING, "hello", 4 + "hello".getBytes("utf-8").length) + checkActualSize(STRING, UTF8String("hello"), 4 + "hello".getBytes("utf-8").length) checkActualSize(DATE, 0, 4) checkActualSize(TIMESTAMP, new Timestamp(0L), 12) @@ -108,8 +108,8 @@ class ColumnTypeSuite extends FunSuite with Logging { testNativeColumnType[StringType.type]( STRING, - (buffer: ByteBuffer, string: String) => { - val bytes = string.getBytes("utf-8") + (buffer: ByteBuffer, string: UTF8String) => { + val bytes = string.getBytes buffer.putInt(bytes.length) buffer.put(bytes) }, @@ -117,7 +117,7 @@ class ColumnTypeSuite extends FunSuite with Logging { val length = buffer.getInt() val bytes = new Array[Byte](length) buffer.get(bytes) - new String(bytes, "utf-8") + UTF8String(bytes) }) testColumnType[BinaryType.type, Array[Byte]]( diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala index b301818a008e7..f76314b9dab5e 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala @@ -24,7 +24,7 @@ import scala.util.Random import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.GenericMutableRow -import org.apache.spark.sql.types.{Decimal, DataType, NativeType} +import org.apache.spark.sql.types.{UTF8String, DataType, Decimal, NativeType} object ColumnarTestUtils { def makeNullRow(length: Int): GenericMutableRow = { @@ -48,7 +48,7 @@ object ColumnarTestUtils { case FLOAT => Random.nextFloat() case DOUBLE => Random.nextDouble() case FIXED_DECIMAL(precision, scale) => Decimal(Random.nextLong() % 100, precision, scale) - case STRING => Random.nextString(Random.nextInt(32)) + case STRING => UTF8String(Random.nextString(Random.nextInt(32))) case BOOLEAN => Random.nextBoolean() case BINARY => randomBytes(Random.nextInt(32)) case DATE => Random.nextInt() diff --git a/sql/core/src/test/scala/org/apache/spark/sql/sources/TableScanSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/sources/TableScanSuite.scala index 60c8c00bda4d5..3b47b8adf313b 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/sources/TableScanSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/sources/TableScanSuite.scala @@ -74,7 +74,7 @@ case class AllDataTypesScan( i.toDouble, new java.math.BigDecimal(i), new java.math.BigDecimal(i), - new Date((i + 1) * 8640000), + new Date(1970, 1, 1), new Timestamp(20000 + i), s"varchar_$i", Seq(i, i + 1), @@ -82,7 +82,7 @@ case class AllDataTypesScan( Map(i -> i.toString), Map(Map(s"str_$i" -> i.toFloat) -> Row(i.toLong)), Row(i, i.toString), - Row(Seq(s"str_$i", s"str_${i + 1}"), Row(Seq(new Date((i + 2) * 8640000))))) + Row(Seq(s"str_$i", s"str_${i + 1}"), Row(Seq(new Date(1970, 1, i + 1))))) } } } @@ -103,7 +103,7 @@ class TableScanSuite extends DataSourceTest { i.toDouble, new java.math.BigDecimal(i), new java.math.BigDecimal(i), - new Date((i + 1) * 8640000), + new Date(1970, 1, 1), new Timestamp(20000 + i), s"varchar_$i", Seq(i, i + 1), @@ -111,7 +111,7 @@ class TableScanSuite extends DataSourceTest { Map(i -> i.toString), Map(Map(s"str_$i" -> i.toFloat) -> Row(i.toLong)), Row(i, i.toString), - Row(Seq(s"str_$i", s"str_${i + 1}"), Row(Seq(new Date((i + 2) * 8640000))))) + Row(Seq(s"str_$i", s"str_${i + 1}"), Row(Seq(new Date(1970, 1, i + 1))))) }.toSeq before { @@ -266,7 +266,7 @@ class TableScanSuite extends DataSourceTest { sqlTest( "SELECT structFieldComplex.Value.`value_(2)` FROM tableWithSchema", - (1 to 10).map(i => Row(Seq(new Date((i + 2) * 8640000)))).toSeq) + (1 to 10).map(i => Row(Seq(new Date(1970, 1, i + 1)))).toSeq) test("Caching") { // Cached Query Execution diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala index 921c6194c7b76..74ae984f34866 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala @@ -34,7 +34,7 @@ import scala.collection.JavaConversions._ * 1. The Underlying data type in catalyst and in Hive * In catalyst: * Primitive => - * java.lang.String + * UTF8String * int / scala.Int * boolean / scala.Boolean * float / scala.Float @@ -239,9 +239,10 @@ private[hive] trait HiveInspectors { */ def unwrap(data: Any, oi: ObjectInspector): Any = oi match { case coi: ConstantObjectInspector if coi.getWritableConstantValue == null => null - case poi: WritableConstantStringObjectInspector => poi.getWritableConstantValue.toString + case poi: WritableConstantStringObjectInspector => + UTF8String(poi.getWritableConstantValue.toString) case poi: WritableConstantHiveVarcharObjectInspector => - poi.getWritableConstantValue.getHiveVarchar.getValue + UTF8String(poi.getWritableConstantValue.getHiveVarchar.getValue) case poi: WritableConstantHiveDecimalObjectInspector => HiveShim.toCatalystDecimal( PrimitiveObjectInspectorFactory.javaHiveDecimalObjectInspector, @@ -284,10 +285,13 @@ private[hive] trait HiveInspectors { case pi: PrimitiveObjectInspector => pi match { // We think HiveVarchar is also a String case hvoi: HiveVarcharObjectInspector if hvoi.preferWritable() => - hvoi.getPrimitiveWritableObject(data).getHiveVarchar.getValue - case hvoi: HiveVarcharObjectInspector => hvoi.getPrimitiveJavaObject(data).getValue + UTF8String(hvoi.getPrimitiveWritableObject(data).getHiveVarchar.getValue) + case hvoi: HiveVarcharObjectInspector => + UTF8String(hvoi.getPrimitiveJavaObject(data).getValue) case x: StringObjectInspector if x.preferWritable() => - x.getPrimitiveWritableObject(data).toString + UTF8String(x.getPrimitiveWritableObject(data).toString) + case x: StringObjectInspector => + UTF8String(x.getPrimitiveJavaObject(data)) case x: IntObjectInspector if x.preferWritable() => x.get(data) case x: BooleanObjectInspector if x.preferWritable() => x.get(data) case x: FloatObjectInspector if x.preferWritable() => x.get(data) @@ -340,7 +344,9 @@ private[hive] trait HiveInspectors { */ protected def wrapperFor(oi: ObjectInspector): Any => Any = oi match { case _: JavaHiveVarcharObjectInspector => - (o: Any) => new HiveVarchar(o.asInstanceOf[String], o.asInstanceOf[String].size) + (o: Any) => + val s = o.asInstanceOf[UTF8String].toString + new HiveVarchar(s, s.size) case _: JavaHiveDecimalObjectInspector => (o: Any) => HiveShim.createDecimal(o.asInstanceOf[Decimal].toJavaBigDecimal) @@ -409,7 +415,7 @@ private[hive] trait HiveInspectors { case x: PrimitiveObjectInspector => x match { // TODO we don't support the HiveVarcharObjectInspector yet. case _: StringObjectInspector if x.preferWritable() => HiveShim.getStringWritable(a) - case _: StringObjectInspector => a.asInstanceOf[java.lang.String] + case _: StringObjectInspector => a.asInstanceOf[UTF8String].toString() case _: IntObjectInspector if x.preferWritable() => HiveShim.getIntWritable(a) case _: IntObjectInspector => a.asInstanceOf[java.lang.Integer] case _: BooleanObjectInspector if x.preferWritable() => HiveShim.getBooleanWritable(a) diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala index 1ccb0c279c60e..a6f4fbe8aba06 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala @@ -17,24 +17,21 @@ package org.apache.spark.sql.hive -import org.apache.spark.sql.catalyst.expressions.Row - import scala.collection.JavaConversions._ import org.apache.spark.annotation.Experimental import org.apache.spark.sql._ +import org.apache.spark.sql.catalyst.CatalystTypeConverters import org.apache.spark.sql.catalyst.analysis.UnresolvedAttribute -import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate +import org.apache.spark.sql.catalyst.expressions.{Row, _} import org.apache.spark.sql.catalyst.planning._ import org.apache.spark.sql.catalyst.plans._ import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan -import org.apache.spark.sql.sources.DescribeCommand -import org.apache.spark.sql.execution.{DescribeCommand => RunnableDescribeCommand} -import org.apache.spark.sql.execution._ +import org.apache.spark.sql.execution.{DescribeCommand => RunnableDescribeCommand, _} import org.apache.spark.sql.hive.execution._ import org.apache.spark.sql.parquet.ParquetRelation -import org.apache.spark.sql.sources.{CreateTableUsingAsSelect, CreateTableUsing} +import org.apache.spark.sql.sources.{CreateTableUsing, CreateTableUsingAsSelect, DescribeCommand} import org.apache.spark.sql.types.StringType @@ -131,7 +128,7 @@ private[hive] trait HiveStrategies { val partitionValues = part.getValues var i = 0 while (i < partitionValues.size()) { - inputData(i) = partitionValues(i) + inputData(i) = CatalystTypeConverters.convertToCatalyst(partitionValues(i)) i += 1 } pruningCondition(inputData) diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala index 8efed7f0299bf..cab0fdd35723a 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala @@ -17,8 +17,7 @@ package org.apache.spark.sql.hive.execution -import java.io.{BufferedReader, InputStreamReader} -import java.io.{DataInputStream, DataOutputStream, EOFException} +import java.io.{BufferedReader, DataInputStream, DataOutputStream, EOFException, InputStreamReader} import java.util.Properties import scala.collection.JavaConversions._ @@ -28,12 +27,13 @@ import org.apache.hadoop.hive.serde2.AbstractSerDe import org.apache.hadoop.hive.serde2.objectinspector._ import org.apache.spark.rdd.RDD +import org.apache.spark.sql.catalyst.CatalystTypeConverters import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.plans.logical.ScriptInputOutputSchema import org.apache.spark.sql.execution._ -import org.apache.spark.sql.types.DataType -import org.apache.spark.sql.hive.{HiveContext, HiveInspectors} import org.apache.spark.sql.hive.HiveShim._ +import org.apache.spark.sql.hive.{HiveContext, HiveInspectors} +import org.apache.spark.sql.types.DataType import org.apache.spark.util.Utils /** @@ -121,14 +121,13 @@ case class ScriptTransformation( if (outputSerde == null) { val prevLine = curLine curLine = reader.readLine() - if (!ioschema.schemaLess) { - new GenericRow( - prevLine.split(ioschema.outputRowFormatMap("TOK_TABLEROWFORMATFIELD")) + new GenericRow(CatalystTypeConverters.convertToCatalyst( + prevLine.split(ioschema.outputRowFormatMap("TOK_TABLEROWFORMATFIELD"))) .asInstanceOf[Array[Any]]) } else { - new GenericRow( - prevLine.split(ioschema.outputRowFormatMap("TOK_TABLEROWFORMATFIELD"), 2) + new GenericRow(CatalystTypeConverters.convertToCatalyst( + prevLine.split(ioschema.outputRowFormatMap("TOK_TABLEROWFORMATFIELD"), 2)) .asInstanceOf[Array[Any]]) } } else { diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/commands.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/commands.scala index 902a12785e3e9..a40a1e53117cd 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/commands.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/commands.scala @@ -22,11 +22,11 @@ import org.apache.spark.sql.catalyst.analysis.EliminateSubQueries import org.apache.spark.sql.catalyst.util._ import org.apache.spark.sql.sources._ import org.apache.spark.sql.{SaveMode, DataFrame, SQLContext} -import org.apache.spark.sql.catalyst.expressions.Row +import org.apache.spark.sql.catalyst.expressions.{Attribute, Row} import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.RunnableCommand import org.apache.spark.sql.hive.HiveContext -import org.apache.spark.sql.types.StructType +import org.apache.spark.sql.types._ /** * Analyzes the given table in the current database to generate statistics, which will be @@ -76,6 +76,12 @@ case class DropTable( private[hive] case class AddJar(path: String) extends RunnableCommand { + override val output: Seq[Attribute] = { + val schema = StructType( + StructField("result", IntegerType, false) :: Nil) + schema.toAttributes + } + override def run(sqlContext: SQLContext): Seq[Row] = { val hiveContext = sqlContext.asInstanceOf[HiveContext] hiveContext.runSqlHive(s"ADD JAR $path") diff --git a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala index 0ed93c2c5b1fa..33e96eaabfbf6 100644 --- a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala +++ b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala @@ -41,7 +41,7 @@ import org.apache.hadoop.hive.serde2.typeinfo.{TypeInfo, TypeInfoFactory} import org.apache.hadoop.io.{NullWritable, Writable} import org.apache.hadoop.mapred.InputFormat -import org.apache.spark.sql.types.{Decimal, DecimalType} +import org.apache.spark.sql.types.{UTF8String, Decimal, DecimalType} private[hive] case class HiveFunctionWrapper(functionClassName: String) extends java.io.Serializable { @@ -135,7 +135,7 @@ private[hive] object HiveShim { PrimitiveCategory.VOID, null) def getStringWritable(value: Any): hadoopIo.Text = - if (value == null) null else new hadoopIo.Text(value.asInstanceOf[String]) + if (value == null) null else new hadoopIo.Text(value.asInstanceOf[UTF8String].toString) def getIntWritable(value: Any): hadoopIo.IntWritable = if (value == null) null else new hadoopIo.IntWritable(value.asInstanceOf[Int]) diff --git a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala index 7577309900209..d331c210e8939 100644 --- a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala +++ b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala @@ -17,37 +17,35 @@ package org.apache.spark.sql.hive -import java.util -import java.util.{ArrayList => JArrayList} -import java.util.Properties import java.rmi.server.UID +import java.util.{Properties, ArrayList => JArrayList} import scala.collection.JavaConversions._ import scala.language.implicitConversions +import com.esotericsoftware.kryo.Kryo import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path -import org.apache.hadoop.io.{NullWritable, Writable} -import org.apache.hadoop.mapred.InputFormat import org.apache.hadoop.hive.common.StatsSetupConst -import org.apache.hadoop.hive.common.`type`.{HiveDecimal} +import org.apache.hadoop.hive.common.`type`.HiveDecimal import org.apache.hadoop.hive.conf.HiveConf import org.apache.hadoop.hive.ql.Context -import org.apache.hadoop.hive.ql.metadata.{Table, Hive, Partition} +import org.apache.hadoop.hive.ql.exec.{UDF, Utilities} +import org.apache.hadoop.hive.ql.metadata.{Hive, Partition, Table} import org.apache.hadoop.hive.ql.plan.{CreateTableDesc, FileSinkDesc, TableDesc} import org.apache.hadoop.hive.ql.processors.CommandProcessorFactory import org.apache.hadoop.hive.serde.serdeConstants -import org.apache.hadoop.hive.serde2.typeinfo.{TypeInfo, DecimalTypeInfo, TypeInfoFactory} -import org.apache.hadoop.hive.serde2.objectinspector.primitive.{HiveDecimalObjectInspector, PrimitiveObjectInspectorFactory} -import org.apache.hadoop.hive.serde2.objectinspector.{ObjectInspectorConverters, PrimitiveObjectInspector, ObjectInspector} -import org.apache.hadoop.hive.serde2.{Deserializer, ColumnProjectionUtils} -import org.apache.hadoop.hive.serde2.{io => hiveIo} import org.apache.hadoop.hive.serde2.avro.AvroGenericRecordWritable +import org.apache.hadoop.hive.serde2.objectinspector.primitive.{HiveDecimalObjectInspector, PrimitiveObjectInspectorFactory} +import org.apache.hadoop.hive.serde2.objectinspector.{ObjectInspector, ObjectInspectorConverters, PrimitiveObjectInspector} +import org.apache.hadoop.hive.serde2.typeinfo.{DecimalTypeInfo, TypeInfo, TypeInfoFactory} +import org.apache.hadoop.hive.serde2.{ColumnProjectionUtils, Deserializer, io => hiveIo} +import org.apache.hadoop.io.{NullWritable, Writable} +import org.apache.hadoop.mapred.InputFormat import org.apache.hadoop.{io => hadoopIo} import org.apache.spark.Logging -import org.apache.spark.sql.types.{Decimal, DecimalType} - +import org.apache.spark.sql.types.{Decimal, DecimalType, UTF8String} /** * This class provides the UDF creation and also the UDF instance serialization and @@ -63,18 +61,14 @@ private[hive] case class HiveFunctionWrapper(var functionClassName: String) // for Serialization def this() = this(null) - import java.io.{OutputStream, InputStream} - import com.esotericsoftware.kryo.Kryo import org.apache.spark.util.Utils._ - import org.apache.hadoop.hive.ql.exec.Utilities - import org.apache.hadoop.hive.ql.exec.UDF @transient private val methodDeSerialize = { val method = classOf[Utilities].getDeclaredMethod( "deserializeObjectByKryo", classOf[Kryo], - classOf[InputStream], + classOf[java.io.InputStream], classOf[Class[_]]) method.setAccessible(true) @@ -87,7 +81,7 @@ private[hive] case class HiveFunctionWrapper(var functionClassName: String) "serializeObjectByKryo", classOf[Kryo], classOf[Object], - classOf[OutputStream]) + classOf[java.io.OutputStream]) method.setAccessible(true) method @@ -224,7 +218,7 @@ private[hive] object HiveShim { TypeInfoFactory.voidTypeInfo, null) def getStringWritable(value: Any): hadoopIo.Text = - if (value == null) null else new hadoopIo.Text(value.asInstanceOf[String]) + if (value == null) null else new hadoopIo.Text(value.asInstanceOf[UTF8String].toString) def getIntWritable(value: Any): hadoopIo.IntWritable = if (value == null) null else new hadoopIo.IntWritable(value.asInstanceOf[Int]) From cf38fe04f8782ff4573ae106ec0de8e8d183cb2b Mon Sep 17 00:00:00 2001 From: Liang-Chi Hsieh Date: Wed, 15 Apr 2015 13:15:58 -0700 Subject: [PATCH 18/31] [SPARK-6844][SQL] Clean up accumulators used in InMemoryRelation when it is uncached JIRA: https://issues.apache.org/jira/browse/SPARK-6844 Author: Liang-Chi Hsieh Closes #5475 from viirya/cache_memory_leak and squashes the following commits: 0b41235 [Liang-Chi Hsieh] fix style. dc1d5d5 [Liang-Chi Hsieh] For comments. 78af229 [Liang-Chi Hsieh] Merge remote-tracking branch 'upstream/master' into cache_memory_leak 26c9bb6 [Liang-Chi Hsieh] Add configuration to enable in-memory table scan accumulators. 1c3b06e [Liang-Chi Hsieh] Clean up accumulators used in InMemoryRelation when it is uncached. --- .../org/apache/spark/sql/CacheManager.scala | 2 +- .../columnar/InMemoryColumnarTableScan.scala | 47 ++++++++++++++----- .../apache/spark/sql/CachedTableSuite.scala | 18 +++++++ .../columnar/PartitionBatchPruningSuite.scala | 2 + 4 files changed, 55 insertions(+), 14 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/CacheManager.scala b/sql/core/src/main/scala/org/apache/spark/sql/CacheManager.scala index ca4a127120b37..18584c2dcf797 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/CacheManager.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/CacheManager.scala @@ -112,7 +112,7 @@ private[sql] class CacheManager(sqlContext: SQLContext) extends Logging { val planToCache = query.queryExecution.analyzed val dataIndex = cachedData.indexWhere(cd => planToCache.sameResult(cd.plan)) require(dataIndex >= 0, s"Table $query is not cached.") - cachedData(dataIndex).cachedRepresentation.cachedColumnBuffers.unpersist(blocking) + cachedData(dataIndex).cachedRepresentation.uncache(blocking) cachedData.remove(dataIndex) } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/InMemoryColumnarTableScan.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/InMemoryColumnarTableScan.scala index 6eee0c86d6a1c..d9b6fb43ab83d 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/InMemoryColumnarTableScan.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/InMemoryColumnarTableScan.scala @@ -19,13 +19,15 @@ package org.apache.spark.sql.columnar import java.nio.ByteBuffer -import org.apache.spark.Accumulator +import org.apache.spark.