-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_ip.py
42 lines (31 loc) · 1.34 KB
/
model_ip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import geoip2.database
import pickle
print('started')
badQueries = open('badQueries.txt', 'r', encoding='utf-8')
validQueries = open('goodQueries.txt', 'r', encoding='utf-8')
badQueries = list(set(badQueries))
validQueries = list(set(validQueries))
allQueries = badQueries + validQueries
yBad = [1 for i in range(0, len(badQueries))]
yGood = [0 for i in range(0, len(validQueries))]
y = yBad + yGood
queries = allQueries
reader = geoip2.database.Reader('/path/to/GeoLite2-City.mmdb')
all_ips = [reader.country(ip) for ip in allQueries]
print('vectorizing')
vectorizer = TfidfVectorizer(min_df=0.0, analyzer="char", sublinear_tf=True, ngram_range=(1, 3))
X = vectorizer.fit_transform(queries)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
badCount = len(badQueries)
validCount = len(validQueries)
print('training')
lgs = LogisticRegression(class_weight={1: 2 * validCount / badCount, 0: 1.0}, solver='lbgfs') # class_weight='balanced')
lgs.fit(X_train, y_train)
print('saving')
with open('model.pkl', 'wb') as model_file:
pickle.dump(lgs, model_file)
with open('vectorizer.pkl', 'wb') as vectorizer_file:
pickle.dump(vectorizer, vectorizer_file)