forked from plotly/dash-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdash-global-cache.py
140 lines (117 loc) · 3.77 KB
/
dash-global-cache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import copy
import dash
from dash.dependencies import Input, Output
import dash_html_components as html
import dash_core_components as dcc
import datetime
from flask_caching import Cache
import numpy as np
import os
import pandas as pd
import time
app = dash.Dash(__name__)
CACHE_CONFIG = {
# try 'filesystem' if you don't want to setup redis
'CACHE_TYPE': 'redis',
'CACHE_REDIS_URL': os.environ.get('REDIS_URL', 'localhost:6379')
}
cache = Cache()
cache.init_app(app.server, config=CACHE_CONFIG)
N = 100
df = pd.DataFrame({
'category': (
(['apples'] * 5 * N) +
(['oranges'] * 10 * N) +
(['figs'] * 20 * N) +
(['pineapples'] * 15 * N)
)
})
df['x'] = np.random.randn(len(df['category']))
df['y'] = np.random.randn(len(df['category']))
app.layout = html.Div([
dcc.Dropdown(
id='dropdown',
options=[{'label': i, 'value': i} for i in df['category'].unique()],
value='apples'
),
html.Div([
html.Div(dcc.Graph(id='graph-1'), className="six columns"),
html.Div(dcc.Graph(id='graph-2'), className="six columns"),
], className="row"),
html.Div([
html.Div(dcc.Graph(id='graph-3'), className="six columns"),
html.Div(dcc.Graph(id='graph-4'), className="six columns"),
], className="row"),
# hidden signal value
html.Div(id='signal', style={'display': 'none'})
])
# perform expensive computations in this "global store"
# these computations are cached in a globally available
# redis memory store which is available across processes
# and for all time.
@cache.memoize()
def global_store(value):
# simulate expensive query
print('Computing value with {}'.format(value))
time.sleep(5)
return df[df['category'] == value]
def generate_figure(value, figure):
fig = copy.deepcopy(figure)
filtered_dataframe = global_store(value)
fig['data'][0]['x'] = filtered_dataframe['x']
fig['data'][0]['y'] = filtered_dataframe['y']
fig['layout'] = {'margin': {'l': 20, 'r': 10, 'b': 20, 't': 10}}
return fig
@app.callback(Output('signal', 'children'), [Input('dropdown', 'value')])
def compute_value(value):
# compute value and send a signal when done
global_store(value)
return value
@app.callback(Output('graph-1', 'figure'), [Input('signal', 'children')])
def update_graph_1(value):
# generate_figure gets data from `global_store`.
# the data in `global_store` has already been computed
# by the `compute_value` callback and the result is stored
# in the global redis cached
return generate_figure(value, {
'data': [{
'type': 'scatter',
'mode': 'markers',
'marker': {
'opacity': 0.5,
'size': 14,
'line': {'border': 'thin darkgrey solid'}
}
}]
})
@app.callback(Output('graph-2', 'figure'), [Input('signal', 'children')])
def update_graph_2(value):
return generate_figure(value, {
'data': [{
'type': 'scatter',
'mode': 'lines',
'line': {'shape': 'spline', 'width': 0.5},
}]
})
@app.callback(Output('graph-3', 'figure'), [Input('signal', 'children')])
def update_graph_3(value):
return generate_figure(value, {
'data': [{
'type': 'histogram2d',
}]
})
@app.callback(Output('graph-4', 'figure'), [Input('signal', 'children')])
def update_graph_4(value):
return generate_figure(value, {
'data': [{
'type': 'histogram2dcontour',
}]
})
# Dash CSS
app.css.append_css({
"external_url": "https://codepen.io/chriddyp/pen/bWLwgP.css"})
# Loading screen CSS
app.css.append_css({
"external_url": "https://codepen.io/chriddyp/pen/brPBPO.css"})
if __name__ == '__main__':
app.run_server(debug=True, processes=6)