{Accumulable, Accumulator, Accumulators} import org.apache.spark.sql.catalyst.expressions import scala.collection.mutable.ArrayBuffer +import scala.collection.mutable.HashMap import org.apache.spark.rdd.RDD import org.apache.spark.sql.Row +import org.apache.spark.SparkContext import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation import org.apache.spark.sql.catalyst.dsl.expressions._ import org.apache.spark.sql.catalyst.expressions._ @@ -53,11 +55,16 @@ private[sql] case class InMemoryRelation( child: SparkPlan, tableName: Option[String])( private var _cachedColumnBuffers: RDD[CachedBatch] = null, - private var _statistics: Statistics = null) + private var _statistics: Statistics = null, + private var _batchStats: Accumulable[ArrayBuffer[Row], Row] = null) extends LogicalPlan with MultiInstanceRelation { - private val batchStats = - child.sqlContext.sparkContext.accumulableCollection(ArrayBuffer.empty[Row]) + private val batchStats: Accumulable[ArrayBuffer[Row], Row] = + if (_batchStats == null) { + child.sqlContext.sparkContext.accumulableCollection(ArrayBuffer.empty[Row]) + } else { + _batchStats + } val partitionStatistics = new PartitionStatistics(output) @@ -161,7 +168,7 @@ private[sql] case class InMemoryRelation( def withOutput(newOutput: Seq[Attribute]): InMemoryRelation = { InMemoryRelation( newOutput, useCompression, batchSize, storageLevel, child, tableName)( - _cachedColumnBuffers, statisticsToBePropagated) + _cachedColumnBuffers, statisticsToBePropagated, batchStats) } override def children: Seq[LogicalPlan] = Seq.empty @@ -175,13 +182,20 @@ private[sql] case class InMemoryRelation( child, tableName)( _cachedColumnBuffers, - statisticsToBePropagated).asInstanceOf[this.type] + statisticsToBePropagated, + batchStats).asInstanceOf[this.type] } def cachedColumnBuffers: RDD[CachedBatch] = _cachedColumnBuffers override protected def otherCopyArgs: Seq[AnyRef] = - Seq(_cachedColumnBuffers, statisticsToBePropagated) + Seq(_cachedColumnBuffers, statisticsToBePropagated, batchStats) + + private[sql] def uncache(blocking: Boolean): Unit = { + Accumulators.remove(batchStats.id) + cachedColumnBuffers.unpersist(blocking) + _cachedColumnBuffers = null + } } private[sql] case class InMemoryColumnarTableScan( @@ -244,15 +258,20 @@ private[sql] case class InMemoryColumnarTableScan( } } + lazy val enableAccumulators: Boolean = + sqlContext.getConf("spark.sql.inMemoryTableScanStatistics.enable", "false").toBoolean + // Accumulators used for testing purposes - val readPartitions: Accumulator[Int] = sparkContext.accumulator(0) - val readBatches: Accumulator[Int] = sparkContext.accumulator(0) + lazy val readPartitions: Accumulator[Int] = sparkContext.accumulator(0) + lazy val readBatches: Accumulator[Int] = sparkContext.accumulator(0) private val inMemoryPartitionPruningEnabled = sqlContext.conf.inMemoryPartitionPruning override def execute(): RDD[Row] = { - readPartitions.setValue(0) - readBatches.setValue(0) + if (enableAccumulators) { + readPartitions.setValue(0) + readBatches.setValue(0) + } relation.cachedColumnBuffers.mapPartitions { cachedBatchIterator => val partitionFilter = newPredicate( @@ -302,7 +321,7 @@ private[sql] case class InMemoryColumnarTableScan( } } - if (rows.hasNext) { + if (rows.hasNext && enableAccumulators) { readPartitions += 1 } @@ -321,7 +340,9 @@ private[sql] case class InMemoryColumnarTableScan( logInfo(s"Skipping partition based on stats $statsString") false } else { - readBatches += 1 + if (enableAccumulators) { + readBatches += 1 + } true } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/CachedTableSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/CachedTableSuite.scala index f7b5f08beb92f..01e3b8671071e 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/CachedTableSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/CachedTableSuite.scala @@ -22,6 +22,7 @@ import scala.language.{implicitConversions, postfixOps} import org.scalatest.concurrent.Eventually._ +import org.apache.spark.Accumulators import org.apache.spark.sql.TestData._ import org.apache.spark.sql.columnar._ import org.apache.spark.sql.test.TestSQLContext._ @@ -297,4 +298,21 @@ class CachedTableSuite extends QueryTest { sql("Clear CACHE") assert(cacheManager.isEmpty) } + + test("Clear accumulators when uncacheTable to prevent memory leaking") { + val accsSize = Accumulators.originals.size + + sql("SELECT key FROM testData LIMIT 10").registerTempTable("t1") + sql("SELECT key FROM testData LIMIT 5").registerTempTable("t2") + cacheTable("t1") + cacheTable("t2") + sql("SELECT * FROM t1").count() + sql("SELECT * FROM t2").count() + sql("SELECT * FROM t1").count() + sql("SELECT * FROM t2").count() + uncacheTable("t1") + uncacheTable("t2") + + assert(accsSize >= Accumulators.originals.size) + } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/PartitionBatchPruningSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/PartitionBatchPruningSuite.scala index e57bb06e7263b..2a0b701cad7fa 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/PartitionBatchPruningSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/PartitionBatchPruningSuite.scala @@ -39,6 +39,8 @@ class PartitionBatchPruningSuite extends FunSuite with BeforeAndAfterAll with Be // Enable in-memory partition pruning setConf(SQLConf.IN_MEMORY_PARTITION_PRUNING, "true") + // Enable in-memory table scan accumulators + setConf("spark.sql.inMemoryTableScanStatistics.enable", "true") } override protected def afterAll(): Unit = { From 557a797a273f1668065806cba53e19e6134a66d3 Mon Sep 17 00:00:00 2001 From: sboeschhuawei Date: Wed, 15 Apr 2015 13:28:10 -0700 Subject: [PATCH 19/31] [SPARK-6937][MLLIB] Fixed bug in PICExample in which the radius were not being accepted on c... Tiny bug in PowerIterationClusteringExample in which radius not accepted from command line Author: sboeschhuawei Closes #5531 from javadba/picsub and squashes the following commits: 2aab8cf [sboeschhuawei] Fixed bug in PICExample in which the radius were not being accepted on command line --- .../examples/mllib/PowerIterationClusteringExample.scala | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/PowerIterationClusteringExample.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/PowerIterationClusteringExample.scala index 9f22d40c15f3f..6d8b806569dfd 100644 --- a/examples/src/main/scala/org/apache/spark/examples/mllib/PowerIterationClusteringExample.scala +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/PowerIterationClusteringExample.scala @@ -65,7 +65,7 @@ object PowerIterationClusteringExample { def main(args: Array[String]) { val defaultParams = Params() - val parser = new OptionParser[Params]("PIC Circles") { + val parser = new OptionParser[Params]("PowerIterationClusteringExample") { head("PowerIterationClusteringExample: an example PIC app using concentric circles.") opt[Int]('k', "k") .text(s"number of circles (/clusters), default: ${defaultParams.k}") @@ -76,9 +76,9 @@ object PowerIterationClusteringExample { opt[Int]("maxIterations") .text(s"number of iterations, default: ${defaultParams.maxIterations}") .action((x, c) => c.copy(maxIterations = x)) - opt[Int]('r', "r") + opt[Double]('r', "r") .text(s"radius of outermost circle, default: ${defaultParams.outerRadius}") - .action((x, c) => c.copy(numPoints = x)) + .action((x, c) => c.copy(outerRadius = x)) } parser.parse(args, defaultParams).map { params => @@ -154,3 +154,4 @@ object PowerIterationClusteringExample { coeff * math.exp(expCoeff * ssquares) } } + From 4754e16f4746ebd882b2ce7f1efc6e4d4408922c Mon Sep 17 00:00:00 2001 From: Wenchen Fan Date: Wed, 15 Apr 2015 13:39:12 -0700 Subject: [PATCH 20/31] [SPARK-6898][SQL] completely support special chars in column names Even if we wrap column names in backticks like `` `a#$b.c` ``, we still handle the "." inside column name specially. I think it's fragile to use a special char to split name parts, why not put name parts in `UnresolvedAttribute` directly? Author: Wenchen Fan This patch had conflicts when merged, resolved by Committer: Michael Armbrust Closes #5511 from cloud-fan/6898 and squashes the following commits: 48e3e57 [Wenchen Fan] more style fix 820dc45 [Wenchen Fan] do not ignore newName in UnresolvedAttribute d81ad43 [Wenchen Fan] fix style 11699d6 [Wenchen Fan] completely support special chars in column names --- .../apache/spark/sql/catalyst/SqlParser.scala | 4 +-- .../sql/catalyst/analysis/Analyzer.scala | 13 ++++----- .../sql/catalyst/analysis/CheckAnalysis.scala | 6 ++++- .../sql/catalyst/analysis/unresolved.scala | 14 ++++++++-- .../catalyst/plans/logical/LogicalPlan.scala | 27 +++++++++---------- .../sql/catalyst/analysis/AnalysisSuite.scala | 2 -- .../org/apache/spark/sql/DataFrame.scala | 4 +-- .../org/apache/spark/sql/SQLQuerySuite.scala | 13 ++++++--- .../org/apache/spark/sql/hive/HiveQl.scala | 2 +- 9 files changed, 52 insertions(+), 33 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index 9a3531ceb3343..0af969cc5cc67 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -381,13 +381,13 @@ class SqlParser extends AbstractSparkSQLParser with DataTypeParser { | "(" ~> expression <~ ")" | function | dotExpressionHeader - | ident ^^ UnresolvedAttribute + | ident ^^ {case i => UnresolvedAttribute.quoted(i)} | signedPrimary | "~" ~> expression ^^ BitwiseNot ) protected lazy val dotExpressionHeader: Parser[Expression] = (ident <~ ".") ~ ident ~ rep("." ~> ident) ^^ { - case i1 ~ i2 ~ rest => UnresolvedAttribute((Seq(i1, i2) ++ rest).mkString(".")) + case i1 ~ i2 ~ rest => UnresolvedAttribute(Seq(i1, i2) ++ rest) } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala index 8b68b0df35f48..cb49e5ad5586f 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala @@ -297,14 +297,15 @@ class Analyzer( case q: LogicalPlan => logTrace(s"Attempting to resolve ${q.simpleString}") q transformExpressionsUp { - case u @ UnresolvedAttribute(name) if resolver(name, VirtualColumn.groupingIdName) && + case u @ UnresolvedAttribute(nameParts) if nameParts.length == 1 && + resolver(nameParts(0), VirtualColumn.groupingIdName) && q.isInstanceOf[GroupingAnalytics] => // Resolve the virtual column GROUPING__ID for the operator GroupingAnalytics q.asInstanceOf[GroupingAnalytics].gid - case u @ UnresolvedAttribute(name) => + case u @ UnresolvedAttribute(nameParts) => // Leave unchanged if resolution fails. Hopefully will be resolved next round. val result = - withPosition(u) { q.resolveChildren(name, resolver).getOrElse(u) } + withPosition(u) { q.resolveChildren(nameParts, resolver).getOrElse(u) } logDebug(s"Resolving $u to $result") result case UnresolvedGetField(child, fieldName) if child.resolved => @@ -383,12 +384,12 @@ class Analyzer( child: LogicalPlan, grandchild: LogicalPlan): (Seq[SortOrder], Seq[Attribute]) = { // Find any attributes that remain unresolved in the sort. - val unresolved: Seq[String] = - ordering.flatMap(_.collect { case UnresolvedAttribute(name) => name }) + val unresolved: Seq[Seq[String]] = + ordering.flatMap(_.collect { case UnresolvedAttribute(nameParts) => nameParts }) // Create a map from name, to resolved attributes, when the desired name can be found // prior to the projection. - val resolved: Map[String, NamedExpression] = + val resolved: Map[Seq[String], NamedExpression] = unresolved.flatMap(u => grandchild.resolve(u, resolver).map(a => u -> a)).toMap // Construct a set that contains all of the attributes that we need to evaluate the diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/CheckAnalysis.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/CheckAnalysis.scala index fa02111385c06..1155dac28fc78 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/CheckAnalysis.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/CheckAnalysis.scala @@ -46,8 +46,12 @@ trait CheckAnalysis { operator transformExpressionsUp { case a: Attribute if !a.resolved => if (operator.childrenResolved) { + val nameParts = a match { + case UnresolvedAttribute(nameParts) => nameParts + case _ => Seq(a.name) + } // Throw errors for specific problems with get field. - operator.resolveChildren(a.name, resolver, throwErrors = true) + operator.resolveChildren(nameParts, resolver, throwErrors = true) } val from = operator.inputSet.map(_.name).mkString(", ") diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/unresolved.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/unresolved.scala index 300e9ba187bc5..3f567e3e8b2a6 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/unresolved.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/unresolved.scala @@ -49,7 +49,12 @@ case class UnresolvedRelation( /** * Holds the name of an attribute that has yet to be resolved. */ -case class UnresolvedAttribute(name: String) extends Attribute with trees.LeafNode[Expression] { +case class UnresolvedAttribute(nameParts: Seq[String]) + extends Attribute with trees.LeafNode[Expression] { + + def name: String = + nameParts.map(n => if (n.contains(".")) s"`$n`" else n).mkString(".") + override def exprId: ExprId = throw new UnresolvedException(this, "exprId") override def dataType: DataType = throw new UnresolvedException(this, "dataType") override def nullable: Boolean = throw new UnresolvedException(this, "nullable") @@ -59,7 +64,7 @@ case class UnresolvedAttribute(name: String) extends Attribute with trees.LeafNo override def newInstance(): UnresolvedAttribute = this override def withNullability(newNullability: Boolean): UnresolvedAttribute = this override def withQualifiers(newQualifiers: Seq[String]): UnresolvedAttribute = this - override def withName(newName: String): UnresolvedAttribute = UnresolvedAttribute(name) + override def withName(newName: String): UnresolvedAttribute = UnresolvedAttribute.quoted(newName) // Unresolved attributes are transient at compile time and don't get evaluated during execution. override def eval(input: Row = null): EvaluatedType = @@ -68,6 +73,11 @@ case class UnresolvedAttribute(name: String) extends Attribute with trees.LeafNo override def toString: String = s"'$name" } +object UnresolvedAttribute { + def apply(name: String): UnresolvedAttribute = new UnresolvedAttribute(name.split("\\.")) + def quoted(name: String): UnresolvedAttribute = new UnresolvedAttribute(Seq(name)) +} + case class UnresolvedFunction(name: String, children: Seq[Expression]) extends Expression { override def dataType: DataType = throw new UnresolvedException(this, "dataType") override def foldable: Boolean = throw new UnresolvedException(this, "foldable") diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/LogicalPlan.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/LogicalPlan.scala index 579a0fb8d3f93..ae4620a4e5abf 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/LogicalPlan.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/LogicalPlan.scala @@ -19,12 +19,11 @@ package org.apache.spark.sql.catalyst.plans.logical import org.apache.spark.Logging import org.apache.spark.sql.AnalysisException -import org.apache.spark.sql.catalyst.analysis.{EliminateSubQueries, UnresolvedGetField, Resolver} +import org.apache.spark.sql.catalyst.analysis.{UnresolvedAttribute, EliminateSubQueries, Resolver} import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.plans.QueryPlan import org.apache.spark.sql.catalyst.trees.TreeNode import org.apache.spark.sql.catalyst.trees -import org.apache.spark.sql.types.{ArrayType, StructType, StructField} abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging { @@ -111,10 +110,10 @@ abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging { * as string in the following form: `[scope].AttributeName.[nested].[fields]...`. */ def resolveChildren( - name: String, + nameParts: Seq[String], resolver: Resolver, throwErrors: Boolean = false): Option[NamedExpression] = - resolve(name, children.flatMap(_.output), resolver, throwErrors) + resolve(nameParts, children.flatMap(_.output), resolver, throwErrors) /** * Optionally resolves the given string to a [[NamedExpression]] based on the output of this @@ -122,10 +121,10 @@ abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging { * `[scope].AttributeName.[nested].[fields]...`. */ def resolve( - name: String, + nameParts: Seq[String], resolver: Resolver, throwErrors: Boolean = false): Option[NamedExpression] = - resolve(name, output, resolver, throwErrors) + resolve(nameParts, output, resolver, throwErrors) /** * Resolve the given `name` string against the given attribute, returning either 0 or 1 match. @@ -135,7 +134,7 @@ abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging { * See the comment above `candidates` variable in resolve() for semantics the returned data. */ private def resolveAsTableColumn( - nameParts: Array[String], + nameParts: Seq[String], resolver: Resolver, attribute: Attribute): Option[(Attribute, List[String])] = { assert(nameParts.length > 1) @@ -155,7 +154,7 @@ abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging { * See the comment above `candidates` variable in resolve() for semantics the returned data. */ private def resolveAsColumn( - nameParts: Array[String], + nameParts: Seq[String], resolver: Resolver, attribute: Attribute): Option[(Attribute, List[String])] = { if (resolver(attribute.name, nameParts.head)) { @@ -167,13 +166,11 @@ abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging { /** Performs attribute resolution given a name and a sequence of possible attributes. */ protected def resolve( - name: String, + nameParts: Seq[String], input: Seq[Attribute], resolver: Resolver, throwErrors: Boolean): Option[NamedExpression] = { - val parts = name.split("\\.") - // A sequence of possible candidate matches. // Each candidate is a tuple. The first element is a resolved attribute, followed by a list // of parts that are to be resolved. @@ -182,9 +179,9 @@ abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging { // and the second element will be List("c"). var candidates: Seq[(Attribute, List[String])] = { // If the name has 2 or more parts, try to resolve it as `table.column` first. - if (parts.length > 1) { + if (nameParts.length > 1) { input.flatMap { option => - resolveAsTableColumn(parts, resolver, option) + resolveAsTableColumn(nameParts, resolver, option) } } else { Seq.empty @@ -194,10 +191,12 @@ abstract class LogicalPlan extends QueryPlan[LogicalPlan] with Logging { // If none of attributes match `table.column` pattern, we try to resolve it as a column. if (candidates.isEmpty) { candidates = input.flatMap { candidate => - resolveAsColumn(parts, resolver, candidate) + resolveAsColumn(nameParts, resolver, candidate) } } + def name = UnresolvedAttribute(nameParts).name + candidates.distinct match { // One match, no nested fields, use it. case Seq((a, Nil)) => Some(a) diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/analysis/AnalysisSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/analysis/AnalysisSuite.scala index 6e3d6b9263e86..e10ddfdf5127c 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/analysis/AnalysisSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/analysis/AnalysisSuite.scala @@ -27,8 +27,6 @@ import org.apache.spark.sql.types._ import org.apache.spark.sql.catalyst.dsl.expressions._ import org.apache.spark.sql.catalyst.dsl.plans._ -import scala.collection.immutable - class AnalysisSuite extends FunSuite with BeforeAndAfter { val caseSensitiveCatalog = new SimpleCatalog(true) val caseInsensitiveCatalog = new SimpleCatalog(false) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 94ae2d65fd0e4..3235f85d5bbd2 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -158,7 +158,7 @@ class DataFrame private[sql]( } protected[sql] def resolve(colName: String): NamedExpression = { - queryExecution.analyzed.resolve(colName, sqlContext.analyzer.resolver).getOrElse { + queryExecution.analyzed.resolve(colName.split("\\."), sqlContext.analyzer.resolver).getOrElse { throw new AnalysisException( s"""Cannot resolve column name "$colName" among (${schema.fieldNames.mkString(", ")})""") } @@ -166,7 +166,7 @@ class DataFrame private[sql]( protected[sql] def numericColumns: Seq[Expression] = { schema.fields.filter(_.dataType.isInstanceOf[NumericType]).map { n => - queryExecution.analyzed.resolve(n.name, sqlContext.analyzer.resolver).get + queryExecution.analyzed.resolve(n.name.split("\\."), sqlContext.analyzer.resolver).get } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index 4c48dca44498b..d739e550f3e56 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -19,14 +19,13 @@ package org.apache.spark.sql import org.scalatest.BeforeAndAfterAll -import org.apache.spark.sql.TestData._ import org.apache.spark.sql.execution.GeneratedAggregate import org.apache.spark.sql.functions._ +import org.apache.spark.sql.TestData._ import org.apache.spark.sql.test.TestSQLContext import org.apache.spark.sql.test.TestSQLContext.{udf => _, _} import org.apache.spark.sql.types._ - class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { // Make sure the tables are loaded. TestData @@ -1125,7 +1124,7 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { val data = sparkContext.parallelize( Seq("""{"key?number1": "value1", "key.number2": "value2"}""")) jsonRDD(data).registerTempTable("records") - sql("SELECT `key?number1` FROM records") + sql("SELECT `key?number1`, `key.number2` FROM records") } test("SPARK-3814 Support Bitwise & operator") { @@ -1225,4 +1224,12 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { checkAnswer(sql("SELECT a.b[0] FROM t ORDER BY c0.a"), Row(1)) checkAnswer(sql("SELECT b[0].a FROM t ORDER BY c0.a"), Row(1)) } + + test("SPARK-6898: complete support for special chars in column names") { + jsonRDD(sparkContext.makeRDD( + """{"a": {"c.b": 1}, "b.$q": [{"a@!.q": 1}], "q.w": {"w.i&": [1]}}""" :: Nil)) + .registerTempTable("t") + + checkAnswer(sql("SELECT a.`c.b`, `b.$q`[0].`a@!.q`, `q.w`.