-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy patht642_sat.py
247 lines (201 loc) · 6.97 KB
/
t642_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# tango642 4.3.9 SAT solving simulation -
# finds a key specified in seed_i and hcv[].
# requires autosat from https://github.com/petersn/autosat
# and python-sat
#
# use "time python t642_sat.py" to measure solving time.
# increase "bits" (an even value) to estimate solving complexity. "bits=64"
# corresponds to real tango642 variable size. a minimal reasonable "bits"
# value is 6; lower values solve instantly. base exponential time increase can
# be assessed by setting hci=0 and incrementally assigning various "bits"
# values. note that the SAT solver may have to consider most of the system
# anyway, so a time difference between various "hci" values may not be
# pronounced. the time exponent dependence on "hci" itself depends on "bits"
# asymptotically, with higher "bits" values producing a more linear "hci*bits"
# exponent.
import autosat
##### simulation parameters
bits = 6 # state variable size
hci = 2 # number of keyed hash elements in use (key length-1)
ivlen = 4 # nonce vector length
seed_i = 4 # keyed prng init (key value 1)
hcv = [3,14,3,13,14,4,2,15,2,5,6,11,9,1,11,5,8,6,10,7,5,6,3,10,3,0,2,9,9,12,15,11] # key values
iv = [15,9,4,6] # nonce vector
hc = 16 # keyed hash array length
fc = 15 # firewall prng init length
num_obs = 16 # number of observations to use for solving (*4)
#####
def inibits(inst,l,ini):
result = []
for i in range(l):
if( (ini>>i)&1 ):
v=True
else:
v=False
result.append(inst.get_constant(v))
return result
@autosat.sat
def full_adder(a, b, carry_in):
r = a + b + carry_in
return r & 1, (r & 2) >> 1
def add(a, b):
assert len(a) == len(b)
carry = False
result = []
for a_bit, b_bit in zip(a, b):
sum_bit, carry = full_adder(a_bit, b_bit, carry)
result.append(sum_bit)
return result
def xor(a, b):
assert len(a) == len(b)
return [i ^ j for i, j in zip(a, b)]
def and_(a, b):
assert len(a) == len(b)
return [i & j for i, j in zip(a, b)]
def mul(a, b):
assert len(a) == len(b)
result = [a[0] & bit for bit in b]
for i in range(1, len(a)):
addend = [a[i] & bit for bit in b[:-i]]
result[i:] = add(result[i:], addend)
return result
obs = [] # observations
bits2 = bits>>1
bmask = (1<<bits)-1
rawbits5 = 0
rawbitsA = 0
for i in range(bits2):
rawbits5 <<= 2
rawbits5 |= 0x1
rawbitsA <<= 2
rawbitsA |= 0x2
def prvhash_core_calc(seed, lcg, h):
seed = seed * ( lcg * 2 + 1 )
seed &= bmask
rs = seed>>bits2 | seed<<bits2
rs &= bmask
h += rs + rawbitsA
h &= bmask
lcg += seed + rawbits5
lcg &= bmask
seed ^= h
out = lcg ^ rs
return seed, lcg, h, out
# calculate real outputs
calc_seed = seed_i&bmask
calc_lcg = 0
calc_h = []
calc_seed1 = 0
calc_lcg1 = 0
calc_seed2 = 0
calc_lcg2 = 0
calc_seed3 = 0
calc_lcg3 = 0
calc_seed4 = 0
calc_lcg4 = 0
calc_h2 = [0,0,0,0,0]
for i in range(hc):
if(i < hci):
calc_h.append(hcv[i]&bmask)
else:
calc_h.append(0)
calc_x = 0
calc_x2 = 0
ivpos = 0
for i in range(5):
calc_seed, calc_lcg, calc_h[calc_x%hc], out1 = prvhash_core_calc(calc_seed, calc_lcg, calc_h[calc_x%hc])
for i in range(hc):
if((i&1)==1 and ivpos < ivlen):
calc_seed ^= iv[ivpos]&bmask
calc_lcg ^= iv[ivpos]&bmask
ivpos += 1
calc_seed, calc_lcg, calc_h[calc_x%hc], out1 = prvhash_core_calc(calc_seed, calc_lcg, calc_h[calc_x%hc])
