-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpgds.pyx
595 lines (486 loc) · 22 KB
/
pgds.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# cython: boundscheck = False
# cython: initializedcheck = False
# cython: wraparound = False
# cython: cdivision = True
# cython: language_level = 3
import sys
import numpy as np
import numpy.random as rn
import tensorly as tl
cimport numpy as np
from libc.math cimport log1p
from cython.parallel import parallel, prange
from apf.base.apf cimport APF
from apf.base.sample cimport _sample_gamma, _sample_dirichlet, _sample_crt, _sample_lnbeta
from apf.base.cyutils cimport _sum_double_vec, _dot_vec
from apf.base.mcmc_model_parallel import exit_if
cdef extern from "gsl/gsl_rng.h" nogil:
ctypedef struct gsl_rng:
pass
cdef extern from "gsl/gsl_randist.h" nogil:
void gsl_ran_multinomial(gsl_rng * r,
size_t K,
unsigned int N,
const double p[],
unsigned int n[])
cdef class PGDS(APF):
cdef:
int time_mode, n_timesteps, stationary
double gam, beta, tau
double[::1] nu_K, xi_K, delta_T, b_T, L_zeta_T, lnq_K
double[:,::1] Theta_TK, shp_KK, Pi_KK
int[:,:,::1] L_TKK
int[:,::1] H_KK, L_TK, L_KK
def __init__(self, tuple data_shp, tuple core_shp, double gam=10.,
int time_mode=0, int stationary=0, double tau=1.0,
double eps=0.1, int binary=0,
object seed=None, object n_threads=None):
# All factor matrices must be Dirichlet, except Theta_TK
mtx_is_dirichlet = list(range(len(data_shp)))
mtx_is_dirichlet.remove(time_mode)
super(PGDS, self).__init__(data_shp=data_shp,
core_shp=core_shp,
eps=eps,
binary=binary,
mtx_is_dirichlet=mtx_is_dirichlet,
seed=seed,
n_threads=n_threads)
# Missing data cannot be marginalized out in this model.
self.impute_Y_Q = 1
self.impute_Y_M[:] = 1
# Make sure core elements are initialized to zero.
# In Tucker decomposition, they will be updated, but in
# CP-decomposition they are 1, by definition.
self.core_Q[:] = 1.
# Params
self.time_mode = self.param_list['time_mode'] = time_mode
self.stationary = self.param_list['stationary'] = stationary
self.tau = self.param_list['tau'] = tau
self.gam = self.param_list['gam'] = gam
self.n_timesteps = T = data_shp[time_mode]
K = self.core_dims_M[time_mode]
# State variables
self.beta = 1.
self.nu_K = np.ones(K)
self.xi_K = np.ones(K)
self.Pi_KK = np.ones((K, K))
self.b_T = np.ones(T)
self.Theta_TK = np.ones((T, K))
self.delta_T = np.ones(T)
# Auxiliary variables and data structures
self.L_TKK = np.zeros((T, K, K), dtype=np.int32)
self.L_KK = np.zeros((K, K), dtype=np.int32)
self.L_TK = np.zeros((T, K), dtype=np.int32)
self.L_zeta_T = np.zeros(T)
self.shp_KK = np.zeros((K, K))
self.H_KK = np.zeros((K, K), dtype=np.int32)
self.lnq_K = np.zeros(K)
cdef list _get_variables(self):
"""
Return variable names, values, and sampling methods for testing.
MUST BE IN TOPOLOGICAL ORDER!
"""
variables = [('beta', self.beta, self._update_beta),
('nu_K', self.nu_K, self._update_nu_K_and_xi_K),
('xi_K', self.xi_K[0], self._dummy_update),
('Pi_KK', self.Pi_KK, self._update_Pi_KK),
('b_T', self.b_T, self._update_b_T),
('Theta_TK', self.Theta_TK, self._update_Theta_TK),
('delta_T', self.delta_T, self._update_delta_T),
('mtx_MKD', self.mtx_MKD, self._update_mtx_MKD),
('core_Q', self.core_Q, self._update_core_Q),
('Y_MKD', self.Y_MKD, self._update_Y_PQ),
('Y_Q', self.Y_Q, self._dummy_update),
('L_TKK', self.L_TKK, self._update_L_TKK)]
return variables
def set_state(self, state):
for key, val, _ in self._get_variables():
if key in state.keys():
state_val = state[key]
if key == 'beta':
self.beta = state_val
elif key == 'xi_K':
self.xi_K[:] = state_val
else:
assert val.shape == state_val.shape
for idx in np.ndindex(val.shape):
val[idx] = state_val[idx]
self._compute_mtx_KT()
self._update_cache()
cdef void _initialize_state(self, dict state={}):
"""
Initialize internal state.