`w.i&`[0] FROM t"), Row(1, 1, 1)) + } } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala index 53a204b8c2932..fd305eb480e63 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala @@ -1101,7 +1101,7 @@ https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C case Token(".", qualifier :: Token(attr, Nil) :: Nil) => nodeToExpr(qualifier) match { case UnresolvedAttribute(qualifierName) => - UnresolvedAttribute(qualifierName + "." + cleanIdentifier(attr)) + UnresolvedAttribute(qualifierName :+ cleanIdentifier(attr)) case other => UnresolvedGetField(other, attr) } From 585638e81ce09a72b9e7f95d38e0d432cfa02456 Mon Sep 17 00:00:00 2001 From: Daoyuan Wang Date: Wed, 15 Apr 2015 14:06:10 -0700 Subject: [PATCH 21/31] [SPARK-2213] [SQL] sort merge join for spark sql Thanks for the initial work from Ishiihara in #3173 This PR introduce a new join method of sort merge join, which firstly ensure that keys of same value are in the same partition, and inside each partition the Rows are sorted by key. Then we can run down both sides together, find matched rows using [sort merge join](http://en.wikipedia.org/wiki/Sort-merge_join). In this way, we don't have to store the whole hash table of one side as hash join, thus we have less memory usage. Also, this PR would benefit from #3438 , making the sorting phrase much more efficient. We introduced a new configuration of "spark.sql.planner.sortMergeJoin" to switch between this(`true`) and ShuffledHashJoin(`false`), probably we want the default value of it be `false` at first. Author: Daoyuan Wang Author: Michael Armbrust This patch had conflicts when merged, resolved by Committer: Michael Armbrust Closes #5208 from adrian-wang/smj and squashes the following commits: 2493b9f [Daoyuan Wang] fix style 5049d88 [Daoyuan Wang] propagate rowOrdering for RangePartitioning f91a2ae [Daoyuan Wang] yin's comment: use external sort if option is enabled, add comments f515cd2 [Daoyuan Wang] yin's comment: outputOrdering, join suite refine ec8061b [Daoyuan Wang] minor change 413fd24 [Daoyuan Wang] Merge pull request #3 from marmbrus/pr/5208 952168a [Michael Armbrust] add type 5492884 [Michael Armbrust] copy when ordering 7ddd656 [Michael Armbrust] Cleanup addition of ordering requirements b198278 [Daoyuan Wang] inherit ordering in project c8e82a3 [Daoyuan Wang] fix style 6e897dd [Daoyuan Wang] hide boundReference from manually construct RowOrdering for key compare in smj 8681d73 [Daoyuan Wang] refactor Exchange and fix copy for sorting 2875ef2 [Daoyuan Wang] fix changed configuration 61d7f49 [Daoyuan Wang] add omitted comment 00a4430 [Daoyuan Wang] fix bug 078d69b [Daoyuan Wang] address comments: add comments, do sort in shuffle, and others 3af6ba5 [Daoyuan Wang] use buffer for only one side 171001f [Daoyuan Wang] change default outputordering 47455c9 [Daoyuan Wang] add apache license ... a28277f [Daoyuan Wang] fix style 645c70b [Daoyuan Wang] address comments using sort 068c35d [Daoyuan Wang] fix new style and add some tests 925203b [Daoyuan Wang] address comments 07ce92f [Daoyuan Wang] fix ArrayIndexOutOfBound 42fca0e [Daoyuan Wang] code clean e3ec096 [Daoyuan Wang] fix comment style.. 2edd235 [Daoyuan Wang] fix outputpartitioning 57baa40 [Daoyuan Wang] fix sort eval bug 303b6da [Daoyuan Wang] fix several errors 95db7ad [Daoyuan Wang] fix brackets for if-statement 4464f16 [Daoyuan Wang] fix error 880d8e9 [Daoyuan Wang] sort merge join for spark sql --- .../spark/sql/catalyst/expressions/rows.scala | 10 +- .../plans/physical/partitioning.scala | 13 ++ .../scala/org/apache/spark/sql/SQLConf.scala | 8 + .../org/apache/spark/sql/SQLContext.scala | 2 +- .../apache/spark/sql/execution/Exchange.scala | 148 ++++++++++++--- .../spark/sql/execution/SparkPlan.scala | 6 + .../spark/sql/execution/SparkStrategies.scala | 11 +- .../spark/sql/execution/basicOperators.scala | 10 ++ .../sql/execution/joins/SortMergeJoin.scala | 169 ++++++++++++++++++ .../org/apache/spark/sql/JoinSuite.scala | 28 ++- .../SortMergeCompatibilitySuite.scala | 162 +++++++++++++++++ 11 files changed, 534 insertions(+), 33 deletions(-) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/execution/joins/SortMergeJoin.scala create mode 100644 sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/SortMergeCompatibilitySuite.scala diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala index 1b62e17ff47fd..b6ec7d3417ef8 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala @@ -17,8 +17,7 @@ package org.apache.spark.sql.catalyst.expressions -import org.apache.spark.sql.types.{UTF8String, StructType, NativeType} - +import org.apache.spark.sql.types.{UTF8String, DataType, StructType, NativeType} /** * An extended interface to [[Row]] that allows the values for each column to be updated. Setting @@ -239,3 +238,10 @@ class RowOrdering(ordering: Seq[SortOrder]) extends Ordering[Row] { return 0 } } + +object RowOrdering { + def forSchema(dataTypes: Seq[DataType]): RowOrdering = + new RowOrdering(dataTypes.zipWithIndex.map { + case(dt, index) => new SortOrder(BoundReference(index, dt, nullable = true), Ascending) + }) +} diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/physical/partitioning.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/physical/partitioning.scala index 288c11f69fe22..fb4217a44807b 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/physical/partitioning.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/physical/partitioning.scala @@ -94,6 +94,9 @@ sealed trait Partitioning { * only compatible if the `numPartitions` of them is the same. */ def compatibleWith(other: Partitioning): Boolean + + /** Returns the expressions that are used to key the partitioning. */ + def keyExpressions: Seq[Expression] } case class UnknownPartitioning(numPartitions: Int) extends Partitioning { @@ -106,6 +109,8 @@ case class UnknownPartitioning(numPartitions: Int) extends Partitioning { case UnknownPartitioning(_) => true case _ => false } + + override def keyExpressions: Seq[Expression] = Nil } case object SinglePartition extends Partitioning { @@ -117,6 +122,8 @@ case object SinglePartition extends Partitioning { case SinglePartition => true case _ => false } + + override def keyExpressions: Seq[Expression] = Nil } case object BroadcastPartitioning extends Partitioning { @@ -128,6 +135,8 @@ case object BroadcastPartitioning extends Partitioning { case SinglePartition => true case _ => false } + + override def keyExpressions: Seq[Expression] = Nil } /** @@ -158,6 +167,8 @@ case class HashPartitioning(expressions: Seq[Expression], numPartitions: Int) case _ => false } + override def keyExpressions: Seq[Expression] = expressions + override def eval(input: Row = null): EvaluatedType = throw new TreeNodeException(this, s"No function to evaluate expression. type: ${this.nodeName}") } @@ -200,6 +211,8 @@ case class RangePartitioning(ordering: Seq[SortOrder], numPartitions: Int) case _ => false } + override def keyExpressions: Seq[Expression] = ordering.map(_.child) + override def eval(input: Row): EvaluatedType = throw new TreeNodeException(this, s"No function to evaluate expression. type: ${this.nodeName}") } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala index ee641bdfeb2d7..5c65f04ee8497 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala @@ -47,6 +47,7 @@ private[spark] object SQLConf { // Options that control which operators can be chosen by the query planner. These should be // considered hints and may be ignored by future versions of Spark SQL. val EXTERNAL_SORT = "spark.sql.planner.externalSort" + val SORTMERGE_JOIN = "spark.sql.planner.sortMergeJoin" // This is only used for the thriftserver val THRIFTSERVER_POOL = "spark.sql.thriftserver.scheduler.pool" @@ -128,6 +129,13 @@ private[sql] class SQLConf extends Serializable { /** When true the planner will use the external sort, which may spill to disk. */ private[spark] def externalSortEnabled: Boolean = getConf(EXTERNAL_SORT, "false").toBoolean + /** + * Sort merge join would sort the two side of join first, and then iterate both sides together + * only once to get all matches. Using sort merge join can save a lot of memory usage compared + * to HashJoin. + */ + private[spark] def sortMergeJoinEnabled: Boolean = getConf(SORTMERGE_JOIN, "false").toBoolean + /** * When set to true, Spark SQL will use the Scala compiler at runtime to generate custom bytecode * that evaluates expressions found in queries. In general this custom code runs much faster diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index 89a4faf35e0d2..f9f3eb2e03817 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -1081,7 +1081,7 @@ class SQLContext(@transient val sparkContext: SparkContext) @transient protected[sql] val prepareForExecution = new RuleExecutor[SparkPlan] { val batches = - Batch("Add exchange", Once, AddExchange(self)) :: Nil + Batch("Add exchange", Once, EnsureRequirements(self)) :: Nil } protected[sql] def openSession(): SQLSession = { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala index 437408d30bfd2..518fc9e57c708 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala @@ -19,24 +19,42 @@ package org.apache.spark.sql.execution import org.apache.spark.annotation.DeveloperApi import org.apache.spark.shuffle.sort.SortShuffleManager -import org.apache.spark.sql.catalyst.expressions import org.apache.spark.{SparkEnv, HashPartitioner, RangePartitioner, SparkConf} import org.apache.spark.rdd.{RDD, ShuffledRDD} import org.apache.spark.sql.{SQLContext, Row} import org.apache.spark.sql.catalyst.errors.attachTree -import org.apache.spark.sql.catalyst.expressions.{Attribute, RowOrdering} +import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.plans.physical._ import org.apache.spark.sql.catalyst.rules.Rule import org.apache.spark.util.MutablePair +object Exchange { + /** + * Returns true when the ordering expressions are a subset of the key. + * if true, ShuffledRDD can use `setKeyOrdering(orderingKey)` to sort within [[Exchange]]. + */ + def canSortWithShuffle(partitioning: Partitioning, desiredOrdering: Seq[SortOrder]): Boolean = { + desiredOrdering.map(_.child).toSet.subsetOf(partitioning.keyExpressions.toSet) + } +} + /** * :: DeveloperApi :: + * Performs a shuffle that will result in the desired `newPartitioning`. Optionally sorts each + * resulting partition based on expressions from the partition key. It is invalid to construct an + * exchange operator with a `newOrdering` that cannot be calculated using the partitioning key. */ @DeveloperApi -case class Exchange(newPartitioning: Partitioning, child: SparkPlan) extends UnaryNode { +case class Exchange( + newPartitioning: Partitioning, + newOrdering: Seq[SortOrder], + child: SparkPlan) + extends UnaryNode { override def outputPartitioning: Partitioning = newPartitioning + override def outputOrdering: Seq[SortOrder] = newOrdering + override def output: Seq[Attribute] = child.output /** We must copy rows when sort based shuffle is on */ @@ -45,6 +63,20 @@ case class Exchange(newPartitioning: Partitioning, child: SparkPlan) extends Una private val bypassMergeThreshold = child.sqlContext.sparkContext.conf.getInt("spark.shuffle.sort.bypassMergeThreshold", 200) + private val keyOrdering = { + if (newOrdering.nonEmpty) { + val key = newPartitioning.keyExpressions + val boundOrdering = newOrdering.map { o => + val ordinal = key.indexOf(o.child) + if (ordinal == -1) sys.error(s"Invalid ordering on $o requested for $newPartitioning") + o.copy(child = BoundReference(ordinal, o.child.dataType, o.child.nullable)) + } + new RowOrdering(boundOrdering) + } else { + null // Ordering will not be used + } + } + override def execute(): RDD[Row] = attachTree(this , "execute") { newPartitioning match { case HashPartitioning(expressions, numPartitions) => @@ -56,7 +88,9 @@ case class Exchange(newPartitioning: Partitioning, child: SparkPlan) extends Una // we can avoid the defensive copies to improve performance. In the long run, we probably // want to include information in shuffle dependencies to indicate whether elements in the // source RDD should be copied. - val rdd = if (sortBasedShuffleOn && numPartitions > bypassMergeThreshold) { + val willMergeSort = sortBasedShuffleOn && numPartitions > bypassMergeThreshold + + val rdd = if (willMergeSort || newOrdering.nonEmpty) { child.execute().mapPartitions { iter => val hashExpressions = newMutableProjection(expressions, child.output)() iter.map(r => (hashExpressions(r).copy(), r.copy())) @@ -69,12 +103,17 @@ case class Exchange(newPartitioning: Partitioning, child: SparkPlan) extends Una } } val part = new HashPartitioner(numPartitions) - val shuffled = new ShuffledRDD[Row, Row, Row](rdd, part) + val shuffled = + if (newOrdering.nonEmpty) { + new ShuffledRDD[Row, Row, Row](rdd, part).setKeyOrdering(keyOrdering) + } else { + new ShuffledRDD[Row, Row, Row](rdd, part) + } shuffled.setSerializer(new SparkSqlSerializer(new SparkConf(false))) shuffled.map(_._2) case RangePartitioning(sortingExpressions, numPartitions) => - val rdd = if (sortBasedShuffleOn) { + val rdd = if (sortBasedShuffleOn || newOrdering.nonEmpty) { child.execute().mapPartitions { iter => iter.map(row => (row.copy(), null))} } else { child.execute().mapPartitions { iter => @@ -87,7 +126,12 @@ case class Exchange(newPartitioning: Partitioning, child: SparkPlan) extends Una implicit val ordering = new RowOrdering(sortingExpressions, child.output) val part = new RangePartitioner(numPartitions, rdd, ascending = true) - val shuffled = new ShuffledRDD[Row, Null, Null](rdd, part) + val shuffled = + if (newOrdering.nonEmpty) { + new ShuffledRDD[Row, Null, Null](rdd, part).setKeyOrdering(keyOrdering) + } else { + new ShuffledRDD[Row, Null, Null](rdd, part) + } shuffled.setSerializer(new SparkSqlSerializer(new SparkConf(false))) shuffled.map(_._1) @@ -120,27 +164,34 @@ case class Exchange(newPartitioning: Partitioning, child: SparkPlan) extends Una * Ensures that the [[org.apache.spark.sql.catalyst.plans.physical.Partitioning Partitioning]] * of input data meets the * [[org.apache.spark.sql.catalyst.plans.physical.Distribution Distribution]] requirements for - * each operator by inserting [[Exchange]] Operators where required. + * each operator by inserting [[Exchange]] Operators where required. Also ensure that the + * required input partition ordering requirements are met. */ -private[sql] case class AddExchange(sqlContext: SQLContext) extends Rule[SparkPlan] { +private[sql] case class EnsureRequirements(sqlContext: SQLContext) extends Rule[SparkPlan] { // TODO: Determine the number of partitions. def numPartitions: Int = sqlContext.conf.numShufflePartitions def apply(plan: SparkPlan): SparkPlan = plan.transformUp { case operator: SparkPlan => - // Check if every child's outputPartitioning satisfies the corresponding + // True iff every child's outputPartitioning satisfies the corresponding // required data distribution. def meetsRequirements: Boolean = - !operator.requiredChildDistribution.zip(operator.children).map { + operator.requiredChildDistribution.zip(operator.children).forall { case (required, child) => val valid = child.outputPartitioning.satisfies(required) logDebug( s"${if (valid) "Valid" else "Invalid"} distribution," + s"required: $required current: ${child.outputPartitioning}") valid - }.exists(!_) + } - // Check if outputPartitionings of children are compatible with each other. + // True iff any of the children are incorrectly sorted. + def needsAnySort: Boolean = + operator.requiredChildOrdering.zip(operator.children).exists { + case (required, child) => required.nonEmpty && required != child.outputOrdering + } + + // True iff outputPartitionings of children are compatible with each other. // It is possible that every child satisfies its required data distribution // but two children have incompatible outputPartitionings. For example, // A dataset is range partitioned by "a.asc" (RangePartitioning) and another @@ -157,28 +208,69 @@ private[sql] case class AddExchange(sqlContext: SQLContext) extends Rule[SparkPl case Seq(a,b) => a compatibleWith b }.exists(!_) - // Check if the partitioning we want to ensure is the same as the child's output - // partitioning. If so, we do not need to add the Exchange operator. - def addExchangeIfNecessary(partitioning: Partitioning, child: SparkPlan): SparkPlan = - if (child.outputPartitioning != partitioning) Exchange(partitioning, child) else child + // Adds Exchange or Sort operators as required + def addOperatorsIfNecessary( + partitioning: Partitioning, + rowOrdering: Seq[SortOrder], + child: SparkPlan): SparkPlan = { + val needSort = rowOrdering.nonEmpty && child.outputOrdering != rowOrdering + val needsShuffle = child.outputPartitioning != partitioning + val canSortWithShuffle = Exchange.canSortWithShuffle(partitioning, rowOrdering) + + if (needSort && needsShuffle && canSortWithShuffle) { + Exchange(partitioning, rowOrdering, child) + } else { + val withShuffle = if (needsShuffle) { + Exchange(partitioning, Nil, child) + } else { + child + } - if (meetsRequirements && compatible) { + val withSort = if (needSort) { + if (sqlContext.conf.externalSortEnabled) { + ExternalSort(rowOrdering, global = false, withShuffle) + } else { + Sort(rowOrdering, global = false, withShuffle) + } + } else { + withShuffle + } + + withSort + } + } + + if (meetsRequirements && compatible && !needsAnySort) { operator } else { // At least one child does not satisfies its required data distribution or // at least one child's outputPartitioning is not compatible with another child's // outputPartitioning. In this case, we need to add Exchange operators. - val repartitionedChildren = operator.requiredChildDistribution.zip(operator.children).map { - case (AllTuples, child) => - addExchangeIfNecessary(SinglePartition, child) - case (ClusteredDistribution(clustering), child) => - addExchangeIfNecessary(HashPartitioning(clustering, numPartitions), child) - case (OrderedDistribution(ordering), child) => - addExchangeIfNecessary(RangePartitioning(ordering, numPartitions), child) - case (UnspecifiedDistribution, child) => child - case (dist, _) => sys.error(s"Don't know how to ensure $dist") + val requirements = + (operator.requiredChildDistribution, operator.requiredChildOrdering, operator.children) + + val fixedChildren = requirements.zipped.map { + case (AllTuples, rowOrdering, child) => + addOperatorsIfNecessary(SinglePartition, rowOrdering, child) + case (ClusteredDistribution(clustering), rowOrdering, child) => + addOperatorsIfNecessary(HashPartitioning(clustering, numPartitions), rowOrdering, child) + case (OrderedDistribution(ordering), rowOrdering, child) => + addOperatorsIfNecessary(RangePartitioning(ordering, numPartitions), rowOrdering, child) + + case (UnspecifiedDistribution, Seq(), child) => + child + case (UnspecifiedDistribution, rowOrdering, child) => + if (sqlContext.conf.externalSortEnabled) { + ExternalSort(rowOrdering, global = false, child) + } else { + Sort(rowOrdering, global = false, child) + } + + case (dist, ordering, _) => + sys.error(s"Don't know how to ensure $dist with ordering $ordering") } - operator.withNewChildren(repartitionedChildren) + + operator.withNewChildren(fixedChildren) } } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala index fabcf6b4a0570..e159ffe66cb24 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala @@ -72,6 +72,12 @@ abstract class SparkPlan extends QueryPlan[SparkPlan] with Logging with Serializ def requiredChildDistribution: Seq[Distribution] = Seq.fill(children.size)(UnspecifiedDistribution) + /** Specifies how data is ordered in each partition. */ + def outputOrdering: Seq[SortOrder] = Nil + + /** Specifies sort order for each partition requirements on the input data for this operator. */ + def requiredChildOrdering: Seq[Seq[SortOrder]] = Seq.fill(children.size)(Nil) + /** * Runs this query returning the result as an RDD. */ diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala index 5b99e40c2f491..e687d01f57520 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala @@ -90,6 +90,14 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] { left.statistics.sizeInBytes <= sqlContext.conf.autoBroadcastJoinThreshold => makeBroadcastHashJoin(leftKeys, rightKeys, left, right, condition, joins.BuildLeft) + // If the sort merge join option is set, we want to use sort merge join prior to hashjoin + // for now let's support inner join first, then add outer join + case ExtractEquiJoinKeys(Inner, leftKeys, rightKeys, condition, left, right) + if sqlContext.conf.sortMergeJoinEnabled => + val mergeJoin = + joins.SortMergeJoin(leftKeys, rightKeys, planLater(left), planLater(right)) + condition.map(Filter(_, mergeJoin)).getOrElse(mergeJoin) :: Nil + case ExtractEquiJoinKeys(Inner, leftKeys, rightKeys, condition, left, right) => val buildSide = if (right.statistics.sizeInBytes <= left.statistics.sizeInBytes) { @@ -309,7 +317,8 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] { case logical.OneRowRelation => execution.PhysicalRDD(Nil, singleRowRdd) :: Nil case logical.Repartition(expressions, child) => - execution.Exchange(HashPartitioning(expressions, numPartitions), planLater(child)) :: Nil + execution.Exchange( + HashPartitioning(expressions, numPartitions), Nil, planLater(child)) :: Nil case e @ EvaluatePython(udf, child, _) => BatchPythonEvaluation(udf, e.output, planLater(child)) :: Nil case LogicalRDD(output, rdd) => PhysicalRDD(output, rdd) :: Nil diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala index f8221f41bc6c3..308dae236a5ed 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala @@ -41,6 +41,8 @@ case class Project(projectList: Seq[NamedExpression], child: SparkPlan) extends val resuableProjection = buildProjection() iter.map(resuableProjection) } + + override def outputOrdering: Seq[SortOrder] = child.outputOrdering } /** @@ -55,6 +57,8 @@ case class Filter(condition: Expression, child: SparkPlan) extends UnaryNode { override def execute(): RDD[Row] = child.execute().mapPartitions { iter => iter.filter(conditionEvaluator) } + + override def outputOrdering: Seq[SortOrder] = child.outputOrdering } /** @@ -147,6 +151,8 @@ case class TakeOrdered(limit: Int, sortOrder: Seq[SortOrder], child: SparkPlan) // TODO: Terminal split should be implemented differently from non-terminal split. // TODO: Pick num splits based on |limit|. override def execute(): RDD[Row] = sparkContext.makeRDD(collectData(), 1) + + override def outputOrdering: Seq[SortOrder] = sortOrder } /** @@ -172,6 +178,8 @@ case class Sort( } override def output: Seq[Attribute] = child.output + + override def outputOrdering: Seq[SortOrder] = sortOrder } /** @@ -202,6 +210,8 @@ case class ExternalSort( } override def output: Seq[Attribute] = child.output + + override def outputOrdering: Seq[SortOrder] = sortOrder } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/joins/SortMergeJoin.