Skip to content

Commit

Permalink
Merge remote-tracking branch 'apache/master' into SPARK-8051
Browse files Browse the repository at this point in the history
  • Loading branch information
mengxr committed Jun 3, 2015
2 parents 8ee7c7e + ccaa823 commit f143fd4
Show file tree
Hide file tree
Showing 26 changed files with 913 additions and 324 deletions.
96 changes: 96 additions & 0 deletions examples/src/main/python/ml/cross_validator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from __future__ import print_function

from pyspark import SparkContext
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.sql import Row, SQLContext

"""
A simple example demonstrating model selection using CrossValidator.
This example also demonstrates how Pipelines are Estimators.
Run with:
bin/spark-submit examples/src/main/python/ml/cross_validator.py
"""

if __name__ == "__main__":
sc = SparkContext(appName="CrossValidatorExample")
sqlContext = SQLContext(sc)

# Prepare training documents, which are labeled.
LabeledDocument = Row("id", "text", "label")
training = sc.parallelize([(0, "a b c d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0),
(4, "b spark who", 1.0),
(5, "g d a y", 0.0),
(6, "spark fly", 1.0),
(7, "was mapreduce", 0.0),
(8, "e spark program", 1.0),
(9, "a e c l", 0.0),
(10, "spark compile", 1.0),
(11, "hadoop software", 0.0)
]) \
.map(lambda x: LabeledDocument(*x)).toDF()

# Configure an ML pipeline, which consists of tree stages: tokenizer, hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=10)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

# We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
# This will allow us to jointly choose parameters for all Pipeline stages.
# A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
# We use a ParamGridBuilder to construct a grid of parameters to search over.
# With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
# this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
paramGrid = ParamGridBuilder() \
.addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
.addGrid(lr.regParam, [0.1, 0.01]) \
.build()

crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(),
numFolds=2) # use 3+ folds in practice

# Run cross-validation, and choose the best set of parameters.
cvModel = crossval.fit(training)

# Prepare test documents, which are unlabeled.
Document = Row("id", "text")
test = sc.parallelize([(4L, "spark i j k"),
(5L, "l m n"),
(6L, "mapreduce spark"),
(7L, "apache hadoop")]) \
.map(lambda x: Document(*x)).toDF()

# Make predictions on test documents. cvModel uses the best model found (lrModel).
prediction = cvModel.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():
print(row)

sc.stop()
4 changes: 2 additions & 2 deletions examples/src/main/python/ml/simple_params_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,8 +41,8 @@

# prepare training data.
# We create an RDD of LabeledPoints and convert them into a DataFrame.
# Spark DataFrames can automatically infer the schema from named tuples
# and LabeledPoint implements __reduce__ to behave like a named tuple.
# A LabeledPoint is an Object with two fields named label and features
# and Spark SQL identifies these fields and creates the schema appropriately.
training = sc.parallelize([
LabeledPoint(1.0, DenseVector([0.0, 1.1, 0.1])),
LabeledPoint(0.0, DenseVector([2.0, 1.0, -1.0])),
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml

import scala.collection.mutable
import scala.language.reflectiveCalls

import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.examples.mllib.AbstractParams
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.ml.regression.{LinearRegression, LinearRegressionModel}
import org.apache.spark.sql.DataFrame

/**
* An example runner for linear regression with elastic-net (mixing L1/L2) regularization.
* Run with
* {{{
* bin/run-example ml.LinearRegressionExample [options]
* }}}
* A synthetic dataset can be found at `data/mllib/sample_linear_regression_data.txt` which can be
* trained by
* {{{
* bin/run-example ml.LinearRegressionExample --regParam 0.15 --elasticNetParam 1.0 \
* data/mllib/sample_linear_regression_data.txt
* }}}
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object LinearRegressionExample {

case class Params(
input: String = null,
testInput: String = "",
dataFormat: String = "libsvm",
regParam: Double = 0.0,
elasticNetParam: Double = 0.0,
maxIter: Int = 100,
tol: Double = 1E-6,
fracTest: Double = 0.2) extends AbstractParams[Params]

def main(args: Array[String]) {
val defaultParams = Params()

val parser = new OptionParser[Params]("LinearRegressionExample") {
head("LinearRegressionExample: an example Linear Regression with Elastic-Net app.")
opt[Double]("regParam")
.text(s"regularization parameter, default: ${defaultParams.regParam}")
.action((x, c) => c.copy(regParam = x))
opt[Double]("elasticNetParam")
.text(s"ElasticNet mixing parameter. For alpha = 0, the penalty is an L2 penalty. " +
s"For alpha = 1, it is an L1 penalty. For 0 < alpha < 1, the penalty is a combination of " +
s"L1 and L2, default: ${defaultParams.elasticNetParam}")
.action((x, c) => c.copy(elasticNetParam = x))
opt[Int]("maxIter")
.text(s"maximum number of iterations, default: ${defaultParams.maxIter}")
.action((x, c) => c.copy(maxIter = x))
opt[Double]("tol")
.text(s"the convergence tolerance of iterations, Smaller value will lead " +
s"to higher accuracy with the cost of more iterations, default: ${defaultParams.tol}")
.action((x, c) => c.copy(tol = x))
opt[Double]("fracTest")
.text(s"fraction of data to hold out for testing. If given option testInput, " +
s"this option is ignored. default: ${defaultParams.fracTest}")
.action((x, c) => c.copy(fracTest = x))
opt[String]("testInput")
.text(s"input path to test dataset. If given, option fracTest is ignored." +
s" default: ${defaultParams.testInput}")
.action((x, c) => c.copy(testInput = x))
opt[String]("dataFormat")
.text("data format: libsvm (default), dense (deprecated in Spark v1.1)")
.action((x, c) => c.copy(dataFormat = x))
arg[String]("<input>")
.text("input path to labeled examples")
.required()
.action((x, c) => c.copy(input = x))
checkConfig { params =>
if (params.fracTest < 0 || params.fracTest >= 1) {
failure(s"fracTest ${params.fracTest} value incorrect; should be in [0,1).")
} else {
success
}
}
}

parser.parse(args, defaultParams).map { params =>
run(params)
}.getOrElse {
sys.exit(1)
}
}

def run(params: Params) {
val conf = new SparkConf().setAppName(s"LinearRegressionExample with $params")
val sc = new SparkContext(conf)

println(s"LinearRegressionExample with parameters:\n$params")

// Load training and test data and cache it.
val (training: DataFrame, test: DataFrame) = DecisionTreeExample.loadDatasets(sc, params.input,
params.dataFormat, params.testInput, "regression", params.fracTest)

val lir = new LinearRegression()
.setFeaturesCol("features")
.setLabelCol("label")
.setRegParam(params.regParam)
.setElasticNetParam(params.elasticNetParam)
.setMaxIter(params.maxIter)
.setTol(params.tol)

// Train the model
val startTime = System.nanoTime()
val lirModel = lir.fit(training)
val elapsedTime = (System.nanoTime() - startTime) / 1e9
println(s"Training time: $elapsedTime seconds")

// Print the weights and intercept for linear regression.
println(s"Weights: ${lirModel.weights} Intercept: ${lirModel.intercept}")

println("Training data results:")
DecisionTreeExample.evaluateRegressionModel(lirModel, training, "label")
println("Test data results:")
DecisionTreeExample.evaluateRegressionModel(lirModel, test, "label")

sc.stop()
}
}
Loading

0 comments on commit f143fd4

Please sign in to comment.