"""
for key, val, update_func in self._get_variables():
if key in state.keys():
state_val = state[key]
if key == 'beta':
self.beta = state_val
elif key == 'xi_K':
self.xi_K[:] = state_val
else:
if np.isscalar(state_val):
assert NotImplementedError
assert val.shape == state_val.shape
for idx in np.ndindex(val.shape):
val[idx] = state_val[idx]
else:
output = update_func(self, update_mode=self._INITIALIZE_MODE)
exit_if(output, 'updating %s' % key)
self._compute_mtx_KT()
self._update_cache()
def generate_state(self):
self._generate_state()
self._generate_data()
return dict(self.get_state())
cdef void _generate_state(self):
"""
Generate internal state.
"""
for key, _, update_func in self._get_variables():
if key not in ['Y_MKD', 'Y_Q', 'L_TKK']:
update_func(self, update_mode=self._GENERATE_MODE)
cdef void _generate_data(self):
self._update_Y_PQ(update_mode=self._GENERATE_MODE)
self._update_L_TKK(update_mode=self._GENERATE_MODE)
cdef double[:,::1] _forecast_Theta_TK(self, int n_timesteps):
cdef:
np.npy_intp K, t, k
double rte_t, shp_tk
double[::1] b_forecast_T
double[:,::1] Theta_forecast_TK
assert self.stationary # if not stationary b_forecast_T is time-dependent
b_forecast_T = np.repeat(self.b_T[0], repeats=n_timesteps)
K = self.Theta_TK.shape[1]
Theta_forecast_TK = np.zeros((n_timesteps, K))
for t in range(n_timesteps):
rte_t = self.tau * b_forecast_T[t]
for k in prange(K, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
if t == 0:
shp_tk = self.tau * _dot_vec(self.Theta_TK[self.n_timesteps-1], self.Pi_KK[:, k])
else:
shp_tk = self.tau * _dot_vec(Theta_forecast_TK[t-1], self.Pi_KK[:, k])
# Theta_forecast_TK[t, k] = _sample_gamma(rng, shp_tk, 1./rte_t)
Theta_forecast_TK[t, k] = shp_tk / rte_t
return Theta_forecast_TK
def forecast_Theta_TK(self, n_timesteps=1):
return np.array(self._forecast_Theta_TK(n_timesteps))
def forecast(self, n_timesteps=1, n_samples=1, subs=()):
if not self.stationary:
raise NotImplementedError('Forecasting in non-stationary model not available.')
delta_T = np.repeat(self.delta_T[0], repeats=n_timesteps)
if n_samples == 1:
mtx = self._forecast_Theta_TK(n_timesteps) * delta_T[:, np.newaxis]
return self.decode(mtx=mtx, mode=self.time_mode, subs=subs)
else:
return np.array([self.forecast(n_timesteps=n_timesteps, n_samples=1, subs=subs) for _ in range(n_samples)])
cdef void _update_b_M(self, int update_mode):
"""There are no gamma-distributed factors in this model.
This overwrites the method from apf.pyx that updates the
rate hyperprior for any gamma-distributed factors.
"""
pass
cdef void _update_mtx_MKD(self, int update_mode):
cdef:
np.npy_intp m
for m in range(self.n_modes):
if m != self.time_mode:
self._update_mtx_m_KD(m, update_mode)
cdef void _compute_mtx_KT(self) nogil:
cdef:
int T, K, k, t
double[::1] mtx_K
double[:,::1] mtx_KT
T, K = self.Theta_TK.shape[:2]
mtx_K = self.mtx_MK[self.time_mode]; mtx_K[:] = 0
mtx_KT = self.mtx_MKD[self.time_mode]; mtx_KT[:] = 0
for k in prange(K, schedule='static', nogil=True):
for t in range(T):
mtx_KT[k, t] = self.delta_T[t] * self.Theta_TK[t, k]
mtx_K[k] += mtx_KT[k, t]
@property
def core_Q_prior(self):
"""
Returns the prior shape parameter for the core elements.
This is only called when the model is a Tucker decomposition.
