-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
312 lines (303 loc) · 11.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import json
import numpy as np
def get_llm(model_name: str, series: str = None):
if series is None:
if model_name[:3] in ('gpt', 'o1-'):
series = 'openai'
elif model_name[:6] == 'claude':
series = 'anthropic'
elif model_name[:6] == 'gemini':
series = 'gemini'
if series is None:
raise ValueError('unable to found matching series for current model, please provide the API provider in --series value')
if series == 'gemini':
from llms.gemini_vertex import Gemini
return Gemini(model_name)
elif series == 'structure':
if 'gemini' in model_name:
from llms.gemini_vertex_structure import GeminiStructure
return GeminiStructure(model_name)
from llms.oai_structure import OpenAIJSON, OpenAIChat
if 'gpt' in model_name:
return OpenAIChat(model_name)
# TGI
return OpenAIJSON(model_name)
elif series == 'struct-v2':
from llms.oai_structurev2 import OpenAIStructureV2
if 'gpt' in model_name:
return OpenAIStructureV2(model_name)
raise ValueError("Deterministic JSON mode doesn't support this model: ", model_name)
elif series == 'gemini_dev':
from llms.gemini_dev import GeminiDev
return GeminiDev(model_name)
elif series == 'openai':
from llms.oai_chat import OpenAIChat
return OpenAIChat(model_name)
elif series == 'anthropic':
from llms.claude import ClaudeChat
return ClaudeChat(model_name)
elif series == 'anthropic_vertex':
from llms.vertex_claude import ClaudeChat
return ClaudeChat(model_name)
elif series == 'hf_model':
from llms.hf_model import HFModel
return HFModel(model_name)
elif series == 'outlines':
from llms.outlines_model import OutlinesStructure
return OutlinesStructure(model_name)
elif series == 'xgrammar':
from llms.xgrammar_model import XGrammar
return XGrammar(model_name)
elif series == 'tgi':
from llms.tgi_grammar_model import TGI
return TGI(model_name)
elif series == 'sglang':
from llms.sglang_model import SGLang
return SGLang(model_name)
elif series == "groq":
from llms.groq_model import GroqModel
return GroqModel(model_name)
elif series == "together":
from llms.together_model import TogetherModel
return TogetherModel(model_name)
raise ValueError('series : {} for {} is not yet supported'.format(series, model_name))
def load_data_by_name(task):
from datasets import load_dataset, Dataset
if task == 'gsm8k':
return load_dataset('gsm8k', 'main', split='test')
elif task == 'math':
data = []
for row in load_dataset("appier-ai-research/robust-finetuning", "math")['test']:
row = dict(row)
row['question'] = row['problem']
row['answer'] = row['solution']
data.append(row)
return Dataset.from_list(data)
elif task == 'ddxplus':
data = []
for row in load_dataset('appier-ai-research/StreamBench',
"ddxplus",
split='test'
):
row = dict(row)
row['question'] = row['PATIENT_PROFILE']
row['answer'] = row['PATHOLOGY']
data.append(row)
return Dataset.from_list(data)
elif task == 'lastletter':
return load_dataset('ChilleD/LastLetterConcat', split='test')
elif task == 'multifin':
data = []
for row in load_dataset('ChanceFocus/flare-multifin-en',
split='test'
):
row = dict(row)
row['question'] = row['text']
row['answer'] = row['answer'].replace('&', 'and')
data.append(row)
return Dataset.from_list(data)
elif task == 'multiarith':
data = []
for row in load_dataset('ChilleD/MultiArith', split='test'):
row = dict(row)
row['question'] = row['question']
row['answer'] = row['final_ans']
data.append(row)
return Dataset.from_list(data)
elif task == 'shuffleobj':
data = []
choices = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
for row in load_dataset('tasksource/bigbench', 'tracking_shuffled_objects', split='validation'):
row = dict(row)
answer_choice = '\n'.join([ '{}) {}'.format(l, t) for l, t in zip(choices, row['multiple_choice_targets'])])
row['question'] = row['inputs']+'\n'+answer_choice
row['answer'] = choices[np.argmax(row['multiple_choice_scores'])]
data.append(row)
return Dataset.from_list(data)
elif task == 'dateunder':
data = []
choices = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
for row in load_dataset('tasksource/bigbench', 'date_understanding', split='validation'):
row = dict(row)
answer_choice = '\n'.join([ '{}) {}'.format(l, t) for l, t in zip(choices, row['multiple_choice_targets'])])
row['question'] = row['inputs']+'\n'+answer_choice
row['answer'] = choices[np.argmax(row['multiple_choice_scores'])]
data.append(row)
