-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvulkan_swap_chain.cpp
393 lines (347 loc) · 14.8 KB
/
vulkan_swap_chain.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#include <vulkan/vulkan.h>
#include <wayland-client-core.h>
#include <wayland-client.h>
#include <vulkan/vulkan_wayland.h>
#include <iostream>
#include "vulkan_swap_chain.h"
#define VK_CHECK_RESULT(f) \
{ \
VkResult res = (f); \
if (res != VK_SUCCESS) \
{ \
std::cout << "Fatal : VkResult is " << res << "\" in " << __FILE__ << " at line " << __LINE__ << "\n"; \
assert(res == VK_SUCCESS); \
} \
}
/** @brief Creates the platform specific surface abstraction of the native platform window used for presentation */
void vulkan_swap_chain::initSurface(wl_display *display, wl_surface *window)
{
VkWaylandSurfaceCreateInfoKHR surfaceCreateInfo = {};
surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR;
surfaceCreateInfo.display = display;
surfaceCreateInfo.surface = window;
VkResult err = vkCreateWaylandSurfaceKHR(instance, &surfaceCreateInfo, nullptr, &surface);
if (err != VK_SUCCESS) {
std::cerr << "Could not create surface!";
exit(err);
}
// Get available queue family properties
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
// Iterate over each queue to learn whether it supports presenting:
// Find a queue with present support
// Will be used to present the swap chain images to the windowing system
std::vector<VkBool32> supportsPresent(queueCount);
for (uint32_t i = 0; i < queueCount; i++)
{
fpGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, surface, &supportsPresent[i]);
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both
uint32_t graphicsQueueNodeIndex = UINT32_MAX;
uint32_t presentQueueNodeIndex = UINT32_MAX;
for (uint32_t i = 0; i < queueCount; i++)
{
if ((queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)
{
if (graphicsQueueNodeIndex == UINT32_MAX)
{
graphicsQueueNodeIndex = i;
}
if (supportsPresent[i] == VK_TRUE)
{
graphicsQueueNodeIndex = i;
presentQueueNodeIndex = i;
break;
}
}
}
if (presentQueueNodeIndex == UINT32_MAX)
{
// If there's no queue that supports both present and graphics
// try to find a separate present queue
for (uint32_t i = 0; i < queueCount; ++i)
{
if (supportsPresent[i] == VK_TRUE)
{
presentQueueNodeIndex = i;
break;
}
}
}
// Exit if either a graphics or a presenting queue hasn't been found
if (graphicsQueueNodeIndex == UINT32_MAX || presentQueueNodeIndex == UINT32_MAX)
{
std::cerr << "Could not find a graphics and/or presenting queue!";
exit(-1);
}
// todo : Add support for separate graphics and presenting queue
if (graphicsQueueNodeIndex != presentQueueNodeIndex)
{
std::cerr << "Separate graphics and presenting queues are not supported yet!";
exit(-1);
}
queueNodeIndex = graphicsQueueNodeIndex;
// Get list of supported surface formats
uint32_t formatCount;
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &formatCount, NULL));
assert(formatCount > 0);
std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &formatCount, surfaceFormats.data()));
// If the surface format list only includes one entry with VK_FORMAT_UNDEFINED,
// there is no preferred format, so we assume VK_FORMAT_B8G8R8A8_UNORM
if ((formatCount == 1) && (surfaceFormats[0].format == VK_FORMAT_UNDEFINED))
{
colorFormat = VK_FORMAT_B8G8R8A8_UNORM;
colorSpace = surfaceFormats[0].colorSpace;
}
else
{
// iterate over the list of available surface format and
// check for the presence of VK_FORMAT_B8G8R8A8_UNORM
bool found_B8G8R8A8_UNORM = false;
for (auto&& surfaceFormat : surfaceFormats)
{
if (surfaceFormat.format == VK_FORMAT_B8G8R8A8_UNORM)
{
colorFormat = surfaceFormat.format;
colorSpace = surfaceFormat.colorSpace;
found_B8G8R8A8_UNORM = true;
break;
}
}
// in case VK_FORMAT_B8G8R8A8_UNORM is not available
// select the first available color format
if (!found_B8G8R8A8_UNORM)
{
colorFormat = surfaceFormats[0].format;
colorSpace = surfaceFormats[0].colorSpace;
}
}
}
/**
* Set instance, physical and logical device to use for the swapchain and get all required function pointers
*
* @param instance Vulkan instance to use
* @param physicalDevice Physical device used to query properties and formats relevant to the swapchain
* @param device Logical representation of the device to create the swapchain for
*
*/
void vulkan_swap_chain::connect(VkInstance instance, VkPhysicalDevice physicalDevice, VkDevice device)
{
this->instance = instance;
this->physicalDevice = physicalDevice;
this->device = device;
fpGetPhysicalDeviceSurfaceSupportKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceSupportKHR>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceSupportKHR"));