The core elements indexed by a given dimension of the time mode
must sum to one. In the CP-decmoposition case, there is only one
core element per class; in this case, the core is stored as only
the super-diagonal of the core tensor, and all of those entries
are equal to 1.
This class inherits from apf.pyx which implements a gamma
distributed core tensor. Overwriting this property is mostly
for tidyness: the old property returns a shape and rate for
the gamma prior while this model imposes a Dirichlet prior.
"""
shp = np.ones(self.core_shp) * self.eps
return tl.unfold(shp, self.time_mode)
cdef void _update_core_Q(self, int update_mode):
cdef:
np.npy_intp K, k, tm
double[:,::1] shp_KQ_, core_KQ_
gsl_rng * rng
if len(self.core_shp) == 1:
self.core_Q[:] = 1.
else:
shp_KQ_ = self.core_Q_prior
core_KQ_ = np.zeros_like(shp_KQ_)
tm = self.time_mode
if update_mode == self._INFER_MODE:
Y_KQ_ = tl.unfold(np.reshape(self.Y_Q, self.core_shp), tm)
shp_KQ_ = np.add(shp_KQ_, Y_KQ_)
K = core_KQ_.shape[0]
for k in prange(K, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
_sample_dirichlet(rng, shp_KQ_[k], core_KQ_[k])
self.core_Q = tl.fold(core_KQ_, tm, self.core_shp).ravel()
cdef void _update_delta_T(self, int update_mode):
cdef:
np.npy_intp K, T, t
double prior_shp, prior_rte, shp, rte, shp_t, rte_t
double[:,::1] zeta_TK
double[::1] zeta_T
long[::1] Y_T
gsl_rng * rng
if update_mode == self._INITIALIZE_MODE:
self.delta_T[:] = 1
else:
if update_mode == self._INFER_MODE:
# Note that ONLY imputation of Y_T is currently supported.
T, K = self.Theta_TK.shape[0], self.Theta_TK.shape[1]
Y_T = np.sum(self.Y_MKD[self.time_mode, :K, :T], axis=0, dtype=np.int)
# In any future models that include per-mode rates that are not 1 should
# replace this line with the two below it.
zeta_T = np.sum(self.Theta_TK, axis=1)
# zeta_TK = self._compute_zeta_m_DK(self.time_mode)
# zeta_T = np.sum(np.multiply(self.Theta_TK, zeta_TK), axis=1)
prior_shp = prior_rte = self.eps
if self.stationary:
shp, rte = prior_shp, prior_rte
if update_mode == self._INFER_MODE:
shp += np.sum(Y_T)
rte += np.sum(zeta_T)
self.delta_T[:] = _sample_gamma(self.rng, shp, 1./rte)
else:
for t in prange(self.n_timesteps, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
shp_t, rte_t = prior_shp, prior_rte
if update_mode == self._INFER_MODE:
shp_t = shp_t + Y_T[t]
rte_t = rte_t + zeta_T[t]
self.delta_T[t] = _sample_gamma(rng, shp_t, 1./rte_t)
self._compute_mtx_KT()
cdef void _update_b_T(self, int update_mode):
cdef:
np.npy_intp t, K
double eps, tau, shp, rte, shp_t, rte_t, nu_
double[::1] Theta_T, shp_T
gsl_rng * rng
eps = self.eps
if update_mode == self._INITIALIZE_MODE:
self.b_T[:] = 1.
