-
Notifications
You must be signed in to change notification settings - Fork 14.4k
/
Copy pathquery_context_processor.py
603 lines (540 loc) · 22.8 KB
/
query_context_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import copy
import logging
import re
from typing import Any, ClassVar, Dict, List, Optional, TYPE_CHECKING, Union
import numpy as np
import pandas as pd
from flask_babel import _
from pandas import DateOffset
from typing_extensions import TypedDict
from superset import app
from superset.annotation_layers.dao import AnnotationLayerDAO
from superset.charts.dao import ChartDAO
from superset.common.chart_data import ChartDataResultFormat
from superset.common.db_query_status import QueryStatus
from superset.common.query_actions import get_query_results
from superset.common.utils import dataframe_utils
from superset.common.utils.query_cache_manager import QueryCacheManager
from superset.common.utils.time_range_utils import get_since_until_from_query_object
from superset.connectors.base.models import BaseDatasource
from superset.constants import CacheRegion
from superset.exceptions import (
InvalidPostProcessingError,
QueryObjectValidationError,
SupersetException,
)
from superset.extensions import cache_manager, security_manager
from superset.models.helpers import QueryResult
from superset.models.sql_lab import Query
from superset.utils import csv
from superset.utils.cache import generate_cache_key, set_and_log_cache
from superset.utils.core import (
DatasourceType,
DateColumn,
DTTM_ALIAS,
error_msg_from_exception,
get_base_axis_labels,
get_column_names_from_columns,
get_column_names_from_metrics,
get_metric_names,
get_xaxis_label,
normalize_dttm_col,
TIME_COMPARISON,
)
from superset.utils.date_parser import get_past_or_future, normalize_time_delta
from superset.utils.pandas_postprocessing.utils import unescape_separator
from superset.views.utils import get_viz
if TYPE_CHECKING:
from superset.common.query_context import QueryContext
from superset.common.query_object import QueryObject
from superset.stats_logger import BaseStatsLogger
config = app.config
stats_logger: BaseStatsLogger = config["STATS_LOGGER"]
logger = logging.getLogger(__name__)
class CachedTimeOffset(TypedDict):
df: pd.DataFrame
queries: List[str]
cache_keys: List[Optional[str]]
class QueryContextProcessor:
"""
The query context contains the query object and additional fields necessary
to retrieve the data payload for a given viz.
"""
_query_context: QueryContext
_qc_datasource: BaseDatasource
"""
The query context contains the query object and additional fields necessary
to retrieve the data payload for a given viz.
"""
def __init__(self, query_context: QueryContext):
self._query_context = query_context
self._qc_datasource = query_context.datasource
cache_type: ClassVar[str] = "df"
enforce_numerical_metrics: ClassVar[bool] = True
def get_df_payload(
self, query_obj: QueryObject, force_cached: Optional[bool] = False
) -> Dict[str, Any]:
"""Handles caching around the df payload retrieval"""
cache_key = self.query_cache_key(query_obj)
cache = QueryCacheManager.get(
cache_key,
CacheRegion.DATA,
self._query_context.force,
force_cached,
)
if query_obj and cache_key and not cache.is_loaded:
try:
invalid_columns = [
col
for col in get_column_names_from_columns(query_obj.columns)
+ get_column_names_from_metrics(query_obj.metrics or [])
if (
col not in self._qc_datasource.column_names
and col != DTTM_ALIAS
)
]
if invalid_columns:
raise QueryObjectValidationError(
_(
"Columns missing in dataset: %(invalid_columns)s",
invalid_columns=invalid_columns,
)
)
query_result = self.get_query_result(query_obj)
annotation_data = self.get_annotation_data(query_obj)
cache.set_query_result(
key=cache_key,
query_result=query_result,
annotation_data=annotation_data,
force_query=self._query_context.force,
timeout=self.get_cache_timeout(),
datasource_uid=self._qc_datasource.uid,
region=CacheRegion.DATA,
)
except QueryObjectValidationError as ex:
cache.error_message = str(ex)
cache.status = QueryStatus.FAILED
# the N-dimensional DataFrame has converteds into flat DataFrame
# by `flatten operator`, "comma" in the column is escaped by `escape_separator`
# the result DataFrame columns should be unescaped
label_map = {
unescape_separator(col): [
unescape_separator(col) for col in re.split(r"(?<!\\),\s", col)
]
for col in cache.df.columns.values
}
cache.df.columns = [unescape_separator(col) for col in cache.df.columns.values]
return {
"cache_key": cache_key,
"cached_dttm": cache.cache_dttm,
"cache_timeout": self.get_cache_timeout(),
