-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy paththermalbalance.cc
403 lines (338 loc) · 17.5 KB
/
thermalbalance.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#include "thermalbalance.h"
#include <gsl/gsl_errno.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_roots.h>
#include <algorithm>
#include <cmath>
#include <ranges>
#include <vector>
#include "artisoptions.h"
#include "atomic.h"
#include "constants.h"
#include "globals.h"
#include "grid.h"
#include "kpkt.h"
#include "ltepop.h"
#include "macroatom.h"
#include "nonthermal.h"
#include "radfield.h"
#include "ratecoeff.h"
#include "rpkt.h"
#include "sn3d.h"
namespace {
struct TeSolutionParams {
double t_current;
int nonemptymgi;
HeatingCoolingRates *heatingcoolingrates;
const std::vector<double> *bfheatingcoeffs;
};
struct BFHeatingIntegralParams {
double nu_edge;
int nonemptymgi;
float T_R;
const float *photoion_xs;
};
auto integrand_bfheatingcoeff_custom_radfield(const double nu, void *const voidparas) -> double
// Integrand to calculate the rate coefficient for bfheating using gsl integrators.
{
const auto *const params = static_cast<const BFHeatingIntegralParams *>(voidparas);
const int nonemptymgi = params->nonemptymgi;
const double nu_edge = params->nu_edge;
const float T_R = params->T_R;
// const double Te_TR_factor = params->Te_TR_factor; // = sqrt(T_e/T_R) * sahafac(Te) / sahafac(TR)
const float sigma_bf = photoionization_crosssection_fromtable(params->photoion_xs, nu_edge, nu);
// const auto T_e = grid::get_Te(nonemptymgi);
// return sigma_bf * (1 - nu_edge/nu) * radfield::radfield(nu,nonemptymgi) * (1 - Te_TR_factor * exp(-HOVERKB * nu
// / T_e));
return sigma_bf * (1 - nu_edge / nu) * radfield::radfield(nu, nonemptymgi) * (1 - exp(-HOVERKB * nu / T_R));
}
auto calculate_bfheatingcoeff(const int element, const int ion, const int level, const int phixstargetindex,
const int nonemptymgi) -> double {
double error = 0.;
const double epsrel = 1e-3;
const double epsrelwarning = 1e-1;
const double epsabs = 0.;
// const int upperionlevel = get_phixsupperlevel(element, ion, level, phixstargetindex);
// const double E_threshold = epsilon(element, ion + 1, upperionlevel) - epsilon(element, ion, level);
const double E_threshold = get_phixs_threshold(element, ion, level, phixstargetindex);
const double nu_threshold = ONEOVERH * E_threshold;
const double nu_max_phixs = nu_threshold * last_phixs_nuovernuedge; // nu of the uppermost point in the phixs table
// const auto T_e = grid::get_Te(nonemptymgi);
// const double T_R = grid::get_TR(nonemptymgi);
// const double sf_Te = calculate_sahafact(element,ion,level,upperionlevel,T_e,E_threshold);
// const double sf_TR = calculate_sahafact(element,ion,level,upperionlevel,T_R,E_threshold);
const BFHeatingIntegralParams intparas = {.nu_edge = nu_threshold,
.nonemptymgi = nonemptymgi,
.T_R = grid::get_TR(nonemptymgi),
.photoion_xs = get_phixs_table(element, ion, level)};
// intparas.Te_TR_factor = sqrt(T_e/T_R) * sf_Te / sf_TR;
double bfheating = 0.;
gsl_error_handler_t *previous_handler = gsl_set_error_handler(gsl_error_handler_printout);
const int status = integrator<integrand_bfheatingcoeff_custom_radfield>(
intparas, nu_threshold, nu_max_phixs, epsabs, epsrel, GSL_INTEG_GAUSS61, &bfheating, &error);
if (status != 0 && (status != 18 || (error / bfheating) > epsrelwarning)) {
printout(
"bf_heating integrator gsl warning %d. modelgridindex %d Z=%d ionstage %d lower %d phixstargetindex %d "
"integral %g error %g\n",
status, grid::get_mgi_of_nonemptymgi(nonemptymgi), get_atomicnumber(element), get_ionstage(element, ion), level,
phixstargetindex, bfheating, error);
}
gsl_set_error_handler(previous_handler);
bfheating *= FOURPI * get_phixsprobability(element, ion, level, phixstargetindex);
return bfheating;
}
auto get_heating_ion_coll_deexc(const int nonemptymgi, const int element, const int ion, const double T_e,
const double nne) -> double {
double C_deexc = 0.;
const int nlevels = get_nlevels(element, ion);
for (int level = 0; level < nlevels; level++) {
const double nnlevel = get_levelpop(nonemptymgi, element, ion, level);
const double epsilon_level = epsilon(element, ion, level);
// Collisional heating: deexcitation to same ionization stage
const int ndowntrans = get_ndowntrans(element, ion, level);
const auto *const leveldowntranslist = get_downtranslist(element, ion, level);
for (int i = 0; i < ndowntrans; i++) {
const auto &downtransition = leveldowntranslist[i];
const int lower = downtransition.targetlevelindex;
const double epsilon_trans = epsilon_level - epsilon(element, ion, lower);
const double C = nnlevel *
col_deexcitation_ratecoeff(T_e, nne, epsilon_trans, element, ion, level, downtransition) *
epsilon_trans;
C_deexc += C;
}
}
return C_deexc;
}
// Calculate the heating rates for a given cell. Results are returned via the elements of the heatingrates data
// structure.