elif update_mode == self._GENERATE_MODE:
if self.stationary:
self.b_T[:] = _sample_gamma(self.rng, eps, 1./eps)
else:
for t in prange(self.n_timesteps, schedule='static', nogil=True):
self.b_T[t] = _sample_gamma(self.rng, eps, 1./eps)
elif update_mode == self._INFER_MODE:
tau = self.tau
Theta_T = np.sum(self.Theta_TK, axis=1)
shp_T = tau * np.sum(np.dot(self.Theta_TK, self.Pi_KK), axis=1)
nu_ = np.sum(self.nu_K)
if self.stationary:
shp = eps + tau * nu_ + np.sum(shp_T[:self.n_timesteps-1])
rte = eps + tau * np.sum(Theta_T)
self.b_T[:] = _sample_gamma(self.rng, shp, 1. / rte)
else:
for t in prange(self.n_timesteps, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
shp_t = eps + tau * nu_ if t == 0 else eps + shp_T[t-1]
rte_t = eps + tau * Theta_T[t]
self.b_T[t] = _sample_gamma(rng, shp_t, 1. / rte_t)
cdef void _update_Theta_TK(self, int update_mode):
"""
Theta_TK: Begins at t=1 and ends at t=T (self.n_timesteps, K)
b_T: Begins at t=1 and ends at t=T (self.n_timesteps,)
delta_T: Begins at t=1 and ends at t=T (self.n_timesteps, K)
Y_KT: Begins at t=1 and ends at t=T (K, self.n_timesteps)
L_TK: Begins at t=2 and ends at t=T+1 (self.n_timesteps, K)
zeta_TK: Begins at t=2 and ends at t=T+1 (self.n_timesteps, K)
"""
cdef:
np.npy_intp K, k, t
double shp_tk, rte_t, rte_tk
double[::1] Y_zeta_T
gsl_rng * rng
K = self.Theta_TK.shape[1]
if update_mode == self._INITIALIZE_MODE:
self.Theta_TK[:] = 1.
else:
if update_mode == self._INFER_MODE:
self._compute_L_zeta_T()
Y_zeta_T = self.delta_T
with nogil:
for t in range(self.n_timesteps):
rte_t = self.tau * self.b_T[t]
if update_mode == self._INFER_MODE:
rte_t = rte_t + Y_zeta_T[t] + self.L_zeta_T[t]
for k in prange(K, schedule='static'):
rng = self.rngs[self._get_thread()]
if t == 0:
shp_tk = self.tau * self.nu_K[k]
else:
shp_tk = self.tau * _dot_vec(self.Theta_TK[t-1], self.Pi_KK[:, k])
if update_mode == self._INFER_MODE:
shp_tk = shp_tk + self.Y_MKD[self.time_mode, k, t] + self.L_TK[t, k]
self.Theta_TK[t, k] = _sample_gamma(rng, shp_tk, 1./rte_t)
self._compute_mtx_KT()
cdef void _compute_L_zeta_T(self) nogil:
cdef:
np.npy_intp t
double m_zeta, tau
double[::1] Y_zeta_T
tau = self.tau
Y_zeta_T = self.delta_T
self.L_zeta_T[self.n_timesteps-1] = 0
for t in range(self.n_timesteps-2, -1, -1):
m_zeta = self.L_zeta_T[t+1] + Y_zeta_T[t+1]
self.L_zeta_T[t] = tau * log1p(m_zeta / (tau * self.b_T[t+1]))
cdef void _update_L_TKK(self, int update_mode):
cdef:
np.npy_intp K, t, k, k1, k2, tid
int l_tk, m_tk
double p_tk
long[:,::1] Y_KT
gsl_rng * rng
K = self.core_dims_M[self.time_mode]
Y_KT = self.Y_MKD[self.time_mode, :K, :self.n_timesteps]
self.L_TK[:] = 0
self.L_KK[:] = 0
self.L_TKK[:] = 0
for t in range(self.n_timesteps-2, -1, -1):
for k in prange(K, schedule='static', nogil=True):
tid = self._get_thread()
rng = self.rngs[tid]
for k2 in range(K):
self.L_TK[t+1, k] += self.L_TKK[t+1, k, k2]
m_tk = Y_KT[k, t+1] + self.L_TK[t+1, k]
if m_tk > 0:
for k1 in range(K):
self.P_XMQ[tid, 0, k1] = self.Theta_TK[t, k1] * self.Pi_KK[k1, k]
p_tk = _sum_double_vec(self.P_XMQ[tid, 0, :K])
l_tk = _sample_crt(rng, m_tk, self.tau * p_tk)
if l_tk > 0:
gsl_ran_multinomial(rng,
K,
l_tk,
&self.P_XMQ[tid, 0, 0],
&self.N_XMQ[tid, 0, 0])