calc_x += 1
for i in range(hc+1):
calc_seed, calc_lcg, calc_h[calc_x%hc], out1 = prvhash_core_calc(calc_seed, calc_lcg, calc_h[calc_x%hc])
calc_x += 1
for i in range(fc+num_obs):
calc_seed, calc_lcg, calc_h[calc_x%hc], out1 = prvhash_core_calc(calc_seed, calc_lcg, calc_h[calc_x%hc])
calc_x += 1
calc_seed4 ^= out1
calc_seed1, calc_lcg1, calc_h2[(calc_x2+0)%5], outf1 = prvhash_core_calc(calc_seed1, calc_lcg1, calc_h2[(calc_x2+0)%5])
calc_seed2, calc_lcg2, calc_h2[(calc_x2+1)%5], outf2 = prvhash_core_calc(calc_seed2, calc_lcg2, calc_h2[(calc_x2+1)%5])
calc_seed3, calc_lcg3, calc_h2[(calc_x2+2)%5], outf3 = prvhash_core_calc(calc_seed3, calc_lcg3, calc_h2[(calc_x2+2)%5])
calc_seed4, calc_lcg4, calc_h2[(calc_x2+3)%5], outf4 = prvhash_core_calc(calc_seed4, calc_lcg4, calc_h2[(calc_x2+3)%5])
calc_x2 += 1
if(i>=fc):
obs.append(outf1)
obs.append(outf2)
obs.append(outf3)
obs.append(outf4)
print("----")
# solve initial state
inst = autosat.Instance()
BITR5 = inibits(inst, bits, rawbits5)
BITRA = inibits(inst, bits, rawbitsA)
def prvhash_core_sat(seed, lcg, h):
seed = mul(seed, [True] + lcg[:-1])
rs = seed[bits2:] + seed[:bits2]
h = add(h, add(rs, BITRA))
lcg = add(lcg, add(seed, BITR5))
seed = xor(seed, h)
out = xor(lcg, rs)
return seed, lcg, h, out
start_seed = inst.new_vars(bits)
start_h = []
seed = start_seed[:]
h = []
for i in range(hc):
if(i < hci):
start_h.append(inst.new_vars(bits))
h.append(start_h[i][:])
else:
h.append(inibits(inst, bits, 0))
lcg = inibits(inst, bits, 0)
seed1 = inibits(inst, bits, 0)
lcg1 = inibits(inst, bits, 0)
seed2 = inibits(inst, bits, 0)
lcg2 = inibits(inst, bits, 0)
seed3 = inibits(inst, bits, 0)
lcg3 = inibits(inst, bits, 0)
seed4 = inibits(inst, bits, 0)
lcg4 = inibits(inst, bits, 0)
h2 = [inibits(inst, bits, 0),inibits(inst, bits, 0),inibits(inst, bits, 0),inibits(inst, bits, 0),inibits(inst, bits, 0)]
x = 0
x2 = 0
ivpos = 0
for k in range(5):
seed, lcg, h[x % hc], out1 = prvhash_core_sat(seed, lcg, h[x % hc])
for k in range(hc):
if((k&1)==1 and ivpos < ivlen):
seed = xor(seed, inibits(inst,bits,iv[ivpos]))
lcg = xor(lcg, inibits(inst,bits,iv[ivpos]))
ivpos += 1
seed, lcg, h[x % hc], out1 = prvhash_core_sat(seed, lcg, h[x % hc])
x += 1
for k in range(hc+1):
seed, lcg, h[x % hc], out1 = prvhash_core_sat(seed, lcg, h[x % hc])
x += 1
for k in range(fc+num_obs):
seed, lcg, h[x % hc], out1 = prvhash_core_sat(seed, lcg, h[x % hc])
x += 1
seed4 = xor(seed4, out1)
seed1, lcg1, h2[(x2+0)%5], outf1 = prvhash_core_sat(seed1, lcg1, h2[(x2+0)%5])
seed2, lcg2, h2[(x2+1)%5], outf2 = prvhash_core_sat(seed2, lcg2, h2[(x2+1)%5])
seed3, lcg3, h2[(x2+2)%5], outf3 = prvhash_core_sat(seed3, lcg3, h2[(x2+2)%5])
seed4, lcg4, h2[(x2+3)%5], outf4 = prvhash_core_sat(seed4, lcg4, h2[(x2+3)%5])
x2 += 1
if(k>=fc):
for i, b in enumerate(outf1):
b.make_equal(bool((obs[(k-fc)*4+0] >> i) & 1))
for i, b in enumerate(outf2):
b.make_equal(bool((obs[(k-fc)*4+1] >> i) & 1))
for i, b in enumerate(outf3):
b.make_equal(bool((obs[(k-fc)*4+2] >> i) & 1))
for i, b in enumerate(outf4):
b.make_equal(bool((obs[(k-fc)*4+3] >> i) & 1))
model = inst.solve(solver_name="Glucose3",decode_model=False)
#print(model)
print("seed = %4i (%4i)" % (autosat.decode_number(start_seed, model), (seed_i&bmask)))
for i in range(hci):
print("hash = %4i (%4i)" % (autosat.decode_number(start_h[i], model), (hcv[i]&bmask)))