void calculate_heating_rates(const int nonemptymgi, const double T_e, const double nne,
HeatingCoolingRates &heatingcoolingrates, const std::vector<double> &bfheatingcoeffs) {
double C_deexc = 0.;
// double C_recomb = 0.;
double bfheating = 0.;
double ffheating = 0.;
for (int element = 0; element < get_nelements(); element++) {
const int nions = get_nions(element);
if constexpr (DIRECT_COL_HEAT) {
for (int ion = 0; ion < nions; ion++) {
C_deexc += get_heating_ion_coll_deexc(nonemptymgi, element, ion, T_e, nne);
}
}
// Collisional heating: recombination to lower ionization stage (not included)
// ------------------------------------------------------------
// Bound-free heating (renormalised analytical calculation)
// --------------------------------------------------------
// We allow bound free-transitions only if there is a higher ionisation stage
// left in the model atom to match the bound-free absorption in the rpkt routine.
// There this condition is needed as we can only ionise to existing ionisation
// stage even if there would be further ionisation stages in nature which
// are not included in the model atom.
for (int ion = 0; ion < nions - 1; ion++) {
const int nbflevels = get_nlevels_ionising(element, ion);
for (int level = 0; level < nbflevels; level++) {
const double nnlevel = get_levelpop(nonemptymgi, element, ion, level);
bfheating += nnlevel * bfheatingcoeffs[get_uniquelevelindex(element, ion, level)];
}
}
}
// Free-free heating (from estimators)
ffheating = globals::ffheatingestimator[nonemptymgi];
if constexpr (DIRECT_COL_HEAT) {
heatingcoolingrates.heating_collisional = C_deexc;
} else {
// Collisional heating (from estimators)
heatingcoolingrates.heating_collisional = globals::colheatingestimator[nonemptymgi]; // C_deexc + C_recomb;
}
heatingcoolingrates.heating_bf = bfheating;
heatingcoolingrates.heating_ff = ffheating;
}
// Thermal balance equation on which we have to iterate to get T_e
auto T_e_eqn_heating_minus_cooling(const double T_e, void *paras) -> double {
const TeSolutionParams *const params = static_cast<TeSolutionParams *>(paras);
const auto nonemptymgi = params->nonemptymgi;
const double t_current = params->t_current;
auto &heatingcoolingrates = *params->heatingcoolingrates;
if constexpr (!LTEPOP_EXCITATION_USE_TJ) {
if (std::abs((T_e / grid::get_Te(nonemptymgi)) - 1.) > 0.1) {
grid::set_Te(nonemptymgi, T_e);
for (int element = 0; element < get_nelements(); element++) {
if (!elem_has_nlte_levels(element)) {
// recalculate the Gammas using the current level populations
const int nions = get_nions(element);
for (int ion = 0; ion < nions - 1; ion++) {
globals::gammaestimator[get_ionestimindex_nonemptymgi(nonemptymgi, element, ion)] =
calculate_iongamma_per_gspop(nonemptymgi, element, ion);
}
}
}
}
}
// Set new T_e guess for the current cell and update populations
grid::set_Te(nonemptymgi, T_e);
calculate_ion_balance_nne(nonemptymgi);
const auto nne = grid::get_nne(nonemptymgi);
// Then calculate heating and cooling rates
kpkt::calculate_cooling_rates(nonemptymgi, &heatingcoolingrates);
calculate_heating_rates(nonemptymgi, T_e, nne, heatingcoolingrates, *params->bfheatingcoeffs);
const auto modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
const auto ntlepton_frac_heating = nonthermal::get_nt_frac_heating(modelgridindex);
const auto ntlepton_dep = nonthermal::get_deposition_rate_density(nonemptymgi);
const auto ntalpha_frac_heating = 1.;
const auto ntalpha_dep = heatingcoolingrates.dep_alpha;
heatingcoolingrates.heating_dep = ntlepton_dep * ntlepton_frac_heating + ntalpha_dep * ntalpha_frac_heating;