for k1 in range(K):
self.L_TKK[t, k1, k] = self.N_XMQ[tid, 0, k1]
self.L_KK = np.sum(self.L_TKK, axis=0, dtype=np.int32)
self.L_TK = np.sum(self.L_TKK, axis=2, dtype=np.int32) # only necessary for t=0
cdef void _update_Pi_KK(self, int update_mode):
cdef:
np.npy_intp K, k, k2
gsl_rng * rng
K = self.core_dims_M[self.time_mode]
for k in prange(K, schedule='static', nogil=True):
rng = self.rngs[self._get_thread()]
self.shp_KK[k, k] = self.xi_K[k] * self.nu_K[k]
if update_mode == self._INFER_MODE:
self.shp_KK[k, k] += self.L_KK[k, k]
for k2 in range(K):
if k != k2:
self.shp_KK[k, k2] = self.nu_K[k] * self.nu_K[k2]
if update_mode == self._INFER_MODE:
self.shp_KK[k, k2] += self.L_KK[k, k2]
_sample_dirichlet(rng, self.shp_KK[k], self.Pi_KK[k])
cdef void _update_nu_K_and_xi_K(self, int update_mode):
cdef:
np.npy_intp K, k, k2
int m_k1, l_k1
double gam_k, beta, eps, tau, m_zeta, zeta_1, nu_, nu_k
double shp_k, rte_k, shp, rte, y_zeta_0
gsl_rng * rng
K = self.core_dims_M[self.time_mode]
gam_k = self.gam / K
beta = self.beta
eps = self.eps
rng = self.rng
if update_mode == self._GENERATE_MODE:
with nogil:
self.xi_K[:] = _sample_gamma(rng, eps, 1./eps)
for k in range(K):
self.nu_K[k] = _sample_gamma(rng, gam_k, 1./beta)
elif update_mode == self._INITIALIZE_MODE:
self.xi_K[:] = 1.
self.nu_K[:] = 1.
elif update_mode == self._INFER_MODE:
self._compute_L_zeta_T()
self._update_H_KK_and_lnq_K()
with nogil:
shp = rte = eps
for k in range(K):
shp += self.H_KK[k, k]
rte -= self.nu_K[k] * self.lnq_K[k]
self.xi_K[:] = _sample_gamma(rng, shp, 1./rte)
tau = self.tau
y_zeta_0 = self.delta_T[0]
m_zeta = self.L_zeta_T[0] + y_zeta_0
zeta_1 = tau * log1p(m_zeta / (tau * self.b_T[0]))
nu_ = _sum_double_vec(self.nu_K)
for k in range(K):
nu_k = self.nu_K[k]
nu_ -= nu_k
shp_k = gam_k
rte_k = beta
m_k1 = self.L_TK[0, k] + self.Y_MKD[self.time_mode, k, 0]
l_k1 = _sample_crt(rng, m_k1, tau * nu_k)
shp_k += l_k1
rte_k += zeta_1
shp_k += self.H_KK[k, k]
rte_k -= (self.xi_K[k] + nu_) * self.lnq_K[k]
for k2 in range(K):
if k2 != k:
shp_k += self.H_KK[k, k2] + self.H_KK[k2, k]
rte_k -= self.nu_K[k2] * self.lnq_K[k2]
self.nu_K[k] = _sample_gamma(rng, shp_k, 1./rte_k)
nu_ += self.nu_K[k]
cdef void _update_H_KK_and_lnq_K(self):
cdef:
np.npy_intp K, k, k2
double nu_, nu_k, xi_k, tmp
int[::1] L_K
gsl_rng * rng
K = self.core_dims_M[self.time_mode]
nu_ = _sum_double_vec(self.nu_K)
L_K = np.sum(self.L_KK, axis=1, dtype=np.int32)
rng = self.rng
self.lnq_K[:] = 0
for k in range(K):
nu_k = self.nu_K[k]
xi_k = self.xi_K[k]
if L_K[k] > 0:
tmp = (xi_k + nu_ - nu_k)
self.lnq_K[k] = _sample_lnbeta(rng, nu_k * tmp, L_K[k])
assert np.isfinite(self.lnq_K[k]) and self.lnq_K[k] <= 0
self.H_KK[k, k] = _sample_crt(rng, self.L_KK[k, k], nu_k * xi_k)
assert self.H_KK[k, k] >= 0
for k2 in range(K):
if k2 != k:
self.H_KK[k, k2] = _sample_crt(rng, self.L_KK[k, k2], nu_k * self.nu_K[k2])
assert self.H_KK[k, k2] >= 0
cdef void _update_beta(self, int update_mode) nogil:
cdef:
double shp, rte
if update_mode == self._INITIALIZE_MODE:
self.beta = 1.
else:
shp = rte = self.eps
if update_mode == self._INFER_MODE:
shp += self.gam
rte += _sum_double_vec(self.nu_K)
self.beta = _sample_gamma(self.rng, shp, 1. / rte)