Skip to content

Latest commit

 

History

History
198 lines (152 loc) · 7.31 KB

README.md

File metadata and controls

198 lines (152 loc) · 7.31 KB

LatteCLIP: Unsupervised CLIP Fine-Tuning via LMM-Synthetic Texts

WACV 2025

Anh-Quan Cao1    Maximilian Jaritz2    Matthieu Guillaumin2    Raoul de Charette1    Loris Bazzani2   

1 Inria 2 Amazon

arXiv

If you find this work or code useful, please cite our paper and give this repo a star:

@InProceedings{cao2024latteclip,
      title={LatteCLIP: Unsupervised CLIP Fine-Tuning via LMM-Synthetic Texts}, 
      author={Anh-Quan Cao and Maximilian Jaritz and Matthieu Guillaumin and Raoul de Charette and Loris Bazzani},
      year={2024},
      booktitle = {arXiv}
}

News

  • 17/12/2024: code is released.
  • 14/10/2024: code will be available soon.

Table of Contents

  1. Installation
  2. Data Preparation
  3. Generate Descriptions
  4. Training
  5. Acknowledgement

Installation

Follow these steps to install the necessary dependencies:

1. Install OpenCLIP's Dependencies

Create a new conda environment and install the dependencies:

conda create -n latteclip python=3.10
conda activate latteclip

Navigate to the latteclip directory and run the following command:

make install
make install-training

2. Install LLaVA

Follow the official instructions here.

git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA
pip install -e .

Data Preparation

1. Create the Data Directory

Create a folder to store the data and set the path in the bash variable $LATTECLIP_DATA_DIR:

mkdir -p /path/to/data
export LATTECLIP_DATA_DIR=/path/to/data

2. Download the Data

Download the data from this link and extract all files into the $LATTECLIP_DATA_DIR.

3. Run the Preprocess Script

Navigate to the latteclip directory and run the preprocess script to create the webdataset, tarfiles, and extract the clip features:

cd latteclip
bash scripts/preprocess/preprocess.sh

Generate Descriptions

1. Generate Image Descriptions

To generate image descriptions, follow these steps:

Example with dtd Dataset

Run the following command:

bash scripts/unsupervised/extract_captions_llava_multiprocess.sh $MACHINE_ID $NUM_MACHINE classname_dtd dtd $NUM_PROCESSES_PER_GPU $NUM_GPUS

If You Have Multiple Machines

Assume you have 2 machines, 1 GPU per machine, and 5 generation processes per Tesla V100 32g GPU:

Machine 0:

bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 2 classname_dtd dtd 5 1

Machine 1:

bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 1 2 classname_dtd dtd 5 1

Generate Image Descriptions for Other Datasets

Use the following commands:

bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_dtd dtd 5 1
bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_eurosat eurosat 5 1
bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_scene sun397 5 1
bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_flower flower102 5 1
bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_food101 food101 5 1
bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_pets oxford_pets 5 1
bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_car stanford_cars 5 1
bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_ufc ucf101 5 1
bash scripts/unsupervised/extract_captions_llava_multiprocess.sh 0 1 classname_caltech caltech101 5 1

2. Generate Group Descriptions

The process is similar to generating image descriptions. Use the following commands:

bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 dtd_describe_common_v3 dtd 5 1
bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 eurosat_describe_common_v3 eurosat 5 1
bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 sun397_describe_common_v3 sun397 5 1
bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 flower102_describe_common_v3 flower102 5 1
bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 food101_describe_common_v3 food101 5 1
bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 pets_describe_common_v3 oxford_pets 5 1
bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 car_describe_common_v3 stanford_cars 5 1
bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 ufc_describe_common_v3 ucf101 5 1
bash scripts/unsupervised/extract_captions_llava_compare.sh 0 1 caltech_describe_common_v3 caltech101 5 1

Training

To train the model on dtd, run:

bash scripts/unsupervised/dtd/dtd_fine_tune_multiclass.sh $lr $class_per_image $device $port $seed $exp_name
  • $lr: Learning rate
  • $class_per_image: Number of classes per image (always set to 1)
  • $device: Device ID
  • $port: Port for the job (Not used)
  • $seed: Random seed
  • $exp_name: Experiment name

Example

To train with learning rate 1e-7, on device 0, with port 25680, random seed 3, and experiment name exp_dtd:

bash scripts/unsupervised/dtd_fine_tune_multiclass.sh 1e-7 1 0 25680 1 exp_dtd

Train on Other Datasets

bash scripts/unsupervised/eurosat_fine_tune_multiclass.sh 1e-7 1 0 25666 1 exp_eurosat
bash scripts/unsupervised/caltech101_fine_tune_multiclass.sh 1e-7 1 0 25665 1 exp_caltech101
bash scripts/unsupervised/fgvc_aircraft/fgvc_aircraft_fine_tune_multiclass.sh 1e-7 1 0 25667 1 exp_fgvc_aircraft
bash scripts/unsupervised/flower102_fine_tune_multiclass.sh 1e-7 1 0 25668 1 exp_flower102
bash scripts/unsupervised/food101_fine_tune_multiclass.sh 1e-7 1 0 25669 1 exp_food101
bash scripts/unsupervised/oxford_pets_fine_tune_multiclass.sh 1e-7 1 0 25670 1 exp_oxford_pets
bash scripts/unsupervised/stanford_cars/stanford_cars_fine_tune_multiclass.sh 1e-7 1 0 25671 1 exp_stanford_cars
bash scripts/unsupervised/sun397_fine_tune_multiclass.sh 1e-7 1 0 25672 1 exp_sun397
bash scripts/unsupervised/ucf101_fine_tune_multiclass.sh 1e-7 1 0 25673 1 exp_ucf101

Note

Logs will be stored in the logs folder.


Acknowledgement

This repository is built upon OpenCLIP and LLaVA.