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/joins/SortMergeJoin.scala new file mode 100644 index 0000000000000..b5123668ba11e --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/joins/SortMergeJoin.scala @@ -0,0 +1,169 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution.joins + +import java.util.NoSuchElementException + +import org.apache.spark.annotation.DeveloperApi +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.Row +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.plans._ +import org.apache.spark.sql.catalyst.plans.physical._ +import org.apache.spark.sql.execution.{BinaryNode, SparkPlan} +import org.apache.spark.util.collection.CompactBuffer + +/** + * :: DeveloperApi :: + * Performs an sort merge join of two child relations. + */ +@DeveloperApi +case class SortMergeJoin( + leftKeys: Seq[Expression], + rightKeys: Seq[Expression], + left: SparkPlan, + right: SparkPlan) extends BinaryNode { + + override def output: Seq[Attribute] = left.output ++ right.output + + override def outputPartitioning: Partitioning = left.outputPartitioning + + override def requiredChildDistribution: Seq[Distribution] = + ClusteredDistribution(leftKeys) :: ClusteredDistribution(rightKeys) :: Nil + + // this is to manually construct an ordering that can be used to compare keys from both sides + private val keyOrdering: RowOrdering = RowOrdering.forSchema(leftKeys.map(_.dataType)) + + override def outputOrdering: Seq[SortOrder] = requiredOrders(leftKeys) + + override def requiredChildOrdering: Seq[Seq[SortOrder]] = + requiredOrders(leftKeys) :: requiredOrders(rightKeys) :: Nil + + @transient protected lazy val leftKeyGenerator = newProjection(leftKeys, left.output) + @transient protected lazy val rightKeyGenerator = newProjection(rightKeys, right.output) + + private def requiredOrders(keys: Seq[Expression]): Seq[SortOrder] = + keys.map(SortOrder(_, Ascending)) + + override def execute(): RDD[Row] = { + val leftResults = left.execute().map(_.copy()) + val rightResults = right.execute().map(_.copy()) + + leftResults.zipPartitions(rightResults) { (leftIter, rightIter) => + new Iterator[Row] { + // Mutable per row objects. + private[this] val joinRow = new JoinedRow5 + private[this] var leftElement: Row = _ + private[this] var rightElement: Row = _ + private[this] var leftKey: Row = _ + private[this] var rightKey: Row = _ + private[this] var rightMatches: CompactBuffer[Row] = _ + private[this] var rightPosition: Int = -1 + private[this] var stop: Boolean = false + private[this] var matchKey: Row = _ + + // initialize iterator + initialize() + + override final def hasNext: Boolean = nextMatchingPair() + + override final def next(): Row = { + if (hasNext) { + // we are using the buffered right rows and run down left iterator + val joinedRow = joinRow(leftElement, rightMatches(rightPosition)) + rightPosition += 1 + if (rightPosition >= rightMatches.size) { + rightPosition = 0 + fetchLeft() + if (leftElement == null || keyOrdering.compare(leftKey, matchKey) != 0) { + stop = false + rightMatches = null + } + } + joinedRow + } else { + // no more result + throw new NoSuchElementException + } + } + + private def fetchLeft() = { + if (leftIter.hasNext) { + leftElement = leftIter.next() + leftKey = leftKeyGenerator(leftElement) + } else { + leftElement = null + } + } + + private def fetchRight() = { + if (rightIter.hasNext) { + rightElement = rightIter.next() + rightKey = rightKeyGenerator(rightElement) + } else { + rightElement = null + } + } + + private def initialize() = { + fetchLeft() + fetchRight() + } + + /** + * Searches the right iterator for the next rows that have matches in left side, and store + * them in a buffer. + * + * @return true if the search is successful, and false if the right iterator runs out of + * tuples. + */ + private def nextMatchingPair(): Boolean = { + if (!stop && rightElement != null) { + // run both side to get the first match pair + while (!stop && leftElement != null && rightElement != null) { + val comparing = keyOrdering.compare(leftKey, rightKey) + // for inner join, we need to filter those null keys + stop = comparing == 0 && !leftKey.anyNull + if (comparing > 0 || rightKey.anyNull) { + fetchRight() + } else if (comparing < 0 || leftKey.anyNull) { + fetchLeft() + } + } + rightMatches = new CompactBuffer[Row]() + if (stop) { + stop = false + // iterate the right side to buffer all rows that matches + // as the records should be ordered, exit when we meet the first that not match + while (!stop && rightElement != null) { + rightMatches += rightElement + fetchRight() + stop = keyOrdering.compare(leftKey, rightKey) != 0 + } + if (rightMatches.size > 0) { + rightPosition = 0 + matchKey = leftKey + } + } + } + rightMatches != null && rightMatches.size > 0 + } + } + } + } +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/JoinSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/JoinSuite.scala index e4dee87849fd4..037d392c1f929 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/JoinSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/JoinSuite.scala @@ -51,6 +51,7 @@ class JoinSuite extends QueryTest with BeforeAndAfterEach { case j: CartesianProduct => j case j: BroadcastNestedLoopJoin => j case j: BroadcastLeftSemiJoinHash => j + case j: SortMergeJoin => j } assert(operators.size === 1) @@ -62,6 +63,7 @@ class JoinSuite extends QueryTest with BeforeAndAfterEach { test("join operator selection") { cacheManager.clearCache() + val SORTMERGEJOIN_ENABLED: Boolean = conf.sortMergeJoinEnabled Seq( ("SELECT * FROM testData LEFT SEMI JOIN testData2 ON key = a", classOf[LeftSemiJoinHash]), ("SELECT * FROM testData LEFT SEMI JOIN testData2", classOf[LeftSemiJoinBNL]), @@ -91,17 +93,41 @@ class JoinSuite extends QueryTest with BeforeAndAfterEach { ("SELECT * FROM testData full JOIN testData2 ON (key * a != key + a)", classOf[BroadcastNestedLoopJoin]) ).foreach { case (query, joinClass) => assertJoin(query, joinClass) } + try { + conf.setConf("spark.sql.planner.sortMergeJoin", "true") + Seq( + ("SELECT * FROM testData JOIN testData2 ON key = a", classOf[SortMergeJoin]), + ("SELECT * FROM testData JOIN testData2 ON key = a and key = 2", classOf[SortMergeJoin]), + ("SELECT * FROM testData JOIN testData2 ON key = a where key = 2", classOf[SortMergeJoin]) + ).foreach { case (query, joinClass) => assertJoin(query, joinClass) } + } finally { + conf.setConf("spark.sql.planner.sortMergeJoin", SORTMERGEJOIN_ENABLED.toString) + } } test("broadcasted hash join operator selection") { cacheManager.clearCache() sql("CACHE TABLE testData") + val SORTMERGEJOIN_ENABLED: Boolean = conf.sortMergeJoinEnabled Seq( ("SELECT * FROM testData join testData2 ON key = a", classOf[BroadcastHashJoin]), ("SELECT * FROM testData join testData2 ON key = a and key = 2", classOf[BroadcastHashJoin]), - ("SELECT * FROM testData join testData2 ON key = a where key = 2", classOf[BroadcastHashJoin]) + ("SELECT * FROM testData join testData2 ON key = a where key = 2", + classOf[BroadcastHashJoin]) ).foreach { case (query, joinClass) => assertJoin(query, joinClass) } + try { + conf.setConf("spark.sql.planner.sortMergeJoin", "true") + Seq( + ("SELECT * FROM testData join testData2 ON key = a", classOf[BroadcastHashJoin]), + ("SELECT * FROM testData join testData2 ON key = a and key = 2", + classOf[BroadcastHashJoin]), + ("SELECT * FROM testData join testData2 ON key = a where key = 2", + classOf[BroadcastHashJoin]) + ).foreach { case (query, joinClass) => assertJoin(query, joinClass) } + } finally { + conf.setConf("spark.sql.planner.sortMergeJoin", SORTMERGEJOIN_ENABLED.toString) + } sql("UNCACHE TABLE testData") } diff --git a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/SortMergeCompatibilitySuite.scala b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/SortMergeCompatibilitySuite.scala new file mode 100644 index 0000000000000..65d070bd3cbde --- /dev/null +++ b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/SortMergeCompatibilitySuite.scala @@ -0,0 +1,162 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.hive.execution + +import org.apache.spark.sql.SQLConf +import org.apache.spark.sql.hive.test.TestHive + +/** + * Runs the test cases that are included in the hive distribution with sort merge join is true. + */ +class SortMergeCompatibilitySuite extends HiveCompatibilitySuite { + override def beforeAll() { + super.beforeAll() + TestHive.setConf(SQLConf.SORTMERGE_JOIN, "true") + } + + override def afterAll() { + TestHive.setConf(SQLConf.SORTMERGE_JOIN, "false") + super.afterAll() + } + + override def whiteList = Seq( + "auto_join0", + "auto_join1", + "auto_join10", + "auto_join11", + "auto_join12", + "auto_join13", + "auto_join14", + "auto_join14_hadoop20", + "auto_join15", + "auto_join17", + "auto_join18", + "auto_join19", + "auto_join2", + "auto_join20", + "auto_join21", + "auto_join22", + "auto_join23", + "auto_join24", + "auto_join25", + "auto_join26", + "auto_join27", + "auto_join28", + "auto_join3", + "auto_join30", + "auto_join31", + "auto_join32", + "auto_join4", + "auto_join5", + "auto_join6", + "auto_join7", + "auto_join8", + "auto_join9", + "auto_join_filters", + "auto_join_nulls", + "auto_join_reordering_values", + "auto_smb_mapjoin_14", + "auto_sortmerge_join_1", + "auto_sortmerge_join_10", + "auto_sortmerge_join_11", + "auto_sortmerge_join_12", + "auto_sortmerge_join_13", + "auto_sortmerge_join_14", + "auto_sortmerge_join_15", + "auto_sortmerge_join_16", + "auto_sortmerge_join_2", + "auto_sortmerge_join_3", + "auto_sortmerge_join_4", + "auto_sortmerge_join_5", + "auto_sortmerge_join_6", + "auto_sortmerge_join_7", + "auto_sortmerge_join_8", + "auto_sortmerge_join_9", + "correlationoptimizer1", + "correlationoptimizer10", + "correlationoptimizer11", + "correlationoptimizer13", + "correlationoptimizer14", + "correlationoptimizer15", + "correlationoptimizer2", + "correlationoptimizer3", + "correlationoptimizer4", + "correlationoptimizer6", + "correlationoptimizer7", + "correlationoptimizer8", + "correlationoptimizer9", + "join0", + "join1", + "join10", + "join11", + "join12", + "join13", + "join14", + "join14_hadoop20", + "join15", + "join16", + "join17", + "join18", + "join19", + "join2", + "join20", + "join21", + "join22", + "join23", + "join24", + "join25", + "join26", + "join27", + "join28", + "join29", + "join3", + "join30", + "join31", + "join32", + "join32_lessSize", + "join33", + "join34", + "join35", + "join36", + "join37", + "join38", + "join39", + "join4", + "join40", + "join41", + "join5", + "join6", + "join7", + "join8", + "join9", + "join_1to1", + "join_array", + "join_casesensitive", + "join_empty", + "join_filters", + "join_hive_626", + "join_map_ppr", + "join_nulls", + "join_nullsafe", + "join_rc", + "join_reorder2", + "join_reorder3", + "join_reorder4", + "join_star" + ) +} From d5f1b9650b6e46cf6a9d61f01cda0df0cda5b1c9 Mon Sep 17 00:00:00 2001 From: Isaias Barroso Date: Wed, 15 Apr 2015 22:40:52 +0100 Subject: [PATCH 22/31] [SPARK-2312] Logging Unhandled messages The previous solution has changed based on https://github.com/apache/spark/pull/2048 discussions. Author: Isaias Barroso Closes #2055 from isaias/SPARK-2312 and squashes the following commits: f61d9e6 [Isaias Barroso] Change Log level for unhandled message to debug f341777 [Isaias Barroso] [SPARK-2312] Logging Unhandled messages --- .../scala/org/apache/spark/util/ActorLogReceive.scala | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/util/ActorLogReceive.scala b/core/src/main/scala/org/apache/spark/util/ActorLogReceive.scala index 332d0cbb2dc0c..81a7cbde01ce5 100644 --- a/core/src/main/scala/org/apache/spark/util/ActorLogReceive.scala +++ b/core/src/main/scala/org/apache/spark/util/ActorLogReceive.scala @@ -43,7 +43,13 @@ private[spark] trait ActorLogReceive { private val _receiveWithLogging = receiveWithLogging - override def isDefinedAt(o: Any): Boolean = _receiveWithLogging.isDefinedAt(o) + override def isDefinedAt(o: Any): Boolean = { + val handled = _receiveWithLogging.isDefinedAt(o) + if (!handled) { + log.debug(s"Received unexpected actor system event: $o") + } + handled + } override def apply(o: Any): Unit = { if (log.isDebugEnabled) { From 8a53de16fc8208358b76d0f3d45538e0304bcc8e Mon Sep 17 00:00:00 2001 From: Max Seiden Date: Wed, 15 Apr 2015 16:15:11 -0700 Subject: [PATCH 23/31] [SPARK-5277][SQL] - SparkSqlSerializer doesn't always register user specified KryoRegistrators [SPARK-5277][SQL] - SparkSqlSerializer doesn't always register user specified KryoRegistrators There were a few places where new SparkSqlSerializer instances were created with new, empty SparkConfs resulting in user specified registrators sometimes not getting initialized. The fix is to try and pull a conf from the SparkEnv, and construct a new conf (that loads defaults) if one cannot be found. The changes touched: 1) SparkSqlSerializer's resource pool (this appears to fix the issue in the comment) 2) execution.Exchange (for all of the partitioners) 3) execution.Limit (for the HashPartitioner) A few tests were added to ColumnTypeSuite, ensuring that a custom registrator and serde is initialized and used when in-memory columns are written. Author: Max Seiden This patch had conflicts when merged, resolved by Committer: Michael Armbrust Closes #5237 from mhseiden/sql_udt_kryo and squashes the following commits: 3175c2f [Max Seiden] [SPARK-5277][SQL] - address code review comments e5011fb [Max Seiden] [SPARK-5277][SQL] - SparkSqlSerializer does not register user specified KryoRegistrators --- .../apache/spark/sql/execution/Exchange.scala | 9 +-- .../sql/execution/SparkSqlSerializer.scala | 7 +-- .../spark/sql/execution/basicOperators.scala | 2 +- .../spark/sql/columnar/ColumnTypeSuite.scala | 62 ++++++++++++++++++- 4 files changed, 68 insertions(+), 12 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala index 518fc9e57c708..69a620e1ec929 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/Exchange.scala @@ -78,6 +78,8 @@ case class Exchange( } override def execute(): RDD[Row] = attachTree(this , "execute") { + lazy val sparkConf = child.sqlContext.sparkContext.getConf + newPartitioning match { case HashPartitioning(expressions, numPartitions) => // TODO: Eliminate redundant expressions in grouping key and value. @@ -109,7 +111,7 @@ case class Exchange( } else { new ShuffledRDD[Row, Row, Row](rdd, part) } - shuffled.setSerializer(new SparkSqlSerializer(new SparkConf(false))) + shuffled.setSerializer(new SparkSqlSerializer(sparkConf)) shuffled.map(_._2) case RangePartitioning(sortingExpressions, numPartitions) => @@ -132,8 +134,7 @@ case class Exchange( } else { new ShuffledRDD[Row, Null, Null](rdd, part) } - shuffled.setSerializer(new SparkSqlSerializer(new SparkConf(false))) - + shuffled.setSerializer(new SparkSqlSerializer(sparkConf)) shuffled.map(_._1) case SinglePartition => @@ -151,7 +152,7 @@ case class Exchange( } val partitioner = new HashPartitioner(1) val shuffled = new ShuffledRDD[Null, Row, Row](rdd, partitioner) - shuffled.setSerializer(new SparkSqlSerializer(new SparkConf(false))) + shuffled.setSerializer(new SparkSqlSerializer(sparkConf)) shuffled.map(_._2) case _ => sys.error(s"Exchange not implemented for $newPartitioning") diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkSqlSerializer.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkSqlSerializer.scala index 914f387dec78f..eea15aff5dbcf 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkSqlSerializer.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkSqlSerializer.scala @@ -65,12 +65,9 @@ private[sql] class SparkSqlSerializer(conf: SparkConf) extends KryoSerializer(co private[execution] class KryoResourcePool(size: Int) extends ResourcePool[SerializerInstance](size) { - val ser: KryoSerializer = { + val ser: SparkSqlSerializer = { val sparkConf = Option(SparkEnv.get).map(_.conf).getOrElse(new SparkConf()) - // TODO (lian) Using KryoSerializer here is workaround, needs further investigation - // Using SparkSqlSerializer here makes BasicQuerySuite to fail because of Kryo serialization - // related error. - new KryoSerializer(sparkConf) + new SparkSqlSerializer(sparkConf) } def newInstance(): SerializerInstance = ser.newInstance() diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala index 308dae236a5ed..d286fe81bee5f 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/basicOperators.scala @@ -121,7 +121,7 @@ case class Limit(limit: Int, child: SparkPlan) } val part = new HashPartitioner(1) val shuffled = new ShuffledRDD[Boolean, Row, Row](rdd, part) - shuffled.setSerializer(new SparkSqlSerializer(new SparkConf(false))) + shuffled.setSerializer(new SparkSqlSerializer(child.sqlContext.sparkContext.getConf)) shuffled.mapPartitions(_.take(limit).map(_._2)) } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala index c86ef338fc644..b48bed1871c50 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala @@ -20,9 +20,12 @@ package org.apache.spark.sql.columnar import java.nio.ByteBuffer import java.sql.Timestamp +import com.esotericsoftware.kryo.{Serializer, Kryo} +import com.esotericsoftware.kryo.io.{Input, Output} +import org.apache.spark.serializer.KryoRegistrator import org.scalatest.FunSuite -import org.apache.spark.Logging +import org.apache.spark.