-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsd_utils.py
287 lines (210 loc) · 11.2 KB
/
sd_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler, DDIMScheduler, StableDiffusionPipeline
from diffusers.utils.import_utils import is_xformers_available
from os.path import isfile
# suppress partial model loading warning
logging.set_verbosity_error()
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from dataclasses import dataclass
class SpecifyGradient(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)
@staticmethod
@custom_bwd
def backward(ctx, grad_scale):
gt_grad, = ctx.saved_tensors
gt_grad = gt_grad * grad_scale
return gt_grad, None
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = True
@dataclass
class UNet2DConditionOutput:
sample: torch.HalfTensor # Not sure how to check what unet_traced.pt contains, and user wants. HalfTensor or FloatTensor
class StableDiffusion(nn.Module):
def __init__(self, device, fp16, vram_O, sd_version='2.1', hf_key=None):
super().__init__()
self.device = device
self.sd_version = sd_version
print(f'[INFO] loading stable diffusion...')
if hf_key is not None:
print(f'[INFO] using hugging face custom model key: {hf_key}')
model_key = hf_key
elif self.sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif self.sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif self.sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
else:
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
precision_t = torch.float16 if fp16 else torch.float32
# Create model
pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=precision_t)
if isfile('./unet_traced.pt'):
# use jitted unet
unet_traced = torch.jit.load('./unet_traced.pt')
class TracedUNet(torch.nn.Module):
def __init__(self):
super().__init__()
self.in_channels = pipe.unet.in_channels
self.device = pipe.unet.device
def forward(self, latent_model_input, t, encoder_hidden_states):
sample = unet_traced(latent_model_input, t, encoder_hidden_states)[0]
return UNet2DConditionOutput(sample=sample)
pipe.unet = TracedUNet()
if is_xformers_available():
pipe.enable_xformers_memory_efficient_attention()
if vram_O:
pipe.enable_sequential_cpu_offload()
pipe.enable_vae_slicing()
pipe.unet.to(memory_format=torch.channels_last)
pipe.enable_attention_slicing(1)
# pipe.enable_model_cpu_offload()
else:
pipe.to(device)
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler", torch_dtype=precision_t)
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.min_step = int(self.num_train_timesteps * 0.02)
self.max_step = int(self.num_train_timesteps * 0.50)
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
print(f'[INFO] loaded stable diffusion!')
def get_text_embeds(self, prompt, negative_prompt, batch=1):
# prompt, negative_prompt: [str]
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
with torch.no_grad():
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
B, S = text_embeddings.shape[:2]
text_embeddings = text_embeddings.repeat(1, batch, 1).view(B * batch, S, -1)
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt')
with torch.no_grad():
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
B, S = uncond_embeddings.shape[:2]
uncond_embeddings = uncond_embeddings.repeat(1, batch, 1).view(B * batch, S, -1)
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def train_step(self, text_embeddings, pred_rgb, guidance_scale=30, as_latent=False):
B = pred_rgb.shape[0]
if as_latent:
# directly downsample input as latent
latents = F.interpolate(pred_rgb, (64, 64), mode='bilinear', align_corners=False) * 2 - 1
else:
# interp to 512x512 to be fed into vae.
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# encode image into latents with vae, requires grad!
latents = self.encode_imgs(pred_rgb_512)
# timestep ~ U(0.02, 0.98) to avoid very high/low noise level
t = torch.randint(self.min_step, self.max_step + 1, [B], dtype=torch.long, device=self.device)
# predict the noise residual with unet, NO grad!
with torch.no_grad():
# add noise
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2)
tt = torch.cat([t] * 2)
# Save input tensors for UNet
#torch.save(latent_model_input, "train_latent_model_input.pt")
#torch.save(t, "train_t.pt")
#torch.save(text_embeddings, "train_text_embeddings.pt")
# print(latent_model_input.shape, t.shape, text_embeddings.shape)
noise_pred = self.unet(latent_model_input, tt, encoder_hidden_states=text_embeddings).sample
# perform guidance (high scale from paper!)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_text + guidance_scale * (noise_pred_text - noise_pred_uncond)
# w(t), sigma_t^2
w = (1 - self.alphas[t])
# w = self.alphas[t] ** 0.5 * (1 - self.alphas[t])
grad = w.view(-1, 1, 1, 1) * (noise_pred - noise)
# clip grad for stable training?
# grad = grad.clamp(-10, 10)
grad = torch.nan_to_num(grad)
# since we omitted an item in grad, we need to use the custom function to specify the gradient
loss = SpecifyGradient.apply(latents, grad)
return loss
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5, latents=None):
if latents is None:
latents = torch.randn((text_embeddings.shape[0] // 2, self.unet.in_channels, height // 8, width // 8), device=self.device)
self.scheduler.set_timesteps(num_inference_steps)
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
# Save input tensors for UNet
#torch.save(latent_model_input, "produce_latents_latent_model_input.pt")
#torch.save(t, "produce_latents_t.pt")
#torch.save(text_embeddings, "produce_latents_text_embeddings.pt")
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)['sample']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_text + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents)['prev_sample']
return latents
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
with torch.no_grad():
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def encode_imgs(self, imgs):
# imgs: [B, 3, H, W]
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.sample() * self.vae.config.scaling_factor
return latents
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50, guidance_scale=7.5, latents=None):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
# Prompts -> text embeds
text_embeds = self.get_text_embeds(prompts, negative_prompts) # [2, 77, 768]
# Text embeds -> img latents
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale) # [1, 4, 64, 64]
# Img latents -> imgs
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype('uint8')
return imgs
if __name__ == '__main__':
import argparse
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument('prompt', type=str)
parser.add_argument('--negative', default='', type=str)
parser.add_argument('--sd_version', type=str, default='2.1', choices=['1.5', '2.0', '2.1'], help="stable diffusion version")
parser.add_argument('--hf_key', type=str, default=None, help="hugging face Stable diffusion model key")
parser.add_argument('--fp16', action='store_true', help="use float16 for training")
parser.add_argument('--vram_O', action='store_true', help="optimization for low VRAM usage")
parser.add_argument('-H', type=int, default=512)
parser.add_argument('-W', type=int, default=512)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--steps', type=int, default=50)
opt = parser.parse_args()
seed_everything(opt.seed)
device = torch.device('cuda')
sd = StableDiffusion(device, opt.fp16, opt.vram_O, opt.sd_version, opt.hf_key)
imgs = sd.prompt_to_img(opt.prompt, opt.negative, opt.H, opt.W, opt.steps)
# visualize image
plt.imshow(imgs[0])
plt.show()