return Dataset.from_list(data)
elif task == 'csqa':
data = []
for row in load_dataset('tau/commonsense_qa', split='validation'):
row = dict(row)
answer_choice = '\n'.join([ '{}) {}'.format(l, t) for l, t in zip(row['choices']['label'], row['choices']['text'])])
row['question'] = row['question']+'\n'+answer_choice
row['answer'] = row['answerKey']
data.append(row)
return Dataset.from_list(data)
elif task == 'sports':
data = []
for row in load_dataset('tasksource/bigbench',
'sports_understanding',
split='validation',
trust_remote_code=True
):
row = dict(row)
row['question'] = row['inputs'].replace('Determine whether the following statement or statements are plausible or implausible:','').replace('Statement: ','').replace('Plausible/implausible?','').strip()
row['answer'] = 'yes' if row['targets'][0] == 'plausible' else 'no'
data.append(row)
return Dataset.from_list(data)
elif task == 'task280':
with open('data/task280_stereoset_classification_stereotype_type.json', 'r') as f:
raw_data = json.load(f)
data = []
for row in raw_data['Instances'][:1000]:
data.append({
'question': row['input'],
'answer': row['output'][0].lower()
})
return Dataset.from_list(data)
elif task == 'conll2003':
data = []
for row in load_dataset("eriktks/conll2003", split="test"):
row = dict(row)
question = ' '.join(row['tokens'])
row['question'] = question
row['answer'] = row['ner_tags']
data.append(row)
return Dataset.from_list(data)
elif task == 'api-bank':
data = []
with open('API-Bank/test.jsonl', 'r') as f:
for line in f:
payload = json.loads(line)
data.append(payload)
return data
raise ValueError("%s is not in supported list" % task)
def load_prompting_fn(task, prompt_style):
if task == 'gsm8k':
from tasks.gsm8k import (
JSONPrompter,
XMLPrompter,
TextPrompter,
YAMLPrompter,
StructJSONPrompter,
OAIStructPrompter
)
formatter = {
'json': JSONPrompter,
'yaml': YAMLPrompter,
'xml': XMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter,
'struct-v2': OAIStructPrompter
}
if task == 'math':
from tasks.math import TextPrompter, YAMLPrompter, XMLPrompter, JSONPrompter
formatter = {
'json': JSONPrompter,
'yaml': YAMLPrompter,
'xml': XMLPrompter,
'text': TextPrompter
}
elif task == 'multiarith':
from tasks.gsm8k import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter, StructJSONPrompter
formatter = {
'json': JSONPrompter,
'yaml': YAMLPrompter,
'xml': XMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter
}
elif task == 'ddxplus':
from tasks.ddxplus import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter, StructJSONPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter
}
elif task == 'multifin':
from tasks.multifin import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter, StructJSONPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter
}
elif task == 'csqa':
from tasks.multifin import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter
from tasks.csqa import StructJSONPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter
}
elif task == 'shuffleobj':
from tasks.multifin import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter
from tasks.shuffleobj import StructJSONPrompter, OAIStructPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter,
'struct-v2': OAIStructPrompter
}
elif task == 'dateunder':
from tasks.multifin import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter
from tasks.dateunder import StructJSONPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter
}
elif task == 'lastletter':
from tasks.lastletter import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter, StructJSONPrompter, OAIStructPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter,
'struct-v2': OAIStructPrompter
}
elif task == 'sports':
from tasks.sports import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter, StructJSONPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter
}
elif task == 'task280':
from tasks.task280 import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter, StructJSONPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter
}
elif task == 'conll2003':
from tasks.conll import JSONPrompter, XMLPrompter, TextPrompter, YAMLPrompter, StructJSONPrompter
formatter = {
'json': JSONPrompter,
'xml': XMLPrompter,
'yaml': YAMLPrompter,
'text': TextPrompter,
'struct': StructJSONPrompter
}
elif task == 'api-bank':
from tasks.lastletter import JSONPrompter
# from
formatter = {
'json': JSONPrompter
}
return formatter[prompt_style]