-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathleaderboard.py
228 lines (180 loc) · 7.15 KB
/
leaderboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import sys
sys.path.append(os.path.join(os.environ['ALFRED_ROOT']))
sys.path.append(os.path.join(os.environ['ALFRED_ROOT'], 'gen'))
sys.path.append(os.path.join(os.environ['ALFRED_ROOT'], 'models'))
import json
import argparse
import numpy as np
from PIL import Image
from datetime import datetime
from eval_task import EvalTask
from env.thor_env import ThorEnv
import torch.multiprocessing as mp
class Leaderboard(EvalTask):
'''
dump action-sequences for leaderboard eval
'''
@classmethod
def run(cls, model, resnet, task_queue, args, lock, splits, seen_actseqs, unseen_actseqs):
'''
evaluation loop
'''
# start THOR
env = ThorEnv()
while True:
if task_queue.qsize() == 0:
break
task = task_queue.get()
try:
traj = model.load_task_json(task)
r_idx = task['repeat_idx']
print("Evaluating: %s" % (traj['root']))
print("No. of trajectories left: %d" % (task_queue.qsize()))
cls.evaluate(env, model, r_idx, resnet, traj, args, lock, splits, seen_actseqs, unseen_actseqs)
except Exception as e:
import traceback
traceback.print_exc()
print("Error: " + repr(e))
# stop THOR
env.stop()
@classmethod
def evaluate(cls, env, model, r_idx, resnet, traj_data, args, lock, splits, seen_actseqs, unseen_actseqs):
# reset model
model.reset()
# setup scene
cls.setup_scene(env, traj_data, r_idx, args)
# extract language features
feat = model.featurize([traj_data], load_mask=False)
# goal instr
goal_instr = traj_data['turk_annotations']['anns'][r_idx]['task_desc']
done, success = False, False
actions = list()
fails = 0
t = 0
while not done:
# break if max_steps reached
if t >= args.max_steps:
break
# extract visual features
curr_image = Image.fromarray(np.uint8(env.last_event.frame))
feat['frames'] = resnet.featurize([curr_image], batch=1).unsqueeze(0)
# forward model
m_out = model.step(feat)
m_pred = model.extract_preds(m_out, [traj_data], feat, clean_special_tokens=False)
m_pred = list(m_pred.values())[0]
# check if <<stop>> was predicted
if m_pred['action_low'] == cls.STOP_TOKEN:
print("\tpredicted STOP")
break
# get action and mask
action, mask = m_pred['action_low'], m_pred['action_low_mask'][0]
mask = np.squeeze(mask, axis=0) if model.has_interaction(action) else None
# use predicted action and mask (if available) to interact with the env
t_success, _, _, err, api_action = env.va_interact(action, interact_mask=mask, smooth_nav=False)
if not t_success:
fails += 1
if fails >= args.max_fails:
print("Interact API failed %d times" % fails + "; latest error '%s'" % err)
break
# save action
if api_action is not None:
actions.append(api_action)
# next time-step
t += 1
# actseq
seen_ids = [t['task'] for t in splits['tests_seen']]
actseq = {traj_data['task_id']: actions}
# log action sequences
lock.acquire()
if traj_data['task_id'] in seen_ids:
seen_actseqs.append(actseq)
else:
unseen_actseqs.append(actseq)
lock.release()
@classmethod
def setup_scene(cls, env, traj_data, r_idx, args, reward_type='dense'):
'''
intialize the scene and agent from the task info
'''
# scene setup
scene_num = traj_data['scene']['scene_num']
object_poses = traj_data['scene']['object_poses']
dirty_and_empty = traj_data['scene']['dirty_and_empty']
object_toggles = traj_data['scene']['object_toggles']
scene_name = 'FloorPlan%d' % scene_num
env.reset(scene_name)
env.restore_scene(object_poses, object_toggles, dirty_and_empty)
# initialize to start position
env.step(dict(traj_data['scene']['init_action']))
# print goal instr
print("Task: %s" % (traj_data['turk_annotations']['anns'][r_idx]['task_desc']))
def queue_tasks(self):
'''
create queue of trajectories to be evaluated
'''
task_queue = self.manager.Queue()
seen_files, unseen_files = self.splits['tests_seen'], self.splits['tests_unseen']
# add seen trajectories to queue
for traj in seen_files:
task_queue.put(traj)
# add unseen trajectories to queue
for traj in unseen_files:
task_queue.put(traj)
return task_queue
def spawn_threads(self):
'''
spawn multiple threads to run eval in parallel
'''
task_queue = self.queue_tasks()
# start threads
threads = []
lock = self.manager.Lock()
self.model.test_mode = True
for n in range(self.args.num_threads):
thread = mp.Process(target=self.run, args=(self.model, self.resnet, task_queue, self.args, lock,
self.splits, self.seen_actseqs, self.unseen_actseqs))
thread.start()
threads.append(thread)
for t in threads:
t.join()
# save
self.save_results()
def create_stats(self):
'''
storage for seen and unseen actseqs
'''
self.seen_actseqs, self.unseen_actseqs = self.manager.list(), self.manager.list()
def save_results(self):
'''
save actseqs as JSONs
'''
results = {'tests_seen': list(self.seen_actseqs),
'tests_unseen': list(self.unseen_actseqs)}
save_path = os.path.dirname(self.args.model_path)
save_path = os.path.join(save_path, 'tests_actseqs_dump_' + datetime.now().strftime("%Y%m%d_%H%M%S_%f") + '.json')
with open(save_path, 'w') as r:
json.dump(results, r, indent=4, sort_keys=True)
if __name__ == '__main__':
# multiprocessing settings
mp.set_start_method('spawn')
manager = mp.Manager()
# parser
parser = argparse.ArgumentParser()
# settings
parser.add_argument('--splits', type=str, default="data/splits/oct21.json")
parser.add_argument('--data', type=str, default="data/json_2.1.0")
parser.add_argument('--model_path', type=str, default="model.pth")
parser.add_argument('--model', type=str, default='models.model.seq2seq_im_mask')
parser.add_argument('--preprocess', dest='preprocess', action='store_true')
parser.add_argument('--gpu', dest='gpu', action='store_true')
parser.add_argument('--num_threads', type=int, default=1)
# parse arguments
args = parser.parse_args()
# fixed settings (DO NOT CHANGE)
args.max_steps = 1000
args.max_fails = 10
# leaderboard dump
eval = Leaderboard(args, manager)
# start threads
eval.spawn_threads()