-
Notifications
You must be signed in to change notification settings - Fork 28.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'apache/master' into SPARK-8051
- Loading branch information
Showing
26 changed files
with
913 additions
and
324 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one or more | ||
# contributor license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright ownership. | ||
# The ASF licenses this file to You under the Apache License, Version 2.0 | ||
# (the "License"); you may not use this file except in compliance with | ||
# the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
from __future__ import print_function | ||
|
||
from pyspark import SparkContext | ||
from pyspark.ml import Pipeline | ||
from pyspark.ml.classification import LogisticRegression | ||
from pyspark.ml.evaluation import BinaryClassificationEvaluator | ||
from pyspark.ml.feature import HashingTF, Tokenizer | ||
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder | ||
from pyspark.sql import Row, SQLContext | ||
|
||
""" | ||
A simple example demonstrating model selection using CrossValidator. | ||
This example also demonstrates how Pipelines are Estimators. | ||
Run with: | ||
bin/spark-submit examples/src/main/python/ml/cross_validator.py | ||
""" | ||
|
||
if __name__ == "__main__": | ||
sc = SparkContext(appName="CrossValidatorExample") | ||
sqlContext = SQLContext(sc) | ||
|
||
# Prepare training documents, which are labeled. | ||
LabeledDocument = Row("id", "text", "label") | ||
training = sc.parallelize([(0, "a b c d e spark", 1.0), | ||
(1, "b d", 0.0), | ||
(2, "spark f g h", 1.0), | ||
(3, "hadoop mapreduce", 0.0), | ||
(4, "b spark who", 1.0), | ||
(5, "g d a y", 0.0), | ||
(6, "spark fly", 1.0), | ||
(7, "was mapreduce", 0.0), | ||
(8, "e spark program", 1.0), | ||
(9, "a e c l", 0.0), | ||
(10, "spark compile", 1.0), | ||
(11, "hadoop software", 0.0) | ||
]) \ | ||
.map(lambda x: LabeledDocument(*x)).toDF() | ||
|
||
# Configure an ML pipeline, which consists of tree stages: tokenizer, hashingTF, and lr. | ||
tokenizer = Tokenizer(inputCol="text", outputCol="words") | ||
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features") | ||
lr = LogisticRegression(maxIter=10) | ||
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) | ||
|
||
# We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance. | ||
# This will allow us to jointly choose parameters for all Pipeline stages. | ||
# A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator. | ||
# We use a ParamGridBuilder to construct a grid of parameters to search over. | ||
# With 3 values for hashingTF.numFeatures and 2 values for lr.regParam, | ||
# this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from. | ||
paramGrid = ParamGridBuilder() \ | ||
.addGrid(hashingTF.numFeatures, [10, 100, 1000]) \ | ||
.addGrid(lr.regParam, [0.1, 0.01]) \ | ||
.build() | ||
|
||
crossval = CrossValidator(estimator=pipeline, | ||
estimatorParamMaps=paramGrid, | ||
evaluator=BinaryClassificationEvaluator(), | ||
numFolds=2) # use 3+ folds in practice | ||
|
||
# Run cross-validation, and choose the best set of parameters. | ||
cvModel = crossval.fit(training) | ||
|
||
# Prepare test documents, which are unlabeled. | ||
Document = Row("id", "text") | ||
test = sc.parallelize([(4L, "spark i j k"), | ||
(5L, "l m n"), | ||
(6L, "mapreduce spark"), | ||
(7L, "apache hadoop")]) \ | ||
.map(lambda x: Document(*x)).toDF() | ||
|
||
# Make predictions on test documents. cvModel uses the best model found (lrModel). | ||
prediction = cvModel.transform(test) | ||
selected = prediction.select("id", "text", "probability", "prediction") | ||
for row in selected.collect(): | ||
print(row) | ||
|
||
sc.stop() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
142 changes: 142 additions & 0 deletions
142
examples/src/main/scala/org/apache/spark/examples/ml/LinearRegressionExample.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml | ||
|
||
import scala.collection.mutable | ||
import scala.language.reflectiveCalls | ||
|
||
import scopt.OptionParser | ||
|
||
import org.apache.spark.{SparkConf, SparkContext} | ||
import org.apache.spark.examples.mllib.AbstractParams | ||
import org.apache.spark.ml.{Pipeline, PipelineStage} | ||
import org.apache.spark.ml.regression.{LinearRegression, LinearRegressionModel} | ||
import org.apache.spark.sql.DataFrame | ||
|
||
/** | ||
