-
-
Notifications
You must be signed in to change notification settings - Fork 325
/
run.sh
executable file
·46 lines (35 loc) · 1.47 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/bin/bash
# To run this shell script type as follows in the terminal:
#
# For training execute: ./run.sh train/test/status path/to/video/file
# example: ./run.sh train data/sample_video.mp4
#
# Argument:
# train/test/status: one of the following: train, test, nothing!
# path/to/video/file: relative path to the video file that we want to perform lip tracking on that.
if [ $# -eq 2 ]; then
# assign the provided arguments to variables
do_training=$1
input_filename=$2
else
# assign the default values to variables
do_training='train'
input_filename="data/sample_video.mp4"
fi
if [ $do_training = 'train' ]; then
# training
python -u ./code/training_evaluation/train.py --num_epochs=1 --batch_size=16 --train_dir=${HOME}/results/TRAIN_CNN_3D/train_logs
# testing - Automatically restore the latest checkpoint from all saved checkpoints
python -u ./code/training_evaluation/test.py --checkpoint_dir=${HOME}/results/
elif [ $do_training = 'test' ]; then
# Just performing the test
python -u ./code/training_evaluation/test.py --checkpoint_dir=${HOME}/results/
else
echo "No training or testing will be performed!"
fi
# visualizing (using pretrained model)
ln -s data/ dlib
mkdir results && ln -s results/activation ./activation
python -u ./code/lip_tracking/VisualizeLip.py --input $input_filename --output results/output_video.mp4
# create gif from mouth frames
ffmpeg -i ./results/mouth/frame_%*.png results/mouth.gif