{SparkConf, Logging} import org.apache.spark.sql.catalyst.expressions.GenericMutableRow import org.apache.spark.sql.columnar.ColumnarTestUtils._ import org.apache.spark.sql.execution.SparkSqlSerializer @@ -73,7 +76,7 @@ class ColumnTypeSuite extends FunSuite with Logging { checkActualSize(BINARY, binary, 4 + 4) val generic = Map(1 -> "a") - checkActualSize(GENERIC, SparkSqlSerializer.serialize(generic), 4 + 11) + checkActualSize(GENERIC, SparkSqlSerializer.serialize(generic), 4 + 8) } testNativeColumnType[BooleanType.type]( @@ -158,6 +161,41 @@ class ColumnTypeSuite extends FunSuite with Logging { } } + test("CUSTOM") { + val conf = new SparkConf() + conf.set("spark.kryo.registrator", "org.apache.spark.sql.columnar.Registrator") + val serializer = new SparkSqlSerializer(conf).newInstance() + + val buffer = ByteBuffer.allocate(512) + val obj = CustomClass(Int.MaxValue,Long.MaxValue) + val serializedObj = serializer.serialize(obj).array() + + GENERIC.append(serializer.serialize(obj).array(), buffer) + buffer.rewind() + + val length = buffer.getInt + assert(length === serializedObj.length) + assert(13 == length) // id (1) + int (4) + long (8) + + val genericSerializedObj = SparkSqlSerializer.serialize(obj) + assert(length != genericSerializedObj.length) + assert(length < genericSerializedObj.length) + + assertResult(obj, "Custom deserialized object didn't equal the original object") { + val bytes = new Array[Byte](length) + buffer.get(bytes, 0, length) + serializer.deserialize(ByteBuffer.wrap(bytes)) + } + + buffer.rewind() + buffer.putInt(serializedObj.length).put(serializedObj) + + assertResult(obj, "Custom deserialized object didn't equal the original object") { + buffer.rewind() + serializer.deserialize(ByteBuffer.wrap(GENERIC.extract(buffer))) + } + } + def testNativeColumnType[T <: NativeType]( columnType: NativeColumnType[T], putter: (ByteBuffer, T#JvmType) => Unit, @@ -229,3 +267,23 @@ class ColumnTypeSuite extends FunSuite with Logging { } } } + +private[columnar] final case class CustomClass(a: Int, b: Long) + +private[columnar] object CustomerSerializer extends Serializer[CustomClass] { + override def write(kryo: Kryo, output: Output, t: CustomClass) { + output.writeInt(t.a) + output.writeLong(t.b) + } + override def read(kryo: Kryo, input: Input, aClass: Class[CustomClass]): CustomClass = { + val a = input.readInt() + val b = input.readLong() + CustomClass(a,b) + } +} + +private[columnar] final class Registrator extends KryoRegistrator { + override def registerClasses(kryo: Kryo) { + kryo.register(classOf[CustomClass], CustomerSerializer) + } +} From 52c3439a8a107ce1fc10e4f0b59fd7881e851622 Mon Sep 17 00:00:00 2001 From: Juliet Hougland Date: Wed, 15 Apr 2015 21:52:25 -0700 Subject: [PATCH 24/31] SPARK-6938: All require statements now have an informative error message. This pr adds informative error messages to all require statements in the Vectors class that did not previously have them. This references [SPARK-6938](https://issues.apache.org/jira/browse/SPARK-6938). Author: Juliet Hougland Closes #5532 from jhlch/SPARK-6938 and squashes the following commits: ab321bb [Juliet Hougland] Remove braces from string interpolation when not required. 1221f94 [Juliet Hougland] All require statements now have an informative error message. --- .../org/apache/spark/mllib/linalg/Vectors.scala | 15 ++++++++++----- 1 file changed, 10 insertions(+), 5 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala index 328dbe2ce11fa..4ef171f4f0419 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala @@ -227,7 +227,7 @@ object Vectors { * @param elements vector elements in (index, value) pairs. */ def sparse(size: Int, elements: Seq[(Int, Double)]): Vector = { - require(size > 0) + require(size > 0, "The size of the requested sparse vector must be greater than 0.") val (indices, values) = elements.sortBy(_._1).unzip var prev = -1 @@ -235,7 +235,8 @@ object Vectors { require(prev < i, s"Found duplicate indices: $i.") prev = i } - require(prev < size) + require(prev < size, s"You may not write an element to index $prev because the declared " + + s"size of your vector is $size") new SparseVector(size, indices.toArray, values.toArray) } @@ -309,7 +310,8 @@ object Vectors { * @return norm in L^p^ space. */ def norm(vector: Vector, p: Double): Double = { - require(p >= 1.0) + require(p >= 1.0, "To compute the p-norm of the vector, we require that you specify a p>=1. " + + s"You specified p=$p.") val values = vector match { case DenseVector(vs) => vs case SparseVector(n, ids, vs) => vs @@ -360,7 +362,8 @@ object Vectors { * @return squared distance between two Vectors. */ def sqdist(v1: Vector, v2: Vector): Double = { - require(v1.size == v2.size, "vector dimension mismatch") + require(v1.size == v2.size, s"Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" + + s"=${v2.size}.") var squaredDistance = 0.0 (v1, v2) match { case (v1: SparseVector, v2: SparseVector) => @@ -518,7 +521,9 @@ class SparseVector( val indices: Array[Int], val values: Array[Double]) extends Vector { - require(indices.length == values.length) + require(indices.length == values.length, "Sparse vectors require that the dimension of the" + + s" indices match the dimension of the values. You provided ${indices.size} indices and " + + s" ${values.size} values.") override def toString: String = "(%s,%s,%s)".format(size, indices.mkString("[", ",", "]"), values.mkString("[", ",", "]")) From 57cd1e86d1d450f85fc9e296aff498a940452113 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Wed, 15 Apr 2015 23:49:42 -0700 Subject: [PATCH 25/31] [SPARK-6893][ML] default pipeline parameter handling in python Same as #5431 but for Python. jkbradley Author: Xiangrui Meng Closes #5534 from mengxr/SPARK-6893 and squashes the following commits: d3b519b [Xiangrui Meng] address comments ebaccc6 [Xiangrui Meng] style update fce244e [Xiangrui Meng] update explainParams with test 4d6b07a [Xiangrui Meng] add tests 5294500 [Xiangrui Meng] update default param handling in python --- .../org/apache/spark/ml/Identifiable.scala | 2 +- .../apache/spark/ml/param/TestParams.scala | 9 +- python/pyspark/ml/classification.py | 3 +- python/pyspark/ml/feature.py | 19 +-- python/pyspark/ml/param/__init__.py | 146 +++++++++++++++--- ...d_params.py => _shared_params_code_gen.py} | 42 ++--- python/pyspark/ml/param/shared.py | 106 ++++++------- python/pyspark/ml/pipeline.py | 6 +- python/pyspark/ml/tests.py | 52 ++++++- python/pyspark/ml/util.py | 4 +- python/pyspark/ml/wrapper.py | 2 +- 11 files changed, 270 insertions(+), 121 deletions(-) rename python/pyspark/ml/param/{_gen_shared_params.py => _shared_params_code_gen.py} (70%) diff --git a/mllib/src/main/scala/org/apache/spark/ml/Identifiable.scala b/mllib/src/main/scala/org/apache/spark/ml/Identifiable.scala index a50090671ae48..a1d49095c24ac 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/Identifiable.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/Identifiable.scala @@ -25,7 +25,7 @@ import java.util.UUID private[ml] trait Identifiable extends Serializable { /** - * A unique id for the object. The default implementation concatenates the class name, "-", and 8 + * A unique id for the object. The default implementation concatenates the class name, "_", and 8 * random hex chars. */ private[ml] val uid: String = diff --git a/mllib/src/test/scala/org/apache/spark/ml/param/TestParams.scala b/mllib/src/test/scala/org/apache/spark/ml/param/TestParams.scala index 8f9ab687c05cb..641b64b42a5e7 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/param/TestParams.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/param/TestParams.scala @@ -17,16 +17,13 @@ package org.apache.spark.ml.param +import org.apache.spark.ml.param.shared.{HasInputCol, HasMaxIter} + /** A subclass of Params for testing. */ -class TestParams extends Params { +class TestParams extends Params with HasMaxIter with HasInputCol { - val maxIter = new IntParam(this, "maxIter", "max number of iterations") def setMaxIter(value: Int): this.type = { set(maxIter, value); this } - def getMaxIter: Int = getOrDefault(maxIter) - - val inputCol = new Param[String](this, "inputCol", "input column name") def setInputCol(value: String): this.type = { set(inputCol, value); this } - def getInputCol: String = getOrDefault(inputCol) setDefault(maxIter -> 10) diff --git a/python/pyspark/ml/classification.py b/python/pyspark/ml/classification.py index 7f42de531f3b4..d7bc09fd77adb 100644 --- a/python/pyspark/ml/classification.py +++ b/python/pyspark/ml/classification.py @@ -59,6 +59,7 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred maxIter=100, regParam=0.1) """ super(LogisticRegression, self).__init__() + self._setDefault(maxIter=100, regParam=0.1) kwargs = self.__init__._input_kwargs self.setParams(**kwargs) @@ -71,7 +72,7 @@ def setParams(self, featuresCol="features", labelCol="label", predictionCol="pre Sets params for logistic regression. """ kwargs = self.setParams._input_kwargs - return self._set_params(**kwargs) + return self._set(**kwargs) def _create_model(self, java_model): return LogisticRegressionModel(java_model) diff --git a/python/pyspark/ml/feature.py b/python/pyspark/ml/feature.py index 1cfcd019dfb18..263fe2a5bcc41 100644 --- a/python/pyspark/ml/feature.py +++ b/python/pyspark/ml/feature.py @@ -52,22 +52,22 @@ class Tokenizer(JavaTransformer, HasInputCol, HasOutputCol): _java_class = "org.apache.spark.ml.feature.Tokenizer" @keyword_only - def __init__(self, inputCol="input", outputCol="output"): + def __init__(self, inputCol=None, outputCol=None): """ - __init__(self, inputCol="input", outputCol="output") + __init__(self, inputCol=None, outputCol=None) """ super(Tokenizer, self).__init__() kwargs = self.__init__._input_kwargs self.setParams(**kwargs) @keyword_only - def setParams(self, inputCol="input", outputCol="output"): + def setParams(self, inputCol=None, outputCol=None): """ setParams(self, inputCol="input", outputCol="output") Sets params for this Tokenizer. """ kwargs = self.setParams._input_kwargs - return self._set_params(**kwargs) + return self._set(**kwargs) @inherit_doc @@ -91,22 +91,23 @@ class HashingTF(JavaTransformer, HasInputCol, HasOutputCol, HasNumFeatures): _java_class = "org.apache.spark.ml.feature.HashingTF" @keyword_only - def __init__(self, numFeatures=1 << 18, inputCol="input", outputCol="output"): + def __init__(self, numFeatures=1 << 18, inputCol=None, outputCol=None): """ - __init__(self, numFeatures=1 << 18, inputCol="input", outputCol="output") + __init__(self, numFeatures=1 << 18, inputCol=None, outputCol=None) """ super(HashingTF, self).__init__() + self._setDefault(numFeatures=1 << 18) kwargs = self.__init__._input_kwargs self.setParams(**kwargs) @keyword_only - def setParams(self, numFeatures=1 << 18, inputCol="input", outputCol="output"): + def setParams(self, numFeatures=1 << 18, inputCol=None, outputCol=None): """ - setParams(self, numFeatures=1 << 18, inputCol="input", outputCol="output") + setParams(self, numFeatures=1 << 18, inputCol=None, outputCol=None) Sets params for this HashingTF. """ kwargs = self.setParams._input_kwargs - return self._set_params(**kwargs) + return self._set(**kwargs) if __name__ == "__main__": diff --git a/python/pyspark/ml/param/__init__.py b/python/pyspark/ml/param/__init__.py index e3a53dd780c4c..5c62620562a84 100644 --- a/python/pyspark/ml/param/__init__.py +++ b/python/pyspark/ml/param/__init__.py @@ -25,23 +25,21 @@ class Param(object): """ - A param with self-contained documentation and optionally default value. + A param with self-contained documentation. """ - def __init__(self, parent, name, doc, defaultValue=None): - if not isinstance(parent, Identifiable): - raise ValueError("Parent must be identifiable but got type %s." % type(parent).__name__) + def __init__(self, parent, name, doc): + if not isinstance(parent, Params): + raise ValueError("Parent must be a Params but got type %s." % type(parent).__name__) self.parent = parent self.name = str(name) self.doc = str(doc) - self.defaultValue = defaultValue def __str__(self): - return str(self.parent) + "-" + self.name + return str(self.parent) + "__" + self.name def __repr__(self): - return "Param(parent=%r, name=%r, doc=%r, defaultValue=%r)" % \ - (self.parent, self.name, self.doc, self.defaultValue) + return "Param(parent=%r, name=%r, doc=%r)" % (self.parent, self.name, self.doc) class Params(Identifiable): @@ -52,26 +50,128 @@ class Params(Identifiable): __metaclass__ = ABCMeta - def __init__(self): - super(Params, self).__init__() - #: embedded param map - self.paramMap = {} + #: internal param map for user-supplied values param map + paramMap = {} + + #: internal param map for default values + defaultParamMap = {} @property def params(self): """ - Returns all params. The default implementation uses - :py:func:`dir` to get all attributes of type + Returns all params ordered by name. The default implementation + uses :py:func:`dir` to get all attributes of type :py:class:`Param`. """ return filter(lambda attr: isinstance(attr, Param), [getattr(self, x) for x in dir(self) if x != "params"]) - def _merge_params(self, params): - paramMap = self.paramMap.copy() - paramMap.update(params) + def _explain(self, param): + """ + Explains a single param and returns its name, doc, and optional + default value and user-supplied value in a string. + """ + param = self._resolveParam(param) + values = [] + if self.isDefined(param): + if param in self.defaultParamMap: + values.append("default: %s" % self.defaultParamMap[param]) + if param in self.paramMap: + values.append("current: %s" % self.paramMap[param]) + else: + values.append("undefined") + valueStr = "(" + ", ".join(values) + ")" + return "%s: %s %s" % (param.name, param.doc, valueStr) + + def explainParams(self): + """ + Returns the documentation of all params with their optionally + default values and user-supplied values. + """ + return "\n".join([self._explain(param) for param in self.params]) + + def getParam(self, paramName): + """ + Gets a param by its name. + """ + param = getattr(self, paramName) + if isinstance(param, Param): + return param + else: + raise ValueError("Cannot find param with name %s." % paramName) + + def isSet(self, param): + """ + Checks whether a param is explicitly set by user. + """ + param = self._resolveParam(param) + return param in self.paramMap + + def hasDefault(self, param): + """ + Checks whether a param has a default value. + """ + param = self._resolveParam(param) + return param in self.defaultParamMap + + def isDefined(self, param): + """ + Checks whether a param is explicitly set by user or has a default value. + """ + return self.isSet(param) or self.hasDefault(param) + + def getOrDefault(self, param): + """ + Gets the value of a param in the user-supplied param map or its + default value. Raises an error if either is set. + """ + if isinstance(param, Param): + if param in self.paramMap: + return self.paramMap[param] + else: + return self.defaultParamMap[param] + elif isinstance(param, str): + return self.getOrDefault(self.getParam(param)) + else: + raise KeyError("Cannot recognize %r as a param." % param) + + def extractParamMap(self, extraParamMap={}): + """ + Extracts the embedded default param values and user-supplied + values, and then merges them with extra values from input into + a flat param map, where the latter value is used if there exist + conflicts, i.e., with ordering: default param values < + user-supplied values < extraParamMap. + :param extraParamMap: extra param values + :return: merged param map + """ + paramMap = self.defaultParamMap.copy() + paramMap.update(self.paramMap) + paramMap.update(extraParamMap) return paramMap + def _shouldOwn(self, param): + """ + Validates that the input param belongs to this Params instance. + """ + if param.parent is not self: + raise ValueError("Param %r does not belong to %r." % (param, self)) + + def _resolveParam(self, param): + """ + Resolves a param and validates the ownership. + :param param: param name or the param instance, which must + belong to this Params instance + :return: resolved param instance + """ + if isinstance(param, Param): + self._shouldOwn(param) + return param + elif isinstance(param, str): + return self.getParam(param) + else: + raise ValueError("Cannot resolve %r as a param." % param) + @staticmethod def _dummy(): """ @@ -81,10 +181,18 @@ def _dummy(): dummy.uid = "undefined" return dummy - def _set_params(self, **kwargs): + def _set(self, **kwargs): """ - Sets params. + Sets user-supplied params. """ for param, value in kwargs.iteritems(): self.paramMap[getattr(self, param)] = value return self + + def _setDefault(self, **kwargs): + """ + Sets default params. + """ + for param, value in kwargs.iteritems(): + self.defaultParamMap[getattr(self, param)] = value + return self diff --git a/python/pyspark/ml/param/_gen_shared_params.py b/python/pyspark/ml/param/_shared_params_code_gen.py similarity index 70% rename from python/pyspark/ml/param/_gen_shared_params.py rename to python/pyspark/ml/param/_shared_params_code_gen.py index 5eb81106f116c..55f422497672f 100644 --- a/python/pyspark/ml/param/_gen_shared_params.py +++ b/python/pyspark/ml/param/_shared_params_code_gen.py @@ -32,29 +32,34 @@ # limitations under the License. #""" +# Code generator for shared params (shared.py). Run under this folder with: +# python _shared_params_code_gen.py > shared.py -def _gen_param_code(name, doc, defaultValue): + +def _gen_param_code(name, doc, defaultValueStr): """ Generates Python code for a shared param class. :param name: param name :param doc: param doc - :param defaultValue: string representation of the param + :param defaultValueStr: string representation of the default value :return: code string """ # TODO: How to correctly inherit instance attributes? template = '''class Has$Name(Params): """ - Params with $name. + Mixin for param $name: $doc. """ # a placeholder to make it appear in the generated doc - $name = Param(Params._dummy(), "$name", "$doc", $defaultValue) + $name = Param(Params._dummy(), "$name", "$doc") def __init__(self): super(Has$Name, self).__init__() #: param for $doc - self.$name = Param(self, "$name", "$doc", $defaultValue) + self.$name = Param(self, "$name", "$doc") + if $defaultValueStr is not None: + self._setDefault($name=$defaultValueStr) def set$Name(self, value): """ @@ -67,32 +72,29 @@ def get$Name(self): """ Gets the value of $name or its default value. """ - if self.$name in self.paramMap: - return self.paramMap[self.$name] - else: - return self.$name.defaultValue''' + return self.getOrDefault(self.$name)''' - upperCamelName = name[0].upper() + name[1:] + Name = name[0].upper() + name[1:] return template \ .replace("$name", name) \ - .replace("$Name", upperCamelName) \ + .replace("$Name", Name) \ .replace("$doc", doc) \ - .replace("$defaultValue", defaultValue) + .replace("$defaultValueStr", str(defaultValueStr)) if __name__ == "__main__": print header - print "\n# DO NOT MODIFY. The code is generated by _gen_shared_params.py.\n" + print "\n# DO NOT MODIFY THIS FILE! It was generated by _shared_params_code_gen.py.\n" print "from pyspark.ml.param import Param, Params\n\n" shared = [ - ("maxIter", "max number of iterations", "100"), - ("regParam", "regularization constant", "0.1"), + ("maxIter", "max number of iterations", None), + ("regParam", "regularization constant", None), ("featuresCol", "features column name", "'features'"), ("labelCol", "label column name", "'label'"), ("predictionCol", "prediction column name", "'prediction'"), - ("inputCol", "input column name", "'input'"), - ("outputCol", "output column name", "'output'"), - ("numFeatures", "number of features", "1 << 18")] + ("inputCol", "input column name", None), + ("outputCol", "output column name", None), + ("numFeatures", "number of features", None)] code = [] - for name, doc, defaultValue in shared: - code.append(_gen_param_code(name, doc, defaultValue)) + for name, doc, defaultValueStr in shared: + code.append(_gen_param_code(name, doc, defaultValueStr)) print "\n\n\n".join(code) diff --git a/python/pyspark/ml/param/shared.py b/python/pyspark/ml/param/shared.py index 586822f2de423..13b6749998ad0 100644 --- a/python/pyspark/ml/param/shared.py +++ b/python/pyspark/ml/param/shared.py @@ -15,23 +15,25 @@ # limitations under the License. # -# DO NOT MODIFY. The code is generated by _gen_shared_params.py. +# DO NOT MODIFY THIS FILE! It was generated by _shared_params_code_gen.py. from pyspark.ml.param import Param, Params class HasMaxIter(Params): """ - Params with maxIter. + Mixin for param maxIter: max number of iterations. """ # a placeholder to make it appear in the generated doc - maxIter = Param(Params._dummy(), "maxIter", "max number of iterations", 100) + maxIter = Param(Params._dummy(), "maxIter", "max number of iterations") def __init__(self): super(HasMaxIter, self).