diff --git a/nnvm/python/nnvm/frontend/mxnet.py b/nnvm/python/nnvm/frontend/mxnet.py index 56266210f503..b8fd271ab77a 100644 --- a/nnvm/python/nnvm/frontend/mxnet.py +++ b/nnvm/python/nnvm/frontend/mxnet.py @@ -269,7 +269,7 @@ def _crop_like(inputs, attrs): raise tvm.error.OpAttributeUnimplemented( 'Center crop is not supported in operator crop_like.') if len(inputs) < 2: - raise RuntimeError("Only support crop_like pattern.") + raise tvm.error.OpAttributeUnimplemented("Only support crop_like pattern.") new_attrs["axis"] = [2, 3] return get_nnvm_op('slice_like')(inputs[0], inputs[1], **new_attrs) diff --git a/python/tvm/relay/frontend/mxnet.py b/python/tvm/relay/frontend/mxnet.py index 1a4d52f5b679..0bc7923648ff 100644 --- a/python/tvm/relay/frontend/mxnet.py +++ b/python/tvm/relay/frontend/mxnet.py @@ -149,7 +149,7 @@ def _mx_conv2d_transpose(inputs, attrs): new_attrs["groups"] = attrs.get_int("num_group", 1) new_attrs["data_layout"] = data_layout new_attrs["kernel_layout"] = kernel_layout - use_bias = not attrs.get_bool("no_bias", False) + use_bias = not attrs.get_bool("no_bias", True) res = _op.nn.conv2d_transpose(inputs[0], inputs[1], **new_attrs) if use_bias: @@ -277,6 +277,28 @@ def _mx_slice_axis(inputs, attrs): return _op.strided_slice(inputs[0], begin, end) +def _mx_crop_like(inputs, attrs): + if len(inputs) < 2: + raise tvm.error.OpAttributeUnimplemented( + "Only support crop_like pattern for operator Crop.") + if attrs.get_bool("center_crop", False): + raise tvm.error.OpAttributeUnimplemented( + "Center crop is not supported in operator Crop.") + if attrs.get_int_tuple("h_w", (0, 0)) != (0, 0): + raise tvm.error.OpAttributeUnimplemented( + "Doesn't support h_w in operator Crop.") + offset = attrs.get_int_tuple("offset", (0, 0)) + new_attrs = {} + if offset == (0, 0): + new_attrs["axes"] = (2, 3) + return _op.slice_like(*inputs, **new_attrs) + like_shape = ir_pass.infer_type(inputs[1]).checked_type.shape + new_attrs['begin'] = [0, 0, offset[0], offset[1]] + new_attrs['end'] = [like_shape[0], like_shape[1], offset[0]+like_shape[2], + offset[1]+like_shape[3]] + return _op.strided_slice(inputs[0], **new_attrs) + + def _mx_split(inputs, attrs): axis = attrs.get_int("axis", 1) new_attrs = {} @@ -300,6 +322,10 @@ def _mx_softmax_output(inputs, attrs): return _op.nn.softmax(inputs[0]) +def _mx_linear_regression_output(inputs, _): + return inputs[0] + + def _mx_concat(inputs, attrs): axis = attrs.get_int("dim", 1) return _op.concatenate(tuple(inputs), axis=axis) @@ -890,6 +916,7 @@ def _lstm_cell(data, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias): "argsort" : _mx_argsort, "SoftmaxOutput" : _mx_softmax_output, "SoftmaxActivation" : _mx_softmax_activation, + "LinearRegressionOutput" : _mx_linear_regression_output, "smooth_l1" : _mx_smooth_l1, # vision "_contrib_BilinearResize2D" : _mx_resize, @@ -905,11 +932,12 @@ def _lstm_cell(data, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias): # NLP "RNN" : _mx_rnn_layer, "_rnn_param_concat" : _mx_rnn_param_concat, + # Depricated: + "Crop" : _mx_crop_like, # List of missing operators that are present in NNVMv1 # TODO(tvm-tvm): support all operators. # # "broadcast_to", - # "Crop" : _crop_like, } # set identity list diff --git a/tests/python/frontend/mxnet/test_forward.py b/tests/python/frontend/mxnet/test_forward.py index e75e60da5ce4..50a25a9aff61 100644 --- a/tests/python/frontend/mxnet/test_forward.py +++ b/tests/python/frontend/mxnet/test_forward.py @@ -583,6 +583,31 @@ def verify(mode, input_size, seq_len, hidden_size, num_layers, batch=1): verify(mode, 64, 10, 64, 2) verify(mode, 64, 10, 32, 2) +def test_forward_Crop(): + def verify(xshape, yshape, offset=None): + x_data = np.random.uniform(size=xshape).astype("float32") + y_data = np.random.uniform(size=yshape).astype("float32") + if offset is None: + mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y")) + ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data)) + else: + mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y"), offset=offset) + ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data), offset=offset) + new_sym, _ = relay.frontend.from_mxnet(mx_sym, {"x": xshape, "y": yshape}) + for target, ctx in ctx_list(): + for kind in ["graph", "debug"]: + intrp = relay.create_executor(kind, ctx=ctx, target=target) + if offset is None or offset == (0, 0): + op_res = intrp.evaluate(new_sym)(x_data, y_data) + else: + op_res = intrp.evaluate(new_sym)(x_data) + tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) + verify((1, 3, 40, 40), (1, 3, 20, 20)) + verify((1, 3, 40, 40), (1, 3, 20, 20), (0, 0)) + verify((1, 3, 40, 40), (1, 3, 20, 20), (10, 10)) + verify((5, 32, 40, 40), (5, 32, 25, 25)) + verify((5, 32, 40, 40), (5, 32, 25, 25), (5, 5)) + if __name__ == '__main__': test_forward_mlp() @@ -624,3 +649,4 @@ def verify(mode, input_size, seq_len, hidden_size, num_layers, batch=1): test_forward_gather_nd() test_forward_bilinear_resize() test_forward_rnn_layer() + test_forward_Crop()