-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathPermutation Index.java
executable file
·93 lines (74 loc) · 3.33 KB
/
Permutation Index.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
E
和Permutation Sequence相反的题目。思想类似。
题目为Easy,琢磨很久,分析:
每个数位的数字,都是跳过了小于这数字开头的多种可能。
举例【6,5,2】吧。我们找6,5,2是permudation里面的第几个。
正常排序,也就是permutation的第一个,应该是【2,5,6】
如果要从首位,2,变成6,要跨过多少可能性呢?
很简单,就是问:小于6的数字有多少个呢?(2,5).每个数字变成head,都有各自的一套变化,都有(n-1)!种可能。
本题做法:每个(n-1)!加起来。 Note:(n-1) means, 开头的数字(2,5)各带出多少种排列,也就是不就是(n-1)!嘛。
这一步,计算数量很简单: (有几个小于6的数字) ×(除去head剩下有多少个数字)!
以上 ,都是为了把6推上皇位,而牺牲的条数。
那么把6推上去以后,还有接下去的呢。
接下去要看5,2.
6确定,后面permudation可变的情况有可能是【6,5,2】,那还可能是【6,2,5】呢。
Same process, 看given 数组的第二位5,算它接下去:
1. 有几个数字小于5呢?
2. 除去5,还有几个数字可以 factorial呢?
3. 一样的。第一步就结果乘以第二步。
最后接下去要看最后一个元素2了。
6,5,2全看过了以后,加起来。
就是【6,5,2】上位,所踏过的所有小命啊!
我这解释太生动了。因为耗费了好长时间思考...
```
/*
Given a permutation which contains no repeated number, find its index in all the permutations of these numbers,
which are ordered in lexicographical order. The index begins at 1.
Example
Given [1,2,4], return 1.
*/
/*
Thoughts:
Given some thoughts online:
Take one example 4,2,1 (totally reversed, worse case)
Assume array length = n
1. If sorted, it should be 1,2,4. In permutation, when does 4 appear? It appears after 1xx,2xx. That is, it appears after all of the smaller ones show up.
2. For each number smaller than 4 in later indexes, each of them all have (n-1)! mutations. n -1 is actaully: current 0-based index of 4.
Therefore, for head number 4, there are:
#ofSmallerNumber * (curr 0-base index)!
3. For loop on each num, calculate
SUM {#ofSmallerNumber * (index i)!}
4. To store #ofSmallerNum, put hashmap<num, index>. For example, for number 4, with index 2: There are 2 numbers smaller than 4, which are 1 and 2.
O(n^2)
*/
public class Solution {
public long permutationIndex(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
int n = A.length;
long rst = 0;
//O(n^2)
//Count: in A, after A[i], how many smaller nums are left behind.
for (int i = 0; i < n; i++) {
int count = 0;
for (int j = i + 1; j < n; j++) {
if (A[j] < A[i]) {
count++;
}
}
map.put(A[i], count);
}
//O(n^2)
for (int i = 0; i < n; i++) {
long fact = 1;
for (int j = (n - i - 1); j >= 1; j--) {
fact *= j;
}
rst += map.get(A[i]) * fact;
}
return rst + 1;
}
}
```