heatingcoolingrates.dep_frac_heating =
(ntalpha_dep > 0) ? heatingcoolingrates.heating_dep / (ntlepton_dep + ntalpha_dep) : ntlepton_frac_heating;
// Adiabatic cooling term
const double nntot = get_nnion_tot(nonemptymgi) + nne;
const double p = nntot * KB * T_e; // pressure in [erg/cm^3]
const double volumetmin = grid::get_modelcell_assocvolume_tmin(modelgridindex);
const double dV = 3 * volumetmin / pow(globals::tmin, 3) * pow(t_current, 2); // really dV/dt
const double V = volumetmin * pow(t_current / globals::tmin, 3);
heatingcoolingrates.cooling_adiabatic = p * dV / V;
const double total_heating_rate = heatingcoolingrates.heating_ff + heatingcoolingrates.heating_bf +
heatingcoolingrates.heating_collisional + heatingcoolingrates.heating_dep;
const double total_coolingrate = heatingcoolingrates.cooling_ff + heatingcoolingrates.cooling_fb +
heatingcoolingrates.cooling_collisional + heatingcoolingrates.cooling_adiabatic;
return total_heating_rate - total_coolingrate;
}
} // anonymous namespace
auto get_bfheatingcoeff_ana(const int element, const int ion, const int level, const int phixstargetindex,
const double T_R, const double W) -> double {
// The correction factor for stimulated emission in gammacorr is set to its
// LTE value. Because the T_e dependence of gammacorr is weak, this correction
// correction may be evaluated at T_R!
assert_always(USE_LUT_BFHEATING);
double bfheatingcoeff = 0.;
const int lowerindex = floor(log(T_R / MINTEMP) / T_step_log);
if (lowerindex < TABLESIZE - 1) {
const int upperindex = lowerindex + 1;
const double T_lower = MINTEMP * exp(lowerindex * T_step_log);
const double T_upper = MINTEMP * exp(upperindex * T_step_log);
const double f_upper = globals::bfheating_coeff[get_bflutindex(upperindex, element, ion, level, phixstargetindex)];
const double f_lower = globals::bfheating_coeff[get_bflutindex(lowerindex, element, ion, level, phixstargetindex)];
bfheatingcoeff = (f_lower + (f_upper - f_lower) / (T_upper - T_lower) * (T_R - T_lower));
} else {
bfheatingcoeff = globals::bfheating_coeff[get_bflutindex(TABLESIZE - 1, element, ion, level, phixstargetindex)];
}
return W * bfheatingcoeff;
}
// depends only the radiation field - no dependence on T_e or populations
void calculate_bfheatingcoeffs(int nonemptymgi, std::vector<double> &bfheatingcoeffs) {
bfheatingcoeffs.resize(get_includedlevels());
const double minelfrac = 0.01;
for (int element = 0; element < get_nelements(); element++) {
if (grid::get_elem_abundance(nonemptymgi, element) <= minelfrac && !USE_LUT_BFHEATING) {
printout("skipping Z=%d X=%g, ", get_atomicnumber(element), grid::get_elem_abundance(nonemptymgi, element));
}
const int nions = get_nions(element);
for (int ion = 0; ion < nions; ion++) {
const int nlevels = get_nlevels(element, ion);
const auto levels = std::ranges::iota_view{0, nlevels};
std::for_each(EXEC_PAR levels.begin(), levels.end(), [&](const int level) {
double bfheatingcoeff = 0.;
if (grid::get_elem_abundance(nonemptymgi, element) > minelfrac || USE_LUT_BFHEATING) {
const auto nphixstargets = get_nphixstargets(element, ion, level);
for (int phixstargetindex = 0; phixstargetindex < nphixstargets; phixstargetindex++) {
if constexpr (!USE_LUT_BFHEATING) {
bfheatingcoeff += calculate_bfheatingcoeff(element, ion, level, phixstargetindex, nonemptymgi);
} else {
// The correction factor for stimulated emission in gammacorr is set to its
// LTE value. Because the T_e dependence of gammacorr is weak, this correction
// correction may be evaluated at T_R!