"df": cache.df,
"applied_template_filters": cache.applied_template_filters,
"annotation_data": cache.annotation_data,
"error": cache.error_message,
"is_cached": cache.is_cached,
"query": cache.query,
"status": cache.status,
"stacktrace": cache.stacktrace,
"rowcount": len(cache.df.index),
"from_dttm": query_obj.from_dttm,
"to_dttm": query_obj.to_dttm,
"label_map": label_map,
}
def query_cache_key(self, query_obj: QueryObject, **kwargs: Any) -> Optional[str]:
"""
Returns a QueryObject cache key for objects in self.queries
"""
datasource = self._qc_datasource
extra_cache_keys = datasource.get_extra_cache_keys(query_obj.to_dict())
cache_key = (
query_obj.cache_key(
datasource=datasource.uid,
extra_cache_keys=extra_cache_keys,
rls=security_manager.get_rls_cache_key(datasource),
changed_on=datasource.changed_on,
**kwargs,
)
if query_obj
else None
)
return cache_key
def get_query_result(self, query_object: QueryObject) -> QueryResult:
"""Returns a pandas dataframe based on the query object"""
query_context = self._query_context
# Here, we assume that all the queries will use the same datasource, which is
# a valid assumption for current setting. In the long term, we may
# support multiple queries from different data sources.
query = ""
if isinstance(query_context.datasource, Query):
# todo(hugh): add logic to manage all sip68 models here
result = query_context.datasource.exc_query(query_object.to_dict())
else:
result = query_context.datasource.query(query_object.to_dict())
query = result.query + ";\n\n"
df = result.df
# Transform the timestamp we received from database to pandas supported
# datetime format. If no python_date_format is specified, the pattern will
# be considered as the default ISO date format
# If the datetime format is unix, the parse will use the corresponding
# parsing logic
if not df.empty:
df = self.normalize_df(df, query_object)
if query_object.time_offsets:
time_offsets = self.processing_time_offsets(df, query_object)
df = time_offsets["df"]
queries = time_offsets["queries"]
query += ";\n\n".join(queries)
query += ";\n\n"
# Re-raising QueryObjectValidationError
try:
df = query_object.exec_post_processing(df)
except InvalidPostProcessingError as ex:
raise QueryObjectValidationError from ex
result.df = df
result.query = query
result.from_dttm = query_object.from_dttm
result.to_dttm = query_object.to_dttm
return result
def normalize_df(self, df: pd.DataFrame, query_object: QueryObject) -> pd.DataFrame:
# todo: should support "python_date_format" and "get_column" in each datasource
def _get_timestamp_format(
source: BaseDatasource, column: Optional[str]
) -> Optional[str]:
column_obj = source.get_column(column)
if (
column_obj
# only sqla column was supported
and hasattr(column_obj, "python_date_format")
and (formatter := column_obj.python_date_format)
):
return str(formatter)
return None
datasource = self._qc_datasource
labels = tuple(
label
for label in [
*get_base_axis_labels(query_object.columns),
query_object.granularity,
]
if datasource
# Query datasource didn't support `get_column`
and hasattr(datasource, "get_column")
and (col := datasource.get_column(label))
# todo(hugh) standardize column object in Query datasource
and (col.get("is_dttm") if isinstance(col, dict) else col.is_dttm)
)
dttm_cols = [
DateColumn(
timestamp_format=_get_timestamp_format(datasource, label),
offset=datasource.offset,
time_shift=query_object.time_shift,
col_label=label,
)
for label in labels
if label
]
if DTTM_ALIAS in df:
dttm_cols.append(
DateColumn.get_legacy_time_column(
timestamp_format=_get_timestamp_format(
datasource, query_object.granularity
),
offset=datasource.offset,
time_shift=query_object.time_shift,
)
)
normalize_dttm_col(
df=df,
dttm_cols=tuple(dttm_cols),
)
if self.enforce_numerical_metrics:
dataframe_utils.df_metrics_to_num(df, query_object)
df.replace([np.inf, -np.inf], np.nan, inplace=True)
return df
def processing_time_offsets( # pylint: disable=too-many-locals,too-many-statements
self,
df: pd.DataFrame,
query_object: QueryObject,
) -> CachedTimeOffset:
query_context = self._query_context
# ensure query_object is immutable
query_object_clone = copy.copy(query_object)
queries: List[str] = []
cache_keys: List[Optional[str]] = []
rv_dfs: List[pd.DataFrame] = [df]
time_offsets = query_object.time_offsets
outer_from_dttm, outer_to_dttm = get_since_until_from_query_object(query_object)
if not outer_from_dttm or not outer_to_dttm:
raise QueryObjectValidationError(
_(
"An enclosed time range (both start and end) must be specified "
"when using a Time Comparison."