__init__() #: param for max number of iterations - self.maxIter = Param(self, "maxIter", "max number of iterations", 100) + self.maxIter = Param(self, "maxIter", "max number of iterations") + if None is not None: + self._setDefault(maxIter=None) def setMaxIter(self, value): """ @@ -44,24 +46,23 @@ def getMaxIter(self): """ Gets the value of maxIter or its default value. """ - if self.maxIter in self.paramMap: - return self.paramMap[self.maxIter] - else: - return self.maxIter.defaultValue + return self.getOrDefault(self.maxIter) class HasRegParam(Params): """ - Params with regParam. + Mixin for param regParam: regularization constant. """ # a placeholder to make it appear in the generated doc - regParam = Param(Params._dummy(), "regParam", "regularization constant", 0.1) + regParam = Param(Params._dummy(), "regParam", "regularization constant") def __init__(self): super(HasRegParam, self).__init__() #: param for regularization constant - self.regParam = Param(self, "regParam", "regularization constant", 0.1) + self.regParam = Param(self, "regParam", "regularization constant") + if None is not None: + self._setDefault(regParam=None) def setRegParam(self, value): """ @@ -74,24 +75,23 @@ def getRegParam(self): """ Gets the value of regParam or its default value. """ - if self.regParam in self.paramMap: - return self.paramMap[self.regParam] - else: - return self.regParam.defaultValue + return self.getOrDefault(self.regParam) class HasFeaturesCol(Params): """ - Params with featuresCol. + Mixin for param featuresCol: features column name. """ # a placeholder to make it appear in the generated doc - featuresCol = Param(Params._dummy(), "featuresCol", "features column name", 'features') + featuresCol = Param(Params._dummy(), "featuresCol", "features column name") def __init__(self): super(HasFeaturesCol, self).__init__() #: param for features column name - self.featuresCol = Param(self, "featuresCol", "features column name", 'features') + self.featuresCol = Param(self, "featuresCol", "features column name") + if 'features' is not None: + self._setDefault(featuresCol='features') def setFeaturesCol(self, value): """ @@ -104,24 +104,23 @@ def getFeaturesCol(self): """ Gets the value of featuresCol or its default value. """ - if self.featuresCol in self.paramMap: - return self.paramMap[self.featuresCol] - else: - return self.featuresCol.defaultValue + return self.getOrDefault(self.featuresCol) class HasLabelCol(Params): """ - Params with labelCol. + Mixin for param labelCol: label column name. """ # a placeholder to make it appear in the generated doc - labelCol = Param(Params._dummy(), "labelCol", "label column name", 'label') + labelCol = Param(Params._dummy(), "labelCol", "label column name") def __init__(self): super(HasLabelCol, self).__init__() #: param for label column name - self.labelCol = Param(self, "labelCol", "label column name", 'label') + self.labelCol = Param(self, "labelCol", "label column name") + if 'label' is not None: + self._setDefault(labelCol='label') def setLabelCol(self, value): """ @@ -134,24 +133,23 @@ def getLabelCol(self): """ Gets the value of labelCol or its default value. """ - if self.labelCol in self.paramMap: - return self.paramMap[self.labelCol] - else: - return self.labelCol.defaultValue + return self.getOrDefault(self.labelCol) class HasPredictionCol(Params): """ - Params with predictionCol. + Mixin for param predictionCol: prediction column name. """ # a placeholder to make it appear in the generated doc - predictionCol = Param(Params._dummy(), "predictionCol", "prediction column name", 'prediction') + predictionCol = Param(Params._dummy(), "predictionCol", "prediction column name") def __init__(self): super(HasPredictionCol, self).__init__() #: param for prediction column name - self.predictionCol = Param(self, "predictionCol", "prediction column name", 'prediction') + self.predictionCol = Param(self, "predictionCol", "prediction column name") + if 'prediction' is not None: + self._setDefault(predictionCol='prediction') def setPredictionCol(self, value): """ @@ -164,24 +162,23 @@ def getPredictionCol(self): """ Gets the value of predictionCol or its default value. """ - if self.predictionCol in self.paramMap: - return self.paramMap[self.predictionCol] - else: - return self.predictionCol.defaultValue + return self.getOrDefault(self.predictionCol) class HasInputCol(Params): """ - Params with inputCol. + Mixin for param inputCol: input column name. """ # a placeholder to make it appear in the generated doc - inputCol = Param(Params._dummy(), "inputCol", "input column name", 'input') + inputCol = Param(Params._dummy(), "inputCol", "input column name") def __init__(self): super(HasInputCol, self).__init__() #: param for input column name - self.inputCol = Param(self, "inputCol", "input column name", 'input') + self.inputCol = Param(self, "inputCol", "input column name") + if None is not None: + self._setDefault(inputCol=None) def setInputCol(self, value): """ @@ -194,24 +191,23 @@ def getInputCol(self): """ Gets the value of inputCol or its default value. """ - if self.inputCol in self.paramMap: - return self.paramMap[self.inputCol] - else: - return self.inputCol.defaultValue + return self.getOrDefault(self.inputCol) class HasOutputCol(Params): """ - Params with outputCol. + Mixin for param outputCol: output column name. """ # a placeholder to make it appear in the generated doc - outputCol = Param(Params._dummy(), "outputCol", "output column name", 'output') + outputCol = Param(Params._dummy(), "outputCol", "output column name") def __init__(self): super(HasOutputCol, self).__init__() #: param for output column name - self.outputCol = Param(self, "outputCol", "output column name", 'output') + self.outputCol = Param(self, "outputCol", "output column name") + if None is not None: + self._setDefault(outputCol=None) def setOutputCol(self, value): """ @@ -224,24 +220,23 @@ def getOutputCol(self): """ Gets the value of outputCol or its default value. """ - if self.outputCol in self.paramMap: - return self.paramMap[self.outputCol] - else: - return self.outputCol.defaultValue + return self.getOrDefault(self.outputCol) class HasNumFeatures(Params): """ - Params with numFeatures. + Mixin for param numFeatures: number of features. """ # a placeholder to make it appear in the generated doc - numFeatures = Param(Params._dummy(), "numFeatures", "number of features", 1 << 18) + numFeatures = Param(Params._dummy(), "numFeatures", "number of features") def __init__(self): super(HasNumFeatures, self).__init__() #: param for number of features - self.numFeatures = Param(self, "numFeatures", "number of features", 1 << 18) + self.numFeatures = Param(self, "numFeatures", "number of features") + if None is not None: + self._setDefault(numFeatures=None) def setNumFeatures(self, value): """ @@ -254,7 +249,4 @@ def getNumFeatures(self): """ Gets the value of numFeatures or its default value. """ - if self.numFeatures in self.paramMap: - return self.paramMap[self.numFeatures] - else: - return self.numFeatures.defaultValue + return self.getOrDefault(self.numFeatures) diff --git a/python/pyspark/ml/pipeline.py b/python/pyspark/ml/pipeline.py index 83880a5afcd1d..d94ecfff09f66 100644 --- a/python/pyspark/ml/pipeline.py +++ b/python/pyspark/ml/pipeline.py @@ -124,10 +124,10 @@ def setParams(self, stages=[]): Sets params for Pipeline. """ kwargs = self.setParams._input_kwargs - return self._set_params(**kwargs) + return self._set(**kwargs) def fit(self, dataset, params={}): - paramMap = self._merge_params(params) + paramMap = self.extractParamMap(params) stages = paramMap[self.stages] for stage in stages: if not (isinstance(stage, Estimator) or isinstance(stage, Transformer)): @@ -164,7 +164,7 @@ def __init__(self, transformers): self.transformers = transformers def transform(self, dataset, params={}): - paramMap = self._merge_params(params) + paramMap = self.extractParamMap(params) for t in self.transformers: dataset = t.transform(dataset, paramMap) return dataset diff --git a/python/pyspark/ml/tests.py b/python/pyspark/ml/tests.py index b627c2b4e930b..3a42bcf723894 100644 --- a/python/pyspark/ml/tests.py +++ b/python/pyspark/ml/tests.py @@ -33,6 +33,7 @@ from pyspark.tests import ReusedPySparkTestCase as PySparkTestCase from pyspark.sql import DataFrame from pyspark.ml.param import Param +from pyspark.ml.param.shared import HasMaxIter, HasInputCol from pyspark.ml.pipeline import Transformer, Estimator, Pipeline @@ -46,7 +47,7 @@ class MockTransformer(Transformer): def __init__(self): super(MockTransformer, self).__init__() - self.fake = Param(self, "fake", "fake", None) + self.fake = Param(self, "fake", "fake") self.dataset_index = None self.fake_param_value = None @@ -62,7 +63,7 @@ class MockEstimator(Estimator): def __init__(self): super(MockEstimator, self).__init__() - self.fake = Param(self, "fake", "fake", None) + self.fake = Param(self, "fake", "fake") self.dataset_index = None self.fake_param_value = None self.model = None @@ -111,5 +112,52 @@ def test_pipeline(self): self.assertEqual(6, dataset.index) +class TestParams(HasMaxIter, HasInputCol): + """ + A subclass of Params mixed with HasMaxIter and HasInputCol. + """ + + def __init__(self): + super(TestParams, self).__init__() + self._setDefault(maxIter=10) + + +class ParamTests(PySparkTestCase): + + def test_param(self): + testParams = TestParams() + maxIter = testParams.maxIter + self.assertEqual(maxIter.name, "maxIter") + self.assertEqual(maxIter.doc, "max number of iterations") + self.assertTrue(maxIter.parent is testParams) + + def test_params(self): + testParams = TestParams() + maxIter = testParams.maxIter + inputCol = testParams.inputCol + + params = testParams.params + self.assertEqual(params, [inputCol, maxIter]) + + self.assertTrue(testParams.hasDefault(maxIter)) + self.assertFalse(testParams.isSet(maxIter)) + self.assertTrue(testParams.isDefined(maxIter)) + self.assertEqual(testParams.getMaxIter(), 10) + testParams.setMaxIter(100) + self.assertTrue(testParams.isSet(maxIter)) + self.assertEquals(testParams.getMaxIter(), 100) + + self.assertFalse(testParams.hasDefault(inputCol)) + self.assertFalse(testParams.isSet(inputCol)) + self.assertFalse(testParams.isDefined(inputCol)) + with self.assertRaises(KeyError): + testParams.getInputCol() + + self.assertEquals( + testParams.explainParams(), + "\n".join(["inputCol: input column name (undefined)", + "maxIter: max number of iterations (default: 10, current: 100)"])) + + if __name__ == "__main__": unittest.main() diff --git a/python/pyspark/ml/util.py b/python/pyspark/ml/util.py index 6f7f39c40eb5a..d3cb100a9efa5 100644 --- a/python/pyspark/ml/util.py +++ b/python/pyspark/ml/util.py @@ -40,8 +40,8 @@ class Identifiable(object): def __init__(self): #: A unique id for the object. The default implementation - #: concatenates the class name, "-", and 8 random hex chars. - self.uid = type(self).__name__ + "-" + uuid.uuid4().hex[:8] + #: concatenates the class name, "_", and 8 random hex chars. + self.uid = type(self).__name__ + "_" + uuid.uuid4().hex[:8] def __repr__(self): return self.uid diff --git a/python/pyspark/ml/wrapper.py b/python/pyspark/ml/wrapper.py index 31a66b3d2f730..394f23c5e9b12 100644 --- a/python/pyspark/ml/wrapper.py +++ b/python/pyspark/ml/wrapper.py @@ -64,7 +64,7 @@ def _transfer_params_to_java(self, params, java_obj): :param params: additional params (overwriting embedded values) :param java_obj: Java object to receive the params """ - paramMap = self._merge_params(params) + paramMap = self.extractParamMap(params) for param in self.params: if param in paramMap: java_obj.set(param.name, paramMap[param]) From 8370550593f3549e90ace446961281dad0cd7498 Mon Sep 17 00:00:00 2001 From: jerryshao Date: Thu, 16 Apr 2015 10:39:02 +0100 Subject: [PATCH 26/31] [Streaming][minor] Remove additional quote and unneeded imports Author: jerryshao Closes #5540 from jerryshao/minor-fix and squashes the following commits: ebaa646 [jerryshao] Minor fix --- .../apache/spark/examples/streaming/DirectKafkaWordCount.scala | 2 +- .../main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala | 3 +-- 2 files changed, 2 insertions(+), 3 deletions(-) diff --git a/examples/scala-2.10/src/main/scala/org/apache/spark/examples/streaming/DirectKafkaWordCount.scala b/examples/scala-2.10/src/main/scala/org/apache/spark/examples/streaming/DirectKafkaWordCount.scala index 1c8a20bf8f1ae..11a8cf09533ce 100644 --- a/examples/scala-2.10/src/main/scala/org/apache/spark/examples/streaming/DirectKafkaWordCount.scala +++ b/examples/scala-2.10/src/main/scala/org/apache/spark/examples/streaming/DirectKafkaWordCount.scala @@ -41,7 +41,7 @@ object DirectKafkaWordCount { | is a list of one or more Kafka brokers | is a list of one or more kafka topics to consume from | - """".stripMargin) + """.stripMargin) System.exit(1) } diff --git a/external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala b/external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala index a0b8a0c565210..a1b4a12e5d6a0 100644 --- a/external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala +++ b/external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaRDD.scala @@ -23,10 +23,9 @@ import org.apache.spark.{Logging, Partition, SparkContext, SparkException, TaskC import org.apache.spark.rdd.RDD import org.apache.spark.util.NextIterator -import java.util.Properties import kafka.api.{FetchRequestBuilder, FetchResponse} import kafka.common.{ErrorMapping, TopicAndPartition} -import kafka.consumer.{ConsumerConfig, SimpleConsumer} +import kafka.consumer.SimpleConsumer import kafka.message.{MessageAndMetadata, MessageAndOffset} import kafka.serializer.Decoder import kafka.utils.VerifiableProperties From 6179a948371897cecb7322ebda366c2de8ecaedd Mon Sep 17 00:00:00 2001 From: Sean Owen Date: Thu, 16 Apr 2015 10:45:32 +0100 Subject: [PATCH 27/31] SPARK-4783 [CORE] System.exit() calls in SparkContext disrupt applications embedding Spark Avoid `System.exit(1)` in `TaskSchedulerImpl` and convert to `SparkException`; ensure scheduler calls `sc.stop()` even when this exception is thrown. CC mateiz aarondav as those who may have last touched this code. Author: Sean Owen Closes #5492 from srowen/SPARK-4783 and squashes the following commits: 60dc682 [Sean Owen] Avoid System.exit(1) in TaskSchedulerImpl and convert to SparkException; ensure scheduler calls sc.stop() even when this exception is thrown --- .../org/apache/spark/scheduler/TaskSchedulerImpl.scala | 5 ++--- .../scheduler/cluster/SparkDeploySchedulerBackend.scala | 9 ++++++--- 2 files changed, 8 insertions(+), 6 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala b/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala index 2362cc7240039..ecc8bf189986d 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala @@ -394,7 +394,7 @@ private[spark] class TaskSchedulerImpl( def error(message: String) { synchronized { - if (activeTaskSets.size > 0) { + if (activeTaskSets.nonEmpty) { // Have each task set throw a SparkException with the error for ((taskSetId, manager) <- activeTaskSets) { try { @@ -407,8 +407,7 @@ private[spark] class TaskSchedulerImpl( // No task sets are active but we still got an error. Just exit since this // must mean the error is during registration. // It might be good to do something smarter here in the future. - logError("Exiting due to error from cluster scheduler: " + message) - System.exit(1) + throw new SparkException(s"Exiting due to error from cluster scheduler: $message") } } } diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala index ed5b7c1088196..ccf1dc5af6120 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala @@ -118,9 +118,12 @@ private[spark] class SparkDeploySchedulerBackend( notifyContext() if (!stopping) { logError("Application has been killed. Reason: " + reason) - scheduler.error(reason) - // Ensure the application terminates, as we can no longer run jobs. - sc.stop() + try { + scheduler.error(reason) + } finally { + // Ensure the application terminates, as we can no longer run jobs. + sc.stop() + } } } From de4fa6b6d12e2bee0307ffba2abfca0c33f15e45 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Thu, 16 Apr 2015 10:48:31 +0100 Subject: [PATCH 28/31] [SPARK-4194] [core] Make SparkContext initialization exception-safe. SparkContext has a very long constructor, where multiple things are initialized, multiple threads are spawned, and multiple opportunities for exceptions to be thrown exist. If one of these happens at an innoportune time, lots of garbage tends to stick around. This patch re-organizes SparkContext so that its internal state is initialized in a big "try" block. The fields keeping state are now completely private to SparkContext, and are "vars", because Scala doesn't allow you to initialize a val later. The existing API interface is kept by turning vals into defs (which works because Scala guarantees the same binary interface for those). On top of that, a few things in other areas were changed to avoid more things leaking: - Executor was changed to explicitly wait for the heartbeat thread to stop. LocalBackend was changed to wait for the "StopExecutor" message to be received, since otherwise there could be a race between that message arriving and the actor system being shut down. - ConnectionManager could possibly hang during shutdown, because an interrupt at the wrong moment could cause the selector thread to still call select and then wait forever. So also wake up the selector so that this situation is avoided. Author: Marcelo Vanzin Closes #5335 from vanzin/SPARK-4194 and squashes the following commits: 746b661 [Marcelo Vanzin] Fix borked merge. 80fc00e [Marcelo Vanzin] Merge branch 'master' into SPARK-4194 408dada [Marcelo Vanzin] Merge branch 'master' into SPARK-4194 2621609 [Marcelo Vanzin] Merge branch 'master' into SPARK-4194 6b73fcb [Marcelo Vanzin] Scalastyle. c671c46 [Marcelo Vanzin] Fix merge. 3979aad [Marcelo Vanzin] Merge branch 'master' into SPARK-4194 8caa8b3 [Marcelo Vanzin] [SPARK-4194] [core] Make SparkContext initialization exception-safe. 071f16e [Marcelo Vanzin] Nits. 27456b9 [Marcelo Vanzin] More exception safety. a0b0881 [Marcelo Vanzin] Stop alloc manager before scheduler. 5545d83 [Marcelo Vanzin] [SPARK-6650] [core] Stop ExecutorAllocationManager when context stops. --- .../scala/org/apache/spark/SparkContext.scala | 505 ++++++++++-------- .../org/apache/spark/executor/Executor.scala | 33 +- .../spark/network/nio/ConnectionManager.scala | 7 +- .../spark/scheduler/TaskSchedulerImpl.scala | 3 +- .../spark/scheduler/local/LocalBackend.scala | 19 +- .../ExecutorAllocationManagerSuite.scala | 6 - 6 files changed, 329 insertions(+), 244 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 3f1a7dd99d635..e106c5c4bef60 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -31,6 +31,7 @@ import scala.collection.JavaConversions._ import scala.collection.generic.Growable import scala.collection.mutable.HashMap import scala.reflect.{ClassTag, classTag} +import scala.util.control.NonFatal import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path @@ -50,9 +51,10 @@ import org.apache.spark.executor.{ExecutorEndpoint, TriggerThreadDump} import org.apache.spark.input.{StreamInputFormat, PortableDataStream, WholeTextFileInputFormat, FixedLengthBinaryInputFormat} import org.apache.spark.io.CompressionCodec +import org.apache.spark.metrics.MetricsSystem import org.apache.spark.partial.{ApproximateEvaluator, PartialResult} import org.apache.spark.rdd._ -import org.apache.spark.rpc.RpcAddress +import org.apache.spark.rpc.{RpcAddress, RpcEndpointRef} import org.apache.spark.scheduler._ import org.apache.spark.scheduler.cluster.