fpGetPhysicalDeviceSurfaceCapabilitiesKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR"));
fpGetPhysicalDeviceSurfaceFormatsKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormatsKHR>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceFormatsKHR"));
fpGetPhysicalDeviceSurfacePresentModesKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfacePresentModesKHR>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfacePresentModesKHR"));
fpCreateSwapchainKHR = reinterpret_cast<PFN_vkCreateSwapchainKHR>(vkGetDeviceProcAddr(device, "vkCreateSwapchainKHR"));
fpDestroySwapchainKHR = reinterpret_cast<PFN_vkDestroySwapchainKHR>(vkGetDeviceProcAddr(device, "vkDestroySwapchainKHR"));
fpGetSwapchainImagesKHR = reinterpret_cast<PFN_vkGetSwapchainImagesKHR>(vkGetDeviceProcAddr(device, "vkGetSwapchainImagesKHR"));
fpAcquireNextImageKHR = reinterpret_cast<PFN_vkAcquireNextImageKHR>(vkGetDeviceProcAddr(device, "vkAcquireNextImageKHR"));
fpQueuePresentKHR = reinterpret_cast<PFN_vkQueuePresentKHR>(vkGetDeviceProcAddr(device, "vkQueuePresentKHR"));
}
/**
* Create the swapchain and get its images with given width and height
*
* @param width Pointer to the width of the swapchain (may be adjusted to fit the requirements of the swapchain)
* @param height Pointer to the height of the swapchain (may be adjusted to fit the requirements of the swapchain)
* @param vsync (Optional) Can be used to force vsync-ed rendering (by using VK_PRESENT_MODE_FIFO_KHR as presentation mode)
*/
void vulkan_swap_chain::create(uint32_t *width, uint32_t *height)
{
// Store the current swap chain handle so we can use it later on to ease up recreation
VkSwapchainKHR oldSwapchain = swapChain;
// Get physical device surface properties and formats
VkSurfaceCapabilitiesKHR surfCaps;
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, &surfCaps));
// Get available present modes
uint32_t presentModeCount;
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &presentModeCount, NULL));
assert(presentModeCount > 0);
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &presentModeCount, presentModes.data()));
VkExtent2D swapchainExtent = {};
// If width (and height) equals the special value 0xFFFFFFFF, the size of the surface will be set by the swapchain
if (surfCaps.currentExtent.width == (uint32_t)-1)
{
// If the surface size is undefined, the size is set to
// the size of the images requested.
swapchainExtent.width = *width;
swapchainExtent.height = *height;
}
else
{
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfCaps.currentExtent;
*width = surfCaps.currentExtent.width;
*height = surfCaps.currentExtent.height;
}
// Select a present mode for the swapchain
// The VK_PRESENT_MODE_FIFO_KHR mode must always be present as per spec
// This mode waits for the vertical blank ("v-sync")
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
// Determine the number of images
uint32_t desiredNumberOfSwapchainImages = surfCaps.minImageCount + 1;
if ((surfCaps.maxImageCount > 0) && (desiredNumberOfSwapchainImages > surfCaps.maxImageCount))
{
desiredNumberOfSwapchainImages = surfCaps.maxImageCount;
}
// Find the transformation of the surface
VkSurfaceTransformFlagsKHR preTransform;
if (surfCaps.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
{
// We prefer a non-rotated transform
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
}
else
{
preTransform = surfCaps.currentTransform;
}
// Find a supported composite alpha format (not all devices support alpha opaque)
VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
// Simply select the first composite alpha format available
std::vector<VkCompositeAlphaFlagBitsKHR> compositeAlphaFlags = {
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR,
};
for (auto& compositeAlphaFlag : compositeAlphaFlags) {
if (surfCaps.supportedCompositeAlpha & compositeAlphaFlag) {
compositeAlpha = compositeAlphaFlag;
break;
};
}
VkSwapchainCreateInfoKHR swapchainCI = {};
swapchainCI.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchainCI.surface = surface;
swapchainCI.minImageCount = desiredNumberOfSwapchainImages;
swapchainCI.imageFormat = colorFormat;
swapchainCI.imageColorSpace = colorSpace;
swapchainCI.imageExtent = { swapchainExtent.width, swapchainExtent.height };
swapchainCI.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
swapchainCI.preTransform = (VkSurfaceTransformFlagBitsKHR)preTransform;
swapchainCI.imageArrayLayers = 1;
swapchainCI.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchainCI.queueFamilyIndexCount = 0;
swapchainCI.presentMode = swapchainPresentMode;
