-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtorch_binding.py
193 lines (167 loc) · 7.04 KB
/
torch_binding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python3
import torch
from . import _transducer
class Transducer(torch.autograd.Function):
@staticmethod
def forward(ctx, emissions, predictions, log_norms, labels, input_lengths, label_lengths, blank=0):
is_cuda = emissions.is_cuda
device = emissions.device
dtype = emissions.dtype
B, T, V = emissions.shape
U = predictions.shape[1]
certify_inputs(emissions, predictions, labels, input_lengths, label_lengths)
costs = torch.empty(size=(B,), device=device, dtype=dtype)
alphas = torch.empty(size=(B, T, U), device=device, dtype=dtype)
_transducer.forward(
emissions.data_ptr(),
predictions.data_ptr(),
costs.data_ptr(),
alphas.data_ptr(),
log_norms.data_ptr(),
labels.data_ptr(),
input_lengths.data_ptr(),
label_lengths.data_ptr(),
B, T, U, V, blank, is_cuda)
ctx.save_for_backward(
emissions, predictions, alphas, log_norms,
labels, input_lengths, label_lengths)
ctx.blank = blank
return costs
@staticmethod
def backward(ctx, cost):
is_cuda = cost.is_cuda
device = cost.device
dtype = cost.dtype
emissions, predictions, alphas, log_norms, labels, input_lengths, label_lengths = ctx.saved_tensors
B, T, V = emissions.shape
U = predictions.shape[1]
egrads = torch.empty(size=(B, T, V), device=device, dtype=dtype)
pgrads = torch.empty(size=(B, U, V), device=device, dtype=dtype)
lngrads = torch.empty(size=(B, T, U), device=device, dtype=dtype)
_transducer.backward(
emissions.data_ptr(),
predictions.data_ptr(),
egrads.data_ptr(),
pgrads.data_ptr(),
lngrads.data_ptr(),
alphas.data_ptr(),
log_norms.data_ptr(),
labels.data_ptr(),
input_lengths.data_ptr(),
label_lengths.data_ptr(),
B, T, U, V, ctx.blank, is_cuda)
return egrads, pgrads, lngrads, None, None, None, None
class TransducerLoss(torch.nn.Module):
"""
The RNN-T loss function.
The loss can run on either the CPU ar the GPU based on the location of the
input tensors. All input tensors must be on the same device.
Arguments:
blank (int, optional): Integer id of blank label (default is 0).
"""
def __init__(self, blank=0):
super(TransducerLoss, self).__init__()
self.blank = blank
def forward(self, emissions, predictions, labels, input_lengths, label_lengths):
"""
Arguments:
emissions (FloatTensor): 3D tensor containing unnormalized emission
scores with shape (minibatch, input length, vocab size).
predictions (FloatTensor): 3D tensor containing unnormalized prediction
scores with shape (minibatch, output length + 1, vocab size).
labels (IntTensor): 2D tensor of labels for each example of shape
(minibatch, output length). Shorter labels should be padded to the
length of the longest label.
input_lengths (IntTensor): 1D tensor containing the input lengths of
each example.
label_lengths (IntTensor): 1D tensor containing the label lengths of
each example.
Returns:
costs (FloatTensor): 1D tensor with shape (minibatch) containing the
scores for each example in the batch.
"""
maxEs = emissions.max(dim=2, keepdim=True)[0]
maxPs = predictions.max(dim=2, keepdim=True)[0]
log_norms = torch.log(torch.bmm(
torch.exp(emissions - maxEs),
torch.exp((predictions - maxPs)).transpose(1, 2)))
log_norms = log_norms + maxEs + maxPs.transpose(1, 2)
return Transducer.apply(
emissions, predictions, log_norms, labels, input_lengths, label_lengths, self.blank)
def viterbi(self, emissions, predictions, input_lengths, label_lengths):
"""
Performs viterbi decoding for the RNN-T graph (analagous to teacher forcing
in attention-based models). The predictions are computed using the previous
ground truth token and the lengths of the output are given.
The computation can be done on the CPU or GPU. The input tensors should be
on the same device.
Arguments:
emissions (FloatTensor): 3D tensor containing unnormalized emission
scores with shape (minibatch, input length, vocab size).
predictions (FloatTensor): 3D tensor containing unnormalized prediction
scores with shape (minibatch, output length + 1, vocab size).
input_lengths (IntTensor): 1D tensor containing the input lengths of
each example.
label_lengths (IntTensor): 1D tensor containing the label lengths of
each example.
Returns:
labels (IntTensor): 2D tensor with shape (minibatch, output length)
containing the predicted labels for each example in the batch. The labels
are arbitrarily padded to the maximum output length.
"""
is_cuda = emissions.is_cuda
device = emissions.device
B, T, V = emissions.shape
U = predictions.shape[1]
labels = torch.empty(size=(B, U - 1), device=device, dtype=torch.int32)
certify_inputs(emissions, predictions, labels, input_lengths, label_lengths)
_transducer.viterbi(
emissions.data_ptr(),
predictions.data_ptr(),
labels.data_ptr(),
input_lengths.data_ptr(),
label_lengths.data_ptr(),
B, T, U, V, self.blank, is_cuda)
return labels
def check_type(var, t, name):
if var.dtype is not t:
raise TypeError("{} must be {}".format(name, t))
def check_contiguous(var, name):
if not var.is_contiguous():
raise ValueError("{} must be contiguous".format(name))
def check_dim(var, dim, name):
if len(var.shape) != dim:
raise ValueError("{} must be {}D".format(name, dim))
def certify_inputs(emissions, predictions, labels, input_lengths, label_lengths):
check_type(emissions, torch.float32, "emissions")
check_type(predictions, torch.float32, "predictions")
check_type(labels, torch.int32, "labels")
check_type(input_lengths, torch.int32, "input_lengths")
check_type(label_lengths, torch.int32, "label_lengths")
check_contiguous(labels, "labels")
check_contiguous(label_lengths, "label_lengths")
check_contiguous(input_lengths, "lengths")
batchSize = emissions.shape[0]
if emissions.shape[2] != predictions.shape[2]:
raise ValueError("vocab size mismatch.")
if input_lengths.shape[0] != batchSize:
raise ValueError("must have a length per example.")
if label_lengths.shape[0] != batchSize:
raise ValueError("must have a label length per example.")
if