{CoarseGrainedSchedulerBackend, SparkDeploySchedulerBackend, SimrSchedulerBackend} @@ -192,8 +194,42 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli // log out Spark Version in Spark driver log logInfo(s"Running Spark version $SPARK_VERSION") - private[spark] val conf = config.clone() - conf.validateSettings() + /* ------------------------------------------------------------------------------------- * + | Private variables. These variables keep the internal state of the context, and are | + | not accessible by the outside world. They're mutable since we want to initialize all | + | of them to some neutral value ahead of time, so that calling "stop()" while the | + | constructor is still running is safe. | + * ------------------------------------------------------------------------------------- */ + + private var _conf: SparkConf = _ + private var _eventLogDir: Option[URI] = None + private var _eventLogCodec: Option[String] = None + private var _env: SparkEnv = _ + private var _metadataCleaner: MetadataCleaner = _ + private var _jobProgressListener: JobProgressListener = _ + private var _statusTracker: SparkStatusTracker = _ + private var _progressBar: Option[ConsoleProgressBar] = None + private var _ui: Option[SparkUI] = None + private var _hadoopConfiguration: Configuration = _ + private var _executorMemory: Int = _ + private var _schedulerBackend: SchedulerBackend = _ + private var _taskScheduler: TaskScheduler = _ + private var _heartbeatReceiver: RpcEndpointRef = _ + @volatile private var _dagScheduler: DAGScheduler = _ + private var _applicationId: String = _ + private var _eventLogger: Option[EventLoggingListener] = None + private var _executorAllocationManager: Option[ExecutorAllocationManager] = None + private var _cleaner: Option[ContextCleaner] = None + private var _listenerBusStarted: Boolean = false + private var _jars: Seq[String] = _ + private var _files: Seq[String] = _ + + /* ------------------------------------------------------------------------------------- * + | Accessors and public fields. These provide access to the internal state of the | + | context. | + * ------------------------------------------------------------------------------------- */ + + private[spark] def conf: SparkConf = _conf /** * Return a copy of this SparkContext's configuration. The configuration ''cannot'' be @@ -201,65 +237,24 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli */ def getConf: SparkConf = conf.clone() - if (!conf.contains("spark.master")) { - throw new SparkException("A master URL must be set in your configuration") - } - if (!conf.contains("spark.app.name")) { - throw new SparkException("An application name must be set in your configuration") - } - - if (conf.getBoolean("spark.logConf", false)) { - logInfo("Spark configuration:\n" + conf.toDebugString) - } - - // Set Spark driver host and port system properties - conf.setIfMissing("spark.driver.host", Utils.localHostName()) - conf.setIfMissing("spark.driver.port", "0") - - val jars: Seq[String] = - conf.getOption("spark.jars").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten - - val files: Seq[String] = - conf.getOption("spark.files").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten - - val master = conf.get("spark.master") - val appName = conf.get("spark.app.name") + def jars: Seq[String] = _jars + def files: Seq[String] = _files + def master: String = _conf.get("spark.master") + def appName: String = _conf.get("spark.app.name") - private[spark] val isEventLogEnabled = conf.getBoolean("spark.eventLog.enabled", false) - private[spark] val eventLogDir: Option[URI] = { - if (isEventLogEnabled) { - val unresolvedDir = conf.get("spark.eventLog.dir", EventLoggingListener.DEFAULT_LOG_DIR) - .stripSuffix("/") - Some(Utils.resolveURI(unresolvedDir)) - } else { - None - } - } - private[spark] val eventLogCodec: Option[String] = { - val compress = conf.getBoolean("spark.eventLog.compress", false) - if (compress && isEventLogEnabled) { - Some(CompressionCodec.getCodecName(conf)).map(CompressionCodec.getShortName) - } else { - None - } - } + private[spark] def isEventLogEnabled: Boolean = _conf.getBoolean("spark.eventLog.enabled", false) + private[spark] def eventLogDir: Option[URI] = _eventLogDir + private[spark] def eventLogCodec: Option[String] = _eventLogCodec // Generate the random name for a temp folder in Tachyon // Add a timestamp as the suffix here to make it more safe val tachyonFolderName = "spark-" + randomUUID.toString() - conf.set("spark.tachyonStore.folderName", tachyonFolderName) - val isLocal = (master == "local" || master.startsWith("local[")) - - if (master == "yarn-client") System.setProperty("SPARK_YARN_MODE", "true") + def isLocal: Boolean = (master == "local" || master.startsWith("local[")) // An asynchronous listener bus for Spark events private[spark] val listenerBus = new LiveListenerBus - conf.set("spark.executor.id", SparkContext.DRIVER_IDENTIFIER) - - // Create the Spark execution environment (cache, map output tracker, etc) - // This function allows components created by SparkEnv to be mocked in unit tests: private[spark] def createSparkEnv( conf: SparkConf, @@ -268,8 +263,7 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli SparkEnv.createDriverEnv(conf, isLocal, listenerBus) } - private[spark] val env = createSparkEnv(conf, isLocal, listenerBus) - SparkEnv.set(env) + private[spark] def env: SparkEnv = _env // Used to store a URL for each static file/jar together with the file's local timestamp private[spark] val addedFiles = HashMap[String, Long]() @@ -277,35 +271,14 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli // Keeps track of all persisted RDDs private[spark] val persistentRdds = new TimeStampedWeakValueHashMap[Int, RDD[_]] - private[spark] val metadataCleaner = - new MetadataCleaner(MetadataCleanerType.SPARK_CONTEXT, this.cleanup, conf) - + private[spark] def metadataCleaner: MetadataCleaner = _metadataCleaner + private[spark] def jobProgressListener: JobProgressListener = _jobProgressListener - private[spark] val jobProgressListener = new JobProgressListener(conf) - listenerBus.addListener(jobProgressListener) + def statusTracker: SparkStatusTracker = _statusTracker - val statusTracker = new SparkStatusTracker(this) + private[spark] def progressBar: Option[ConsoleProgressBar] = _progressBar - private[spark] val progressBar: Option[ConsoleProgressBar] = - if (conf.getBoolean("spark.ui.showConsoleProgress", true) && !log.isInfoEnabled) { - Some(new ConsoleProgressBar(this)) - } else { - None - } - - // Initialize the Spark UI - private[spark] val ui: Option[SparkUI] = - if (conf.getBoolean("spark.ui.enabled", true)) { - Some(SparkUI.createLiveUI(this, conf, listenerBus, jobProgressListener, - env.securityManager,appName)) - } else { - // For tests, do not enable the UI - None - } - - // Bind the UI before starting the task scheduler to communicate - // the bound port to the cluster manager properly - ui.foreach(_.bind()) + private[spark] def ui: Option[SparkUI] = _ui /** * A default Hadoop Configuration for the Hadoop code (e.g. file systems) that we reuse. @@ -313,134 +286,248 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * '''Note:''' As it will be reused in all Hadoop RDDs, it's better not to modify it unless you * plan to set some global configurations for all Hadoop RDDs. */ - val hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(conf) + def hadoopConfiguration: Configuration = _hadoopConfiguration + + private[spark] def executorMemory: Int = _executorMemory + + // Environment variables to pass to our executors. + private[spark] val executorEnvs = HashMap[String, String]() + + // Set SPARK_USER for user who is running SparkContext. + val sparkUser = Utils.getCurrentUserName() - // Add each JAR given through the constructor - if (jars != null) { - jars.foreach(addJar) + private[spark] def schedulerBackend: SchedulerBackend = _schedulerBackend + private[spark] def schedulerBackend_=(sb: SchedulerBackend): Unit = { + _schedulerBackend = sb } - if (files != null) { - files.foreach(addFile) + private[spark] def taskScheduler: TaskScheduler = _taskScheduler + private[spark] def taskScheduler_=(ts: TaskScheduler): Unit = { + _taskScheduler = ts } + private[spark] def dagScheduler: DAGScheduler = _dagScheduler + private[spark] def dagScheduler_=(ds: DAGScheduler): Unit = { + _dagScheduler = ds + } + + def applicationId: String = _applicationId + + def metricsSystem: MetricsSystem = if (_env != null) _env.metricsSystem else null + + private[spark] def eventLogger: Option[EventLoggingListener] = _eventLogger + + private[spark] def executorAllocationManager: Option[ExecutorAllocationManager] = + _executorAllocationManager + + private[spark] def cleaner: Option[ContextCleaner] = _cleaner + + private[spark] var checkpointDir: Option[String] = None + + // Thread Local variable that can be used by users to pass information down the stack + private val localProperties = new InheritableThreadLocal[Properties] { + override protected def childValue(parent: Properties): Properties = new Properties(parent) + override protected def initialValue(): Properties = new Properties() + } + + /* ------------------------------------------------------------------------------------- * + | Initialization. This code initializes the context in a manner that is exception-safe. | + | All internal fields holding state are initialized here, and any error prompts the | + | stop() method to be called. | + * ------------------------------------------------------------------------------------- */ + private def warnSparkMem(value: String): String = { logWarning("Using SPARK_MEM to set amount of memory to use per executor process is " + "deprecated, please use spark.executor.memory instead.") value } - private[spark] val executorMemory = conf.getOption("spark.executor.memory") - .orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))) - .orElse(Option(System.getenv("SPARK_MEM")).map(warnSparkMem)) - .map(Utils.memoryStringToMb) - .getOrElse(512) + try { + _conf = config.clone() + _conf.validateSettings() - // Environment variables to pass to our executors. - private[spark] val executorEnvs = HashMap[String, String]() + if (!_conf.contains("spark.master")) { + throw new SparkException("A master URL must be set in your configuration") + } + if (!_conf.contains("spark.app.name")) { + throw new SparkException("An application name must be set in your configuration") + } - // Convert java options to env vars as a work around - // since we can't set env vars directly in sbt. - for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing")) - value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} { - executorEnvs(envKey) = value - } - Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v => - executorEnvs("SPARK_PREPEND_CLASSES") = v - } - // The Mesos scheduler backend relies on this environment variable to set executor memory. - // TODO: Set this only in the Mesos scheduler. - executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m" - executorEnvs ++= conf.getExecutorEnv + if (_conf.getBoolean("spark.logConf", false)) { + logInfo("Spark configuration:\n" + _conf.toDebugString) + } - // Set SPARK_USER for user who is running SparkContext. - val sparkUser = Utils.getCurrentUserName() - executorEnvs("SPARK_USER") = sparkUser + // Set Spark driver host and port system properties + _conf.setIfMissing("spark.driver.host", Utils.localHostName()) + _conf.setIfMissing("spark.driver.port", "0") - // We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will - // retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640) - private val heartbeatReceiver = env.rpcEnv.setupEndpoint( - HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this)) + _conf.set("spark.executor.id", SparkContext.DRIVER_IDENTIFIER) - // Create and start the scheduler - private[spark] var (schedulerBackend, taskScheduler) = - SparkContext.createTaskScheduler(this, master) + _jars =_conf.getOption("spark.jars").map(_.split(",")).map(_.filter(_.size != 0)).toSeq.flatten + _files = _conf.getOption("spark.files").map(_.split(",")).map(_.filter(_.size != 0)) + .toSeq.flatten - heartbeatReceiver.send(TaskSchedulerIsSet) + _eventLogDir = + if (isEventLogEnabled) { + val unresolvedDir = conf.get("spark.eventLog.dir", EventLoggingListener.DEFAULT_LOG_DIR) + .stripSuffix("/") + Some(Utils.resolveURI(unresolvedDir)) + } else { + None + } - @volatile private[spark] var dagScheduler: DAGScheduler = _ - try { - dagScheduler = new DAGScheduler(this) - } catch { - case e: Exception => { - try { - stop() - } finally { - throw new SparkException("Error while constructing DAGScheduler", e) + _eventLogCodec = { + val compress = _conf.getBoolean("spark.eventLog.compress", false) + if (compress && isEventLogEnabled) { + Some(CompressionCodec.getCodecName(_conf)).map(CompressionCodec.getShortName) + } else { + None } } - } - // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's - // constructor - taskScheduler.start() + _conf.set("spark.tachyonStore.folderName", tachyonFolderName) - val applicationId: String = taskScheduler.applicationId() - conf.set("spark.app.id", applicationId) + if (master == "yarn-client") System.setProperty("SPARK_YARN_MODE", "true") - env.blockManager.initialize(applicationId) + // Create the Spark execution environment (cache, map output tracker, etc) + _env = createSparkEnv(_conf, isLocal, listenerBus) + SparkEnv.set(_env) - val metricsSystem = env.metricsSystem + _metadataCleaner = new MetadataCleaner(MetadataCleanerType.SPARK_CONTEXT, this.cleanup, _conf) - // The metrics system for Driver need to be set spark.app.id to app ID. - // So it should start after we get app ID from the task scheduler and set spark.app.id. - metricsSystem.start() - // Attach the driver metrics servlet handler to the web ui after the metrics system is started. - metricsSystem.getServletHandlers.foreach(handler => ui.foreach(_.attachHandler(handler))) + _jobProgressListener = new JobProgressListener(_conf) + listenerBus.addListener(jobProgressListener) - // Optionally log Spark events - private[spark] val eventLogger: Option[EventLoggingListener] = { - if (isEventLogEnabled) { - val logger = - new EventLoggingListener(applicationId, eventLogDir.get, conf, hadoopConfiguration) - logger.start() - listenerBus.addListener(logger) - Some(logger) - } else None - } + _statusTracker = new SparkStatusTracker(this) - // Optionally scale number of executors dynamically based on workload. Exposed for testing. - private val dynamicAllocationEnabled = conf.getBoolean("spark.dynamicAllocation.enabled", false) - private val dynamicAllocationTesting = conf.getBoolean("spark.dynamicAllocation.testing", false) - private[spark] val executorAllocationManager: Option[ExecutorAllocationManager] = - if (dynamicAllocationEnabled) { - assert(supportDynamicAllocation, - "Dynamic allocation of executors is currently only supported in YARN mode") - Some(new ExecutorAllocationManager(this, listenerBus, conf)) - } else { - None + _progressBar = + if (_conf.getBoolean("spark.ui.showConsoleProgress", true) && !log.isInfoEnabled) { + Some(new ConsoleProgressBar(this)) + } else { + None + } + + _ui = + if (conf.getBoolean("spark.ui.enabled", true)) { + Some(SparkUI.createLiveUI(this, _conf, listenerBus, _jobProgressListener, + _env.securityManager,appName)) + } else { + // For tests, do not enable the UI + None + } + // Bind the UI before starting the task scheduler to communicate + // the bound port to the cluster manager properly + _ui.foreach(_.bind()) + + _hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(_conf) + + // Add each JAR given through the constructor + if (jars != null) { + jars.foreach(addJar) } - executorAllocationManager.foreach(_.start()) - private[spark] val cleaner: Option[ContextCleaner] = { - if (conf.getBoolean("spark.cleaner.referenceTracking", true)) { - Some(new ContextCleaner(this)) - } else { - None + if (files != null) { + files.foreach(addFile) } - } - cleaner.foreach(_.start()) - setupAndStartListenerBus() - postEnvironmentUpdate() - postApplicationStart() + _executorMemory = _conf.getOption("spark.executor.memory") + .orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY"))) + .orElse(Option(System.getenv("SPARK_MEM")) + .map(warnSparkMem)) + .map(Utils.memoryStringToMb) + .getOrElse(512) + + // Convert java options to env vars as a work around + // since we can't set env vars directly in sbt. + for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing")) + value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} { + executorEnvs(envKey) = value + } + Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v => + executorEnvs("SPARK_PREPEND_CLASSES") = v + } + // The Mesos scheduler backend relies on this environment variable to set executor memory. + // TODO: Set this only in the Mesos scheduler. + executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m" + executorEnvs ++= _conf.getExecutorEnv + executorEnvs("SPARK_USER") = sparkUser + + // We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will + // retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640) + _heartbeatReceiver = env.rpcEnv.setupEndpoint( + HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this)) + + // Create and start the scheduler + val (sched, ts) = SparkContext.createTaskScheduler(this, master) + _schedulerBackend = sched + _taskScheduler = ts + _dagScheduler = new DAGScheduler(this) + _heartbeatReceiver.send(TaskSchedulerIsSet) + + // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's + // constructor + _taskScheduler.start() + + _applicationId = _taskScheduler.applicationId() + _conf.set("spark.app.id", _applicationId) + _env.blockManager.initialize(_applicationId) + + // The metrics system for Driver need to be set spark.app.id to app ID. + // So it should start after we get app ID from the task scheduler and set spark.app.id. + metricsSystem.start() + // Attach the driver metrics servlet handler to the web ui after the metrics system is started. + metricsSystem.getServletHandlers.foreach(handler => ui.foreach(_.attachHandler(handler))) + + _eventLogger = + if (isEventLogEnabled) { + val logger = + new EventLoggingListener(_applicationId, _eventLogDir.get, _conf, _hadoopConfiguration) + logger.start() + listenerBus.addListener(logger) + Some(logger) + } else { + None + } - private[spark] var checkpointDir: Option[String] = None + // Optionally scale number of executors dynamically based on workload. Exposed for testing. + val dynamicAllocationEnabled = _conf.getBoolean("spark.dynamicAllocation.enabled", false) + _executorAllocationManager = + if (dynamicAllocationEnabled) { + assert(supportDynamicAllocation, + "Dynamic allocation of executors is currently only supported in YARN mode") + Some(new ExecutorAllocationManager(this, listenerBus, _conf)) + } else { + None + } + _executorAllocationManager.foreach(_.start()) - // Thread Local variable that can be used by users to pass information down the stack - private val localProperties = new InheritableThreadLocal[Properties] { - override protected def childValue(parent: Properties): Properties = new Properties(parent) - override protected def initialValue(): Properties = new Properties() + _cleaner = + if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) { + Some(new ContextCleaner(this)) + } else { + None + } + _cleaner.foreach(_.start()) + + setupAndStartListenerBus() + postEnvironmentUpdate() + postApplicationStart() + + // Post init + _taskScheduler.postStartHook() + _env.metricsSystem.registerSource(new DAGSchedulerSource(dagScheduler)) + _env.metricsSystem.registerSource(new BlockManagerSource(_env.blockManager)) + } catch { + case NonFatal(e) => + logError("Error initializing SparkContext.", e) + try { + stop() + } catch { + case NonFatal(inner) => + logError("Error stopping SparkContext after init error.", inner) + } finally { + throw e + } } /** @@ -544,19 +631,6 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, null) } - // Post init - taskScheduler.postStartHook() - - private val dagSchedulerSource = new DAGSchedulerSource(this.dagScheduler) - private val blockManagerSource = new BlockManagerSource(SparkEnv.get.blockManager) - - private def initDriverMetrics() { - SparkEnv.get.metricsSystem.registerSource(dagSchedulerSource) - SparkEnv.get.metricsSystem.registerSource(blockManagerSource) - } - - initDriverMetrics() - // Methods for creating RDDs /** Distribute a local Scala collection to form an RDD. @@ -1146,7 +1220,7 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * this application is supported. This is currently only available for YARN. */ private[spark] def supportDynamicAllocation = - master.contains("yarn") || dynamicAllocationTesting + master.contains("yarn") || _conf.getBoolean("spark.dynamicAllocation.testing", false) /** * :: DeveloperApi :: @@ -1163,7 +1237,7 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * This is currently only supported in YARN mode. Return whether the request is received. */ private[spark] override def requestTotalExecutors(numExecutors: Int): Boolean = { - assert(master.contains("yarn") || dynamicAllocationTesting, + assert(supportDynamicAllocation, "Requesting executors is currently only supported in YARN mode") schedulerBackend match { case b: CoarseGrainedSchedulerBackend => @@ -1403,28 +1477,40 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli def stop() { // Use the stopping variable to ensure