)
)
for offset in time_offsets:
try:
# pylint: disable=line-too-long
# Since the xaxis is also a column name for the time filter, xaxis_label will be set as granularity
# these query object are equivalent:
# 1) { granularity: 'dttm_col', time_range: '2020 : 2021', time_offsets: ['1 year ago']}
# 2) { columns: [
# {label: 'dttm_col', sqlExpression: 'dttm_col', "columnType": "BASE_AXIS" }
# ],
# time_offsets: ['1 year ago'],
# filters: [{col: 'dttm_col', op: 'TEMPORAL_RANGE', val: '2020 : 2021'}],
# }
query_object_clone.from_dttm = get_past_or_future(
offset,
outer_from_dttm,
)
query_object_clone.to_dttm = get_past_or_future(offset, outer_to_dttm)
xaxis_label = get_xaxis_label(query_object.columns)
query_object_clone.granularity = (
query_object_clone.granularity or xaxis_label
)
except ValueError as ex:
raise QueryObjectValidationError(str(ex)) from ex
# make sure subquery use main query where clause
query_object_clone.inner_from_dttm = outer_from_dttm
query_object_clone.inner_to_dttm = outer_to_dttm
query_object_clone.time_offsets = []
query_object_clone.post_processing = []
query_object_clone.filter = [
flt
for flt in query_object_clone.filter
if flt.get("col") != xaxis_label
]
# `offset` is added to the hash function
cache_key = self.query_cache_key(query_object_clone, time_offset=offset)
cache = QueryCacheManager.get(
cache_key, CacheRegion.DATA, query_context.force
)
# whether hit on the cache
if cache.is_loaded:
rv_dfs.append(cache.df)
queries.append(cache.query)
cache_keys.append(cache_key)
continue
query_object_clone_dct = query_object_clone.to_dict()
# rename metrics: SUM(value) => SUM(value) 1 year ago
metrics_mapping = {
metric: TIME_COMPARISON.join([metric, offset])
for metric in get_metric_names(
query_object_clone_dct.get("metrics", [])
)
}
join_keys = [col for col in df.columns if col not in metrics_mapping.keys()]
if isinstance(self._qc_datasource, Query):
result = self._qc_datasource.exc_query(query_object_clone_dct)
else:
result = self._qc_datasource.query(query_object_clone_dct)
queries.append(result.query)
cache_keys.append(None)
offset_metrics_df = result.df
if offset_metrics_df.empty:
offset_metrics_df = pd.DataFrame(
{
col: [np.NaN]
for col in join_keys + list(metrics_mapping.values())
}
)
else:
# 1. normalize df, set dttm column
offset_metrics_df = self.normalize_df(
offset_metrics_df, query_object_clone
)
# 2. rename extra query columns
offset_metrics_df = offset_metrics_df.rename(columns=metrics_mapping)
# 3. set time offset for index
index = (get_base_axis_labels(query_object.columns) or [DTTM_ALIAS])[0]
if not dataframe_utils.is_datetime_series(offset_metrics_df.get(index)):
raise QueryObjectValidationError(
_(
"A time column must be specified "
"when using a Time Comparison."
)
)
offset_metrics_df[index] = offset_metrics_df[index] - DateOffset(
**normalize_time_delta(offset)
)
# df left join `offset_metrics_df`
offset_df = dataframe_utils.left_join_df(
left_df=df,
right_df=offset_metrics_df,
join_keys=join_keys,
)
offset_slice = offset_df[metrics_mapping.values()]