* An example runner for linear regression with elastic-net (mixing L1/L2) regularization. | ||
* Run with | ||
* {{{ | ||
* bin/run-example ml.LinearRegressionExample [options] | ||
* }}} | ||
* A synthetic dataset can be found at `data/mllib/sample_linear_regression_data.txt` which can be | ||
* trained by | ||
* {{{ | ||
* bin/run-example ml.LinearRegressionExample --regParam 0.15 --elasticNetParam 1.0 \ | ||
* data/mllib/sample_linear_regression_data.txt | ||
* }}} | ||
* If you use it as a template to create your own app, please use `spark-submit` to submit your app. | ||
*/ | ||
object LinearRegressionExample { | ||
|
||
case class Params( | ||
input: String = null, | ||
testInput: String = "", | ||
dataFormat: String = "libsvm", | ||
regParam: Double = 0.0, | ||
elasticNetParam: Double = 0.0, | ||
maxIter: Int = 100, | ||
tol: Double = 1E-6, | ||
fracTest: Double = 0.2) extends AbstractParams[Params] | ||
|
||
def main(args: Array[String]) { | ||
val defaultParams = Params() | ||
|
||
val parser = new OptionParser[Params]("LinearRegressionExample") { | ||
head("LinearRegressionExample: an example Linear Regression with Elastic-Net app.") | ||
opt[Double]("regParam") | ||
.text(s"regularization parameter, default: ${defaultParams.regParam}") | ||
.action((x, c) => c.copy(regParam = x)) | ||
opt[Double]("elasticNetParam") | ||
.text(s"ElasticNet mixing parameter. For alpha = 0, the penalty is an L2 penalty. " + | ||
s"For alpha = 1, it is an L1 penalty. For 0 < alpha < 1, the penalty is a combination of " + | ||
s"L1 and L2, default: ${defaultParams.elasticNetParam}") | ||
.action((x, c) => c.copy(elasticNetParam = x)) | ||
opt[Int]("maxIter") | ||
.text(s"maximum number of iterations, default: ${defaultParams.maxIter}") | ||
.action((x, c) => c.copy(maxIter = x)) | ||
opt[Double]("tol") | ||
.text(s"the convergence tolerance of iterations, Smaller value will lead " + | ||
s"to higher accuracy with the cost of more iterations, default: ${defaultParams.tol}") | ||
.action((x, c) => c.copy(tol = x)) | ||
opt[Double]("fracTest") | ||
.text(s"fraction of data to hold out for testing. If given option testInput, " + | ||
s"this option is ignored. default: ${defaultParams.fracTest}") | ||
.action((x, c) => c.copy(fracTest = x)) | ||
opt[String]("testInput") | ||
.text(s"input path to test dataset. If given, option fracTest is ignored." + | ||
s" default: ${defaultParams.testInput}") | ||
.action((x, c) => c.copy(testInput = x)) | ||
opt[String]("dataFormat") | ||
.text("data format: libsvm (default), dense (deprecated in Spark v1.1)") | ||
.action((x, c) => c.copy(dataFormat = x)) | ||
arg[String]("<input>") | ||
.text("input path to labeled examples") | ||
.required() | ||
.action((x, c) => c.copy(input = x)) | ||
checkConfig { params => | ||
if (params.fracTest < 0 || params.fracTest >= 1) { | ||
failure(s"fracTest ${params.fracTest} value incorrect; should be in [0,1).") | ||
} else { | ||
success | ||
} | ||
} | ||
} | ||
|
||
parser.parse(args, defaultParams).map { params => | ||
run(params) | ||
}.getOrElse { | ||
sys.exit(1) | ||
} | ||
} | ||
|
||
def run(params: Params) { | ||
val conf = new SparkConf().setAppName(s"LinearRegressionExample with $params") | ||
val sc = new SparkContext(conf) | ||
|
||
println(s"LinearRegressionExample with parameters:\n$params") | ||
|
||
// Load training and test data and cache it. | ||
val (training: DataFrame, test: DataFrame) = DecisionTreeExample.loadDatasets(sc, params.input, | ||
params.dataFormat, params.testInput, "regression", params.fracTest) | ||
|
||
val lir = new LinearRegression() | ||
.setFeaturesCol("features") | ||
.setLabelCol("label") | ||
.setRegParam(params.regParam) | ||
.setElasticNetParam(params.elasticNetParam) | ||
.setMaxIter(params.maxIter) | ||
.setTol(params.tol) | ||
|
||
// Train the model | ||
val startTime = System.nanoTime() | ||
val lirModel = lir.fit(training) | ||
val elapsedTime = (System.nanoTime() - startTime) / 1e9 | ||
println(s"Training time: $elapsedTime seconds") | ||
|
||
// Print the weights and intercept for linear regression. | ||
println(s"Weights: ${lirModel.weights} Intercept: ${lirModel.intercept}") | ||
|
||
println("Training data results:") | ||
DecisionTreeExample.evaluateRegressionModel(lirModel, training, "label") | ||
println("Test data results:") | ||
DecisionTreeExample.evaluateRegressionModel(lirModel, test, "label") | ||
|
||
sc.stop() | ||
} | ||
} |
Oops, something went wrong.