-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_processing.py
91 lines (71 loc) · 3.56 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
Importing all necessary packages
"""
import argparse
import numpy as np
import os
import cv2
def edge(img):
"""
Returns the edges of the image (Canny detection)
"""
image = cv2.Canny(img, 100, 200)
return image
def hist_eq(img):
"""
Returns the adaptive histogram equalization of an grayscale image
"""
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Converting BRG image to Grayscale image
clahe = cv2.createCLAHE(clipLimit = 2.0, tileGridSize = (5, 5))
clahe_output = clahe.apply(img_gray)
return clahe_output
def mask_image(img):
"""
Returns the mask of the input image with black background
"""
m = np.zeros(img.shape[:2], dtype = "uint8") # returns pure black image
(w, h) = (int(img.shape[1] / 2), int(img.shape[0] / 2))
cv2.circle(m, (w, h), 70, 255, -1)
masked_img = cv2.bitwise_and(img, img, mask = m) # masking the coin image with the black image
return masked_img
def preprocess(img):
"""
Return the circles detected in an image by Hough Circle Transform
"""
fraction = 300/max(img.shape[0:2])
img_resize = cv2.resize(img, None, fx = fraction, fy = fraction) # Resizing the image
img_gray = cv2.cvtColor(img_resize, cv2.COLOR_BGR2GRAY)
img_blur = cv2.blur(img_gray, (5, 5)) # Performs blurring with a kernel size (5,5)
coins = cv2.HoughCircles(img_blur, cv2.HOUGH_GRADIENT, 1.2, 30, param2=35, minRadius=20, maxRadius=60) # Performs Hough circle transform
coins = (np.round(coins[0, :]) / fraction).astype("int") # Rounding the decimal values to integer
return coins
if __name__ == '__main__':
"""
Using command line arguments for inputting folder name,
coin denomination, format, szie and outout path of a file
"""
parser = argparse.ArgumentParser(description = "User input for image preprocessing")
parser.add_argument("--folder", help = "Input image name")
parser.add_argument("--coin_type", type = str, help = "Input image name")
parser.add_argument("--format", default = "png", help = "output image format")
parser.add_argument("--size", default = "150", type = int, help = "dimension of output images")
parser.add_argument("--output_file", help="output Destination filename")
args = parser.parse_args()
file_name = os.listdir(args.folder) # Reading the folder name in a given file path
for i,image in enumerate(file_name):
img = cv2.imread(args.folder +"/"+ image) # Reads images one by one in a folder
coins = preprocess(img)
radius = np.amax(coins, 0)[2] # Returns the maximum in an array along the rows
for coin, (x, y, r) in enumerate(coins):
each_coin = img[y - radius:y + radius, x - radius:x + radius] # Cropping out each coins detected in an image
if each_coin.shape[0] ==0 or each_coin.shape[1] == 0: # Not taking the False positive coins detected in the image
pass
else:
each_coin = cv2.resize(each_coin, (args.size, args.size))
coin_name = "{}_{}_{}.{}".format(i, args.coin_type, coin, args.format) # Gives different name for each image
output_path = os.path.join(args.output_file, coin_name)
# Preprocessing of the image
each_coin_mask = mask_image(each_coin) # Return mask of the input image with black background
each_coin = hist_eq(each_coin_mask) # Adaptive Histogram equalization
each_coin = edge(each_coin) # Finding Edges
cv2.imwrite(output_path,each_coin) # Saves the image in a given folder path