const double T_R = grid::get_TR(nonemptymgi);
const double W = grid::get_W(nonemptymgi);
bfheatingcoeff += get_bfheatingcoeff_ana(element, ion, level, phixstargetindex, T_R, W);
}
}
assert_always(std::isfinite(bfheatingcoeff));
if constexpr (USE_LUT_BFHEATING) {
const int index_in_groundlevelcontestimator =
globals::elements[element].ions[ion].levels[level].closestgroundlevelcont;
if (index_in_groundlevelcontestimator >= 0) {
bfheatingcoeff *= globals::bfheatingestimator[(nonemptymgi * globals::nbfcontinua_ground) +
index_in_groundlevelcontestimator];
}
}
}
bfheatingcoeffs[get_uniquelevelindex(element, ion, level)] = bfheatingcoeff;
});
}
}
}
void call_T_e_finder(const int nonemptymgi, const double t_current, const double T_min, const double T_max,
HeatingCoolingRates &heatingcoolingrates, const std::vector<double> &bfheatingcoeffs) {
const int modelgridindex = grid::get_mgi_of_nonemptymgi(nonemptymgi);
const double T_e_old = grid::get_Te(nonemptymgi);
printout("Finding T_e in cell %d at timestep %d...", modelgridindex, globals::timestep);
TeSolutionParams paras = {.t_current = t_current,
.nonemptymgi = nonemptymgi,
.heatingcoolingrates = &heatingcoolingrates,
.bfheatingcoeffs = &bfheatingcoeffs};
gsl_function find_T_e_f = {.function = &T_e_eqn_heating_minus_cooling, .params = ¶s};
double thermalmin = T_e_eqn_heating_minus_cooling(T_min, find_T_e_f.params);
double thermalmax = T_e_eqn_heating_minus_cooling(T_max, find_T_e_f.params);
if (!std::isfinite(thermalmin) || !std::isfinite(thermalmax)) {
printout(
"[abort request] call_T_e_finder: non-finite results in modelcell %d (T_R=%g, W=%g). T_e forced to be "
"MINTEMP\n",
modelgridindex, grid::get_TR(nonemptymgi), grid::get_W(nonemptymgi));
thermalmax = thermalmin = -1;
}
double T_e{NAN};
// Check whether the thermal balance equation has a root in [T_min,T_max]
if (thermalmin * thermalmax < 0) {
// If it has, then solve for the root T_e
// one-dimensional gsl root solver, bracketing type
gsl_root_fsolver *T_e_solver = gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
gsl_root_fsolver_set(T_e_solver, &find_T_e_f, T_min, T_max);
const int maxit = 100;
int status = 0;
for (int iternum = 0; iternum < maxit; iternum++) {
gsl_root_fsolver_iterate(T_e_solver);
T_e = gsl_root_fsolver_root(T_e_solver);
const double T_e_min = gsl_root_fsolver_x_lower(T_e_solver);
const double T_e_max = gsl_root_fsolver_x_upper(T_e_solver);
status = gsl_root_test_interval(T_e_min, T_e_max, 0, TEMPERATURE_SOLVER_ACCURACY);
// printout("iter %d, T_e interval [%g, %g], guess %g, status %d\n", iternum, T_e_min, T_e_max, T_e, status);
if (status != GSL_CONTINUE) {
printout("after %d iterations, T_e = %g K, interval [%g, %g]\n", iternum + 1, T_e, T_e_min, T_e_max);
break;
}
}
if (status == GSL_CONTINUE) {
printout("[warning] call_T_e_finder: T_e did not converge within %d iterations\n", maxit);
}
gsl_root_fsolver_free(T_e_solver);
}
// Quick solver style: works if we can assume that there is either one or no
// solution on [MINTEMP.MAXTEMP] (check that by doing a plot of heating-cooling vs. T_e)
else if (thermalmax < 0) {
// Thermal balance equation always negative ===> T_e = T_min
T_e = MINTEMP;
printout(
"[warning] call_T_e_finder: cooling bigger than heating at lower T_e boundary %g in modelcell %d "
"(T_R=%g,W=%g). T_e forced to be MINTEMP\n",
MINTEMP, modelgridindex, grid::get_TR(nonemptymgi), grid::get_W(nonemptymgi));
} else {
// Thermal balance equation always negative ===> T_e = T_max
T_e = MAXTEMP;
printout(
"[warning] call_T_e_finder: heating bigger than cooling over the whole T_e range [%g,%g] in modelcell %d "
"(T_R=%g,W=%g). T_e forced to be MAXTEMP\n",
MINTEMP, MAXTEMP, modelgridindex, grid::get_TR(nonemptymgi), grid::get_W(nonemptymgi));
}
if (T_e > 2 * T_e_old) {
T_e = 2 * T_e_old;
printout("use T_e damping in cell %d\n", modelgridindex);
T_e = std::min(T_e, MAXTEMP);
} else if (T_e < 0.5 * T_e_old) {
T_e = 0.5 * T_e_old;
printout("use T_e damping in cell %d\n", modelgridindex);
T_e = std::max(T_e, MINTEMP);
}
grid::set_Te(nonemptymgi, T_e);
// this call with make sure heating/cooling rates and populations are updated for the final T_e
// in case T_e got modified after the T_e solver finished
T_e_eqn_heating_minus_cooling(T_e, find_T_e_f.params);
}