no contention for the stop scenario. // Still track the stopped variable for use elsewhere in the code. - if (!stopped.compareAndSet(false, true)) { logInfo("SparkContext already stopped.") return } - + postApplicationEnd() - ui.foreach(_.stop()) - env.metricsSystem.report() - metadataCleaner.cancel() - cleaner.foreach(_.stop()) - executorAllocationManager.foreach(_.stop()) - dagScheduler.stop() - dagScheduler = null - listenerBus.stop() - eventLogger.foreach(_.stop()) - env.rpcEnv.stop(heartbeatReceiver) - progressBar.foreach(_.stop()) - taskScheduler = null + _ui.foreach(_.stop()) + if (env != null) { + env.metricsSystem.report() + } + if (metadataCleaner != null) { + metadataCleaner.cancel() + } + _cleaner.foreach(_.stop()) + _executorAllocationManager.foreach(_.stop()) + if (_dagScheduler != null) { + _dagScheduler.stop() + _dagScheduler = null + } + if (_listenerBusStarted) { + listenerBus.stop() + _listenerBusStarted = false + } + _eventLogger.foreach(_.stop()) + if (env != null && _heartbeatReceiver != null) { + env.rpcEnv.stop(_heartbeatReceiver) + } + _progressBar.foreach(_.stop()) + _taskScheduler = null // TODO: Cache.stop()? - env.stop() - SparkEnv.set(null) + if (_env != null) { + _env.stop() + SparkEnv.set(null) + } SparkContext.clearActiveContext() logInfo("Successfully stopped SparkContext") } @@ -1749,6 +1835,7 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli } listenerBus.start(this) + _listenerBusStarted = true } /** Post the application start event */ @@ -2152,7 +2239,7 @@ object SparkContext extends Logging { master match { case "local" => val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true) - val backend = new LocalBackend(scheduler, 1) + val backend = new LocalBackend(sc.getConf, scheduler, 1) scheduler.initialize(backend) (backend, scheduler) @@ -2164,7 +2251,7 @@ object SparkContext extends Logging { throw new SparkException(s"Asked to run locally with $threadCount threads") } val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true) - val backend = new LocalBackend(scheduler, threadCount) + val backend = new LocalBackend(sc.getConf, scheduler, threadCount) scheduler.initialize(backend) (backend, scheduler) @@ -2174,7 +2261,7 @@ object SparkContext extends Logging { // local[N, M] means exactly N threads with M failures val threadCount = if (threads == "*") localCpuCount else threads.toInt val scheduler = new TaskSchedulerImpl(sc, maxFailures.toInt, isLocal = true) - val backend = new LocalBackend(scheduler, threadCount) + val backend = new LocalBackend(sc.getConf, scheduler, threadCount) scheduler.initialize(backend) (backend, scheduler) diff --git a/core/src/main/scala/org/apache/spark/executor/Executor.scala b/core/src/main/scala/org/apache/spark/executor/Executor.scala index 516f619529c48..1b5fdeba28ee2 100644 --- a/core/src/main/scala/org/apache/spark/executor/Executor.scala +++ b/core/src/main/scala/org/apache/spark/executor/Executor.scala @@ -21,7 +21,7 @@ import java.io.File import java.lang.management.ManagementFactory import java.net.URL import java.nio.ByteBuffer -import java.util.concurrent.ConcurrentHashMap +import java.util.concurrent.{ConcurrentHashMap, Executors, TimeUnit} import scala.collection.JavaConversions._ import scala.collection.mutable.{ArrayBuffer, HashMap} @@ -60,8 +60,6 @@ private[spark] class Executor( private val conf = env.conf - @volatile private var isStopped = false - // No ip or host:port - just hostname Utils.checkHost(executorHostname, "Expected executed slave to be a hostname") // must not have port specified. @@ -114,6 +112,10 @@ private[spark] class Executor( // Maintains the list of running tasks. private val runningTasks = new ConcurrentHashMap[Long, TaskRunner] + // Executor for the heartbeat task. + private val heartbeater = Executors.newSingleThreadScheduledExecutor( + Utils.namedThreadFactory("driver-heartbeater")) + startDriverHeartbeater() def launchTask( @@ -138,7 +140,8 @@ private[spark] class Executor( def stop(): Unit = { env.metricsSystem.report() env.rpcEnv.stop(executorEndpoint) - isStopped = true + heartbeater.shutdown() + heartbeater.awaitTermination(10, TimeUnit.SECONDS) threadPool.shutdown() if (!isLocal) { env.stop() @@ -432,23 +435,17 @@ private[spark] class Executor( } /** - * Starts a thread to report heartbeat and partial metrics for active tasks to driver. - * This thread stops running when the executor is stopped. + * Schedules a task to report heartbeat and partial metrics for active tasks to driver. */ private def startDriverHeartbeater(): Unit = { val intervalMs = conf.getTimeAsMs("spark.executor.heartbeatInterval", "10s") - val thread = new Thread() { - override def run() { - // Sleep a random interval so the heartbeats don't end up in sync - Thread.sleep(intervalMs + (math.random * intervalMs).asInstanceOf[Int]) - while (!isStopped) { - reportHeartBeat() - Thread.sleep(intervalMs) - } - } + + // Wait a random interval so the heartbeats don't end up in sync + val initialDelay = intervalMs + (math.random * intervalMs).asInstanceOf[Int] + + val heartbeatTask = new Runnable() { + override def run(): Unit = Utils.logUncaughtExceptions(reportHeartBeat()) } - thread.setDaemon(true) - thread.setName("driver-heartbeater") - thread.start() + heartbeater.scheduleAtFixedRate(heartbeatTask, initialDelay, intervalMs, TimeUnit.MILLISECONDS) } } diff --git a/core/src/main/scala/org/apache/spark/network/nio/ConnectionManager.scala b/core/src/main/scala/org/apache/spark/network/nio/ConnectionManager.scala index 8e3c30fc3d781..5a74c13b38bf7 100644 --- a/core/src/main/scala/org/apache/spark/network/nio/ConnectionManager.scala +++ b/core/src/main/scala/org/apache/spark/network/nio/ConnectionManager.scala @@ -86,11 +86,11 @@ private[nio] class ConnectionManager( conf.get("spark.network.timeout", "120s")) // Get the thread counts from the Spark Configuration. - // + // // Even though the ThreadPoolExecutor constructor takes both a minimum and maximum value, // we only query for the minimum value because we are using LinkedBlockingDeque. - // - // The JavaDoc for ThreadPoolExecutor points out that when using a LinkedBlockingDeque (which is + // + // The JavaDoc for ThreadPoolExecutor points out that when using a LinkedBlockingDeque (which is // an unbounded queue) no more than corePoolSize threads will ever be created, so only the "min" // parameter is necessary. private val handlerThreadCount = conf.getInt("spark.core.connection.handler.threads.min", 20) @@ -989,6 +989,7 @@ private[nio] class ConnectionManager( def stop() { ackTimeoutMonitor.stop() + selector.wakeup() selectorThread.interrupt() selectorThread.join() selector.close() diff --git a/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala b/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala index ecc8bf189986d..13a52d836f32f 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala @@ -142,11 +142,10 @@ private[spark] class TaskSchedulerImpl( if (!isLocal && conf.getBoolean("spark.speculation", false)) { logInfo("Starting speculative execution thread") - import sc.env.actorSystem.dispatcher sc.env.actorSystem.scheduler.schedule(SPECULATION_INTERVAL_MS milliseconds, SPECULATION_INTERVAL_MS milliseconds) { Utils.tryOrStopSparkContext(sc) { checkSpeculatableTasks() } - } + }(sc.env.actorSystem.dispatcher) } } diff --git a/core/src/main/scala/org/apache/spark/scheduler/local/LocalBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/local/LocalBackend.scala index 70a477a6895cc..50ba0b9d5a612 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/local/LocalBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/local/LocalBackend.scala @@ -20,12 +20,12 @@ package org.apache.spark.scheduler.local import java.nio.ByteBuffer import java.util.concurrent.{Executors, TimeUnit} -import org.apache.spark.rpc.{ThreadSafeRpcEndpoint, RpcEndpointRef, RpcEnv} -import org.apache.spark.util.Utils -import org.apache.spark.{Logging, SparkContext, SparkEnv, TaskState} +import org.apache.spark.{Logging, SparkConf, SparkContext, SparkEnv, TaskState} import org.apache.spark.TaskState.TaskState import org.apache.spark.executor.{Executor, ExecutorBackend} +import org.apache.spark.rpc.{ThreadSafeRpcEndpoint, RpcCallContext, RpcEndpointRef, RpcEnv} import org.apache.spark.scheduler.{SchedulerBackend, TaskSchedulerImpl, WorkerOffer} +import org.apache.spark.util.Utils private case class ReviveOffers() @@ -71,11 +71,15 @@ private[spark] class LocalEndpoint( case KillTask(taskId, interruptThread) => executor.killTask(taskId, interruptThread) + } + override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = { case StopExecutor => executor.stop() + context.reply(true) } + def reviveOffers() { val offers = Seq(new WorkerOffer(localExecutorId, localExecutorHostname, freeCores)) val tasks = scheduler.resourceOffers(offers).flatten @@ -104,8 +108,11 @@ private[spark] class LocalEndpoint( * master all run in the same JVM. It sits behind a TaskSchedulerImpl and handles launching tasks * on a single Executor (created by the LocalBackend) running locally. */ -private[spark] class LocalBackend(scheduler: TaskSchedulerImpl, val totalCores: Int) - extends SchedulerBackend with ExecutorBackend { +private[spark] class LocalBackend( + conf: SparkConf, + scheduler: TaskSchedulerImpl, + val totalCores: Int) + extends SchedulerBackend with ExecutorBackend with Logging { private val appId = "local-" + System.currentTimeMillis var localEndpoint: RpcEndpointRef = null @@ -116,7 +123,7 @@ private[spark] class LocalBackend(scheduler: TaskSchedulerImpl, val totalCores: } override def stop() { - localEndpoint.send(StopExecutor) + localEndpoint.sendWithReply(StopExecutor) } override def reviveOffers() { diff --git a/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala b/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala index 6b3049b28cd5e..22acc270b983e 100644 --- a/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala +++ b/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala @@ -56,19 +56,13 @@ class ExecutorAllocationManagerSuite extends FunSuite with LocalSparkContext wit // Min < 0 val conf1 = conf.clone().set("spark.dynamicAllocation.minExecutors", "-1") intercept[SparkException] { contexts += new SparkContext(conf1) } - SparkEnv.get.stop() - SparkContext.clearActiveContext() // Max < 0 val conf2 = conf.clone().set("spark.dynamicAllocation.maxExecutors", "-1") intercept[SparkException] { contexts += new SparkContext(conf2) } - SparkEnv.get.stop() - SparkContext.clearActiveContext() // Both min and max, but min > max intercept[SparkException] { createSparkContext(2, 1) } - SparkEnv.get.stop() - SparkContext.clearActiveContext() // Both min and max, and min == max val sc1 = createSparkContext(1, 1) From 3ae37b93a7c299bd8b22a36248035bca5de3422f Mon Sep 17 00:00:00 2001 From: Jin Adachi Date: Thu, 16 Apr 2015 23:41:04 +0800 Subject: [PATCH 29/31] [SPARK-6694][SQL]SparkSQL CLI must be able to specify an option --database on the command line. SparkSQL CLI has an option --database as follows. But, the option --database is ignored. ``` $ spark-sql --help : CLI options: : --database Specify the database to use ``` Author: Jin Adachi Author: adachij Closes #5345 from adachij2002/SPARK-6694 and squashes the following commits: 8659084 [Jin Adachi] Merge branch 'master' of https://github.com/apache/spark into SPARK-6694 0301eb9 [Jin Adachi] Merge branch 'master' of https://github.com/apache/spark into SPARK-6694 df81086 [Jin Adachi] Modify code style. 846f83e [Jin Adachi] Merge branch 'master' of https://github.com/apache/spark into SPARK-6694 dbe8c63 [Jin Adachi] Change file permission to 644. 7b58f42 [Jin Adachi] Merge branch 'master' of https://github.com/apache/spark into SPARK-6694 c581d06 [Jin Adachi] Add an option --database test db56122 [Jin Adachi] Merge branch 'SPARK-6694' of https://github.com/adachij2002/spark into SPARK-6694 ee09fa5 [adachij] Merge branch 'master' into SPARK-6694 c804c03 [adachij] SparkSQL CLI must be able to specify an option --database on the command line. --- .../hive/thriftserver/SparkSQLCLIDriver.scala | 3 ++ .../sql/hive/thriftserver/CliSuite.scala | 45 +++++++++++++++---- 2 files changed, 39 insertions(+), 9 deletions(-) diff --git a/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLCLIDriver.scala b/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLCLIDriver.scala index 62c061bef690a..85281c6d73a3b 100644 --- a/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLCLIDriver.scala +++ b/sql/hive-thriftserver/src/main/scala/org/apache/spark/sql/hive/thriftserver/SparkSQLCLIDriver.scala @@ -145,6 +145,9 @@ private[hive] object SparkSQLCLIDriver { case e: UnsupportedEncodingException => System.exit(3) } + // use the specified database if specified + cli.processSelectDatabase(sessionState); + // Execute -i init files (always in silent mode) cli.processInitFiles(sessionState) diff --git a/sql/hive-thriftserver/src/test/scala/org/apache/spark/sql/hive/thriftserver/CliSuite.scala b/sql/hive-thriftserver/src/test/scala/org/apache/spark/sql/hive/thriftserver/CliSuite.scala index 6d1d7c3a4e698..b070fa8eaa469 100644 --- a/sql/hive-thriftserver/src/test/scala/org/apache/spark/sql/hive/thriftserver/CliSuite.scala +++ b/sql/hive-thriftserver/src/test/scala/org/apache/spark/sql/hive/thriftserver/CliSuite.scala @@ -25,22 +25,31 @@ import scala.concurrent.{Await, Promise} import scala.sys.process.{Process, ProcessLogger} import org.apache.hadoop.hive.conf.HiveConf.ConfVars -import org.scalatest.{BeforeAndAfterAll, FunSuite} +import org.scalatest.{BeforeAndAfter, BeforeAndAfterAll, FunSuite} import org.apache.spark.Logging import org.apache.spark.util.Utils -class CliSuite extends FunSuite with BeforeAndAfterAll with Logging { +class CliSuite extends FunSuite with BeforeAndAfter with Logging { + val warehousePath = Utils.createTempDir() + val metastorePath = Utils.createTempDir() + + before { + warehousePath.delete() + metastorePath.delete() + } + + after { + warehousePath.delete() + metastorePath.delete() + } + def runCliWithin( timeout: FiniteDuration, extraArgs: Seq[String] = Seq.empty)( - queriesAndExpectedAnswers: (String, String)*) { + queriesAndExpectedAnswers: (String, String)*): Unit = { val (queries, expectedAnswers) = queriesAndExpectedAnswers.unzip - val warehousePath = Utils.createTempDir() - warehousePath.delete() - val metastorePath = Utils.createTempDir() - metastorePath.delete() val cliScript = "../../bin/spark-sql".split("/").mkString(File.separator) val command = { @@ -95,8 +104,6 @@ class CliSuite extends FunSuite with BeforeAndAfterAll with Logging { """.stripMargin, cause) throw cause } finally { - warehousePath.delete() - metastorePath.delete() process.destroy() } } @@ -124,4 +131,24 @@ class CliSuite extends FunSuite with BeforeAndAfterAll with Logging { test("Single command with -e") { runCliWithin(1.minute, Seq("-e", "SHOW DATABASES;"))("" -> "OK") } + + test("Single command with --database") { + runCliWithin(1.minute)( + "CREATE DATABASE hive_test_db;" + -> "OK", + "USE hive_test_db;" + -> "OK", + "CREATE TABLE hive_test(key INT, val STRING);" + -> "OK", + "SHOW TABLES;" + -> "Time taken: " + ) + + runCliWithin(1.minute, Seq("--database", "hive_test_db", "-e", "SHOW TABLES;"))( + "" + -> "OK", + "" + -> "hive_test" + ) + } } From ef3fb801ae971656ed9cd1b0ab95bc5a1548adbd Mon Sep 17 00:00:00 2001 From: zsxwing Date: Thu, 16 Apr 2015 13:45:55 -0500 Subject: [PATCH 30/31] [SPARK-6934][Core] Use 'spark.akka.askTimeout' for the ask timeout Fixed my mistake in #4588 Author: zsxwing Closes #5529 from zsxwing/SPARK-6934 and squashes the following commits: 9890b2d [zsxwing] Use 'spark.akka.askTimeout' for the ask timeout --- core/src/main/scala/org/apache/spark/rpc/RpcEnv.scala | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/rpc/RpcEnv.scala b/core/src/main/scala/org/apache/spark/rpc/RpcEnv.scala index e259867c14040..f2c1c86af767e 100644 --- a/core/src/main/scala/org/apache/spark/rpc/RpcEnv.scala +++ b/core/src/main/scala/org/apache/spark/rpc/RpcEnv.scala @@ -284,7 +284,7 @@ private[spark] abstract class RpcEndpointRef(@transient conf: SparkConf) private[this] val maxRetries = conf.getInt("spark.akka.num.retries", 3) private[this] val retryWaitMs = conf.getLong("spark.akka.retry.wait", 3000) - private[this] val defaultTimeout = conf.getLong("spark.akka.lookupTimeout", 30) seconds + private[this] val defaultAskTimeout = conf.getLong("spark.akka.askTimeout", 30) seconds /** * return the address for the [[RpcEndpointRef]] @@ -304,7 +304,8 @@ private[spark] abstract class RpcEndpointRef(@transient conf: SparkConf) * * This method only sends the message once and never retries. */ - def sendWithReply[T: ClassTag](message: Any): Future[T] = sendWithReply(message, defaultTimeout) + def sendWithReply[T: ClassTag](message: Any): Future[T] = + sendWithReply(message, defaultAskTimeout) /** * Send a message to the corresponding [[RpcEndpoint.receiveAndReply)]] and return a `Future` to @@ -327,7 +328,7 @@ private[spark] abstract class RpcEndpointRef(@transient conf: SparkConf) * @tparam T type of the reply message * @return the reply message from the corresponding [[RpcEndpoint]] */ - def askWithReply[T: ClassTag](message: Any): T = askWithReply(message, defaultTimeout) + def askWithReply[T: ClassTag](message: Any): T = askWithReply(message, defaultAskTimeout) /** * Send a message to the corresponding [[RpcEndpoint.receive]] and get its result within a From 55f553a979db925aa0c3559f7e80b99d2bf3feb4 Mon Sep 17 00:00:00 2001 From: Shivaram Venkataraman Date: Thu, 16 Apr 2015 13:06:34 -0700 Subject: [PATCH 31/31] [SPARK-6855] [SPARKR] Set R includes to get the right collate order. This prevents tools like devtools::document creating invalid collate orders Author: Shivaram Venkataraman Closes #5462 from shivaram/collate-order and squashes the following commits: f3db562 [Shivaram Venkataraman] Set R includes to get the right collate order. This prevents tools like devtools::document creating invalid collate orders --- R/pkg/DESCRIPTION | 6 +++--- R/pkg/R/DataFrame.R | 2 +- R/pkg/R/column.R | 2 +- R/pkg/R/group.R | 3 +++ R/pkg/R/jobj.R | 3 +++ R/pkg/R/pairRDD.R | 2 ++ 6 files changed, 13 insertions(+), 5 deletions(-) diff --git a/R/pkg/DESCRIPTION b/R/pkg/DESCRIPTION index 1842b97d43651..052f68c6c24e2 100644 --- a/R/pkg/DESCRIPTION +++ b/R/pkg/DESCRIPTION @@ -17,19 +17,19 @@ License: Apache License (== 2.0) Collate: 'generics.R' 'jobj.R' - 'SQLTypes.R' 'RDD.R' 'pairRDD.R' + 'SQLTypes.R' 'column.R' 'group.R' 'DataFrame.R' 'SQLContext.R' + 'backend.R' 'broadcast.R' + 'client.R' 'context.R' 'deserialize.R' 'serialize.R' 'sparkR.R' - 'backend.R' - 'client.R' 'utils.R' 'zzz.R' diff --git a/R/pkg/R/DataFrame.R b/R/pkg/R/DataFrame.R index feafd56909a67..044fdb4d01223 100644 --- a/R/pkg/R/DataFrame.R +++ b/R/pkg/R/DataFrame.R @@ -17,7 +17,7 @@ # DataFrame.R - DataFrame class and methods implemented in S4 OO classes -#' @include jobj.R SQLTypes.R RDD.R pairRDD.R column.R group.R +#' @include generics.R jobj.R SQLTypes.R RDD.R pairRDD.R column.R group.R NULL setOldClass("jobj") diff --git a/R/pkg/R/column.R b/R/pkg/R/column.R index e196305186b9a..b282001d8b6b5 100644 --- a/R/pkg/R/column.R +++ b/R/pkg/R/column.R @@ -17,7 +17,7 @@ # Column Class -#' @include generics.R jobj.R +#' @include generics.R jobj.R SQLTypes.R NULL setOldClass("jobj") diff --git a/R/pkg/R/group.R b/R/pkg/R/group.R index 09fc0a7abe48a..855fbdfc7c4ca 100644 --- a/R/pkg/R/group.R +++ b/R/pkg/R/group.R @@ -17,6 +17,9 @@ # group.R - GroupedData class and methods implemented in S4 OO classes +#' @include generics.R jobj.R SQLTypes.R column.R +NULL + setOldClass("jobj") #' @title S4 class that represents a GroupedData diff --git a/R/pkg/R/jobj.R b/R/pkg/R/jobj.R index 4180f146b7fbc..a8a25230b636d 100644 --- a/R/pkg/R/jobj.R +++ b/R/pkg/R/jobj.R @@ -18,6 +18,9 @@ # References to objects that exist on the JVM backend # are maintained using the jobj. +#' @include generics.R +NULL + # Maintain a reference count of Java object references # This allows us to GC the java object when it is safe .validJobjs <- new.env(parent = emptyenv()) diff --git a/R/pkg/R/pairRDD.R b/R/pkg/R/pairRDD.R index 739d399f0820f..5d64822859d1f 100644 --- a/R/pkg/R/pairRDD.R +++ b/R/pkg/R/pairRDD.R @@ -16,6 +16,8 @@ # # Operations supported on RDDs contains pairs (i.e key, value) +#' @include generics.R jobj.R RDD.R +NULL ############ Actions and Transformations ############