// Setting oldSwapChain to the saved handle of the previous swapchain aids in resource reuse and makes sure that we can still present already acquired images
swapchainCI.oldSwapchain = oldSwapchain;
// Setting clipped to VK_TRUE allows the implementation to discard rendering outside of the surface area
swapchainCI.clipped = VK_TRUE;
swapchainCI.compositeAlpha = compositeAlpha;
// Enable transfer source on swap chain images if supported
if (surfCaps.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
swapchainCI.imageUsage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
}
// Enable transfer destination on swap chain images if supported
if (surfCaps.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT) {
swapchainCI.imageUsage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
VK_CHECK_RESULT(fpCreateSwapchainKHR(device, &swapchainCI, nullptr, &swapChain));
// If an existing swap chain is re-created, destroy the old swap chain
// This also cleans up all the presentable images
if (oldSwapchain != VK_NULL_HANDLE)
{
for (uint32_t i = 0; i < imageCount; i++)
{
vkDestroyImageView(device, buffers[i].view, nullptr);
}
fpDestroySwapchainKHR(device, oldSwapchain, nullptr);
}
VK_CHECK_RESULT(fpGetSwapchainImagesKHR(device, swapChain, &imageCount, NULL));
// Get the swap chain images
images.resize(imageCount);
VK_CHECK_RESULT(fpGetSwapchainImagesKHR(device, swapChain, &imageCount, images.data()));
// Get the swap chain buffers containing the image and imageview
buffers.resize(imageCount);
for (uint32_t i = 0; i < imageCount; i++)
{
VkImageViewCreateInfo colorAttachmentView = {};
colorAttachmentView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
colorAttachmentView.pNext = NULL;
colorAttachmentView.format = colorFormat;
colorAttachmentView.components = {
VK_COMPONENT_SWIZZLE_R,
VK_COMPONENT_SWIZZLE_G,
VK_COMPONENT_SWIZZLE_B,
VK_COMPONENT_SWIZZLE_A
};
colorAttachmentView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorAttachmentView.subresourceRange.baseMipLevel = 0;
colorAttachmentView.subresourceRange.levelCount = 1;
colorAttachmentView.subresourceRange.baseArrayLayer = 0;
colorAttachmentView.subresourceRange.layerCount = 1;
colorAttachmentView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorAttachmentView.flags = 0;
buffers[i].image = images[i];
colorAttachmentView.image = buffers[i].image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorAttachmentView, nullptr, &buffers[i].view));
}
}
/**
* Acquires the next image in the swap chain
*
* @param presentCompleteSemaphore (Optional) Semaphore that is signaled when the image is ready for use
* @param imageIndex Pointer to the image index that will be increased if the next image could be acquired
*
* @note The function will always wait until the next image has been acquired by setting timeout to UINT64_MAX
*
* @return VkResult of the image acquisition
*/
VkResult vulkan_swap_chain::acquireNextImage(VkSemaphore presentCompleteSemaphore, uint32_t *imageIndex)
{
// By setting timeout to UINT64_MAX we will always wait until the next image has been acquired or an actual error is thrown
// With that we don't have to handle VK_NOT_READY
return fpAcquireNextImageKHR(device, swapChain, UINT64_MAX, presentCompleteSemaphore, (VkFence)nullptr, imageIndex);
}
/**
* Queue an image for presentation
*
* @param queue Presentation queue for presenting the image
* @param imageIndex Index of the swapchain image to queue for presentation
* @param waitSemaphore (Optional) Semaphore that is waited on before the image is presented (only used if != VK_NULL_HANDLE)
*
* @return VkResult of the queue presentation
*/
VkResult vulkan_swap_chain::queuePresent(VkQueue queue, uint32_t imageIndex, VkSemaphore waitSemaphore)
{
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.pNext = NULL;
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &swapChain;
presentInfo.pImageIndices = &imageIndex;
// Check if a wait semaphore has been specified to wait for before presenting the image
if (waitSemaphore != VK_NULL_HANDLE)
{
presentInfo.pWaitSemaphores = &waitSemaphore;
presentInfo.waitSemaphoreCount = 1;
}
return fpQueuePresentKHR(queue, &presentInfo);
}
/**
* Destroy and free Vulkan resources used for the swapchain
*/
void vulkan_swap_chain::cleanup()
{
if (swapChain != VK_NULL_HANDLE)
{
for (uint32_t i = 0; i < imageCount; i++)
{
vkDestroyImageView(device, buffers[i].view, nullptr);
}
}
if (surface != VK_NULL_HANDLE)
{
fpDestroySwapchainKHR(device, swapChain, nullptr);
vkDestroySurfaceKHR(instance, surface, nullptr);
}
surface = VK_NULL_HANDLE;
swapChain = VK_NULL_HANDLE;
}