# set offset_slice to cache and stack.
value = {
"df": offset_slice,
"query": result.query,
}
cache.set(
key=cache_key,
value=value,
timeout=self.get_cache_timeout(),
datasource_uid=query_context.datasource.uid,
region=CacheRegion.DATA,
)
rv_dfs.append(offset_slice)
rv_df = pd.concat(rv_dfs, axis=1, copy=False) if time_offsets else df
return CachedTimeOffset(df=rv_df, queries=queries, cache_keys=cache_keys)
def get_data(self, df: pd.DataFrame) -> Union[str, List[Dict[str, Any]]]:
if self._query_context.result_format == ChartDataResultFormat.CSV:
include_index = not isinstance(df.index, pd.RangeIndex)
columns = list(df.columns)
verbose_map = self._qc_datasource.data.get("verbose_map", {})
if verbose_map:
df.columns = [verbose_map.get(column, column) for column in columns]
result = csv.df_to_escaped_csv(
df, index=include_index, **config["CSV_EXPORT"]
)
return result or ""
return df.to_dict(orient="records")
def get_payload(
self,
cache_query_context: Optional[bool] = False,
force_cached: bool = False,
) -> Dict[str, Any]:
"""Returns the query results with both metadata and data"""
# Get all the payloads from the QueryObjects
query_results = [
get_query_results(
query_obj.result_type or self._query_context.result_type,
self._query_context,
query_obj,
force_cached,
)
for query_obj in self._query_context.queries
]
return_value = {"queries": query_results}
if cache_query_context:
cache_key = self.cache_key()
set_and_log_cache(
cache_manager.cache,
cache_key,
{"data": self._query_context.cache_values},
self.get_cache_timeout(),
)
return_value["cache_key"] = cache_key # type: ignore
return return_value
def get_cache_timeout(self) -> int:
cache_timeout_rv = self._query_context.get_cache_timeout()
if cache_timeout_rv:
return cache_timeout_rv
if (
data_cache_timeout := config["DATA_CACHE_CONFIG"].get(
"CACHE_DEFAULT_TIMEOUT"
)
) is not None:
return data_cache_timeout
return config["CACHE_DEFAULT_TIMEOUT"]
def cache_key(self, **extra: Any) -> str:
"""
The QueryContext cache key is made out of the key/values from
self.cached_values, plus any other key/values in `extra`. It includes only data
required to rehydrate a QueryContext object.
"""
key_prefix = "qc-"
cache_dict = self._query_context.cache_values.copy()
cache_dict.update(extra)
return generate_cache_key(cache_dict, key_prefix)
def get_annotation_data(self, query_obj: QueryObject) -> Dict[str, Any]:
"""
:param query_context:
:param query_obj:
:return:
"""
annotation_data: Dict[str, Any] = self.get_native_annotation_data(query_obj)
for annotation_layer in [
layer
for layer in query_obj.annotation_layers
if layer["sourceType"] in ("line", "table")
]:
name = annotation_layer["name"]
annotation_data[name] = self.get_viz_annotation_data(
annotation_layer, self._query_context.force
)
return annotation_data
@staticmethod
def get_native_annotation_data(query_obj: QueryObject) -> Dict[str, Any]:
annotation_data = {}
annotation_layers = [
layer
for layer in query_obj.annotation_layers
if layer["sourceType"] == "NATIVE"
]
layer_ids = [layer["value"] for layer in annotation_layers]
layer_objects = {
layer_object.id: layer_object
for layer_object in AnnotationLayerDAO.find_by_ids(layer_ids)
}
# annotations
for layer in annotation_layers:
layer_id = layer["value"]
layer_name = layer["name"]
columns = [
"start_dttm",
"end_dttm",
"short_descr",
"long_descr",
"json_metadata",
]
layer_object = layer_objects[layer_id]
records = [
{column: getattr(annotation, column) for column in columns}
for annotation in layer_object.annotation
]
result = {"columns": columns, "records": records}
annotation_data[layer_name] = result
return annotation_data
@staticmethod
def get_viz_annotation_data(
annotation_layer: Dict[str, Any], force: bool
) -> Dict[str, Any]:
chart = ChartDAO.find_by_id(annotation_layer["value"])
if not chart:
raise QueryObjectValidationError(_("The chart does not exist"))
if not chart.datasource:
raise QueryObjectValidationError(_("The chart datasource does not exist"))
form_data = chart.form_data.copy()
try:
viz_obj = get_viz(
datasource_type=chart.datasource.type,
datasource_id=chart.datasource.id,
form_data=form_data,
force=force,
)
payload = viz_obj.get_payload()
return payload["data"]
except SupersetException as ex:
raise QueryObjectValidationError(error_msg_from_exception(ex)) from ex
def raise_for_access(self) -> None:
"""
Raise an exception if the user cannot access the resource.
:raises SupersetSecurityException: If the user cannot access the resource
"""
for query in self._query_context.queries:
query.validate()
if self._qc_datasource.type == DatasourceType.QUERY:
security_manager.raise_for_access(query=self._qc_datasource)
else:
security_manager.raise_for_access(query_context=self._query_context)