-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy path105. Construct Binary Tree from Preorder and Inorder Traversal.java
executable file
·152 lines (126 loc) · 4.72 KB
/
105. Construct Binary Tree from Preorder and Inorder Traversal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
M
tags: Array, Tree, DFS, Divide and Conquer, Hash Table
time: O(n)
space: O(n)
如题
#### DFS ApproachA:
- use preorder to find root, one index at a time (global index)
- use the root to divide and conquer inorder int[] to 2 sides;
- root.left = dfs(left); root.right = dfs(right)
- end stage: start == end index, create a node
- can use a map to store inorder <val, index> for O(1) find
#### DFS
- 和Construct from Inorder && Postorder 想法一样。
- 写出Preorder和Inorder的字母例子,发现Preorder的开头总是这Level的root。依此写helper,注意处理index。
- 跟Convert Sorted Array to Binary Tree类似, 找到对应的index, 然后:
- node.left = dfs(...), node.right = dfs(...)
- Divide and Conquer
- optimize on finding `mid node`: given value, find mid of inorder:
- Instead of searching linearly, just store inorder sequence in `map <value -> index>`, O(1)
- IMPORATANT: the mid from inorder sequence will become the main baseline to tell range:
- `range of subTree = (mid - inStart)`
- sapce: O(n), time: O(n) access
```
/*
Given preorder and inorder traversal of a tree, construct the binary tree.
Note
You may assume that duplicates do not exist in the tree.
Example
Given inorder [1,2,3] and preorder [2,1,3]
return a tree
2
/ \
1 3
Tags Expand
Binary Tree
*/
/*
- use preorder to find root, 1 index at a time
- use the root to divide and conquer inorder int[] to 2 sides;
- root.left = dfs(left); root.right = dfs(right)
- end stage: start == end index, create a node
- can use a map to store inorder <val, index> for O(1) find
*/
class Solution {
int index = 0;
Map<Integer, Integer> map;
public TreeNode buildTree(int[] preorder, int[] inorder) {
if (preorder == null || inorder == null || preorder.length == 0
|| preorder.length != inorder.length) return null;
map = buildMap(inorder);
return dfs(inorder, preorder, 0, inorder.length - 1);
}
public TreeNode dfs(int[] inorder, int[] preorder, int start, int end) {
if (start > end) return null; // catch dfs attempting to process visisted nodes
int rootVal = preorder[index++];
int rootInd = map.get(rootVal);
TreeNode root = new TreeNode(rootVal);
if (start == end) return root;
root.left = dfs(inorder, preorder, start, rootInd - 1);
root.right = dfs(inorder, preorder, rootInd + 1, end);
return root;
}
private Map<Integer, Integer> buildMap(int[] inorder) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < inorder.length; i++) map.put(inorder[i], i);
return map;
}
}
/*
Thougths:
DFS with tracking of preorder/inorder sequence indexes.
preorder: start from root, traverse all left children, and then all right children.
inorder: if found the root node in the sequence, all indexes less than the root is left sub tree; same applies to right indexes.
1. Use preorder head index as root
2. Find the root node index in inorder sequence.
3. split into subproblems: track by indexes
*//**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
Map<Integer, Integer> map;
public TreeNode buildTree(int[] preorder, int[] inorder) {
if (preorder == null || inorder == null || preorder.length == 0
|| preorder.length != inorder.length) return null;
map = buildMap(inorder);
int n = preorder.length;
return dfs(preorder, 0, n - 1, inorder, 0, n - 1);
}
public TreeNode dfs(int[] preorder, int preStart, int preEnd,
int[] inorder, int inStart, int inEnd) {
if (preStart > preEnd) return null;
TreeNode root = new TreeNode(preorder[preStart]);
int rootInd = map.get(preorder[preStart]);
if (rootInd < 0) return null;
//root.left
root.left = dfs(preorder, preStart + 1, preStart + (rootInd - inStart),
inorder, inStart, rootInd - 1);
//root.right
root.right = dfs(preorder, preStart + (rootInd - inStart) + 1, preEnd,
inorder, rootInd + 1, inEnd);
return root;
}
private Map<Integer, Integer> buildMap(int[] inorder) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < inorder.length; i++) map.put(inorder[i], i);
return map;
}
}
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
```