forked from tensorflow/tfjs-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug_mode_test.ts
64 lines (54 loc) · 1.86 KB
/
debug_mode_test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from './index';
import {ALL_ENVS, expectArraysClose} from './test_util';
import {describeWithFlags} from './jasmine_util';
describeWithFlags('debug on', ALL_ENVS, () => {
beforeAll(() => {
tf.ENV.set('DEBUG', true);
});
afterAll(() => {
tf.ENV.set('DEBUG', false);
});
it('debug mode does not error when no nans', () => {
const a = tf.tensor1d([2, -1, 0, 3]);
const res = tf.relu(a);
expectArraysClose(res, [2, 0, 0, 3]);
});
it('debug mode errors when there are nans, float32', () => {
const a = tf.tensor1d([2, NaN]);
const f = () => tf.relu(a);
expect(f).toThrowError();
});
it('A x B', () => {
const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);
const b = tf.tensor2d([0, 1, -3, 2, 2, 1], [3, 2]);
const c = tf.matMul(a, b);
expect(c.shape).toEqual([2, 2]);
expectArraysClose(c, [0, 8, -3, 20]);
});
});
describeWithFlags('debug off', ALL_ENVS, () => {
beforeAll(() => {
tf.ENV.set('DEBUG', false);
});
it('no errors where there are nans, and debug mode is disabled', () => {
const a = tf.tensor1d([2, NaN]);
const res = tf.relu(a);
expectArraysClose(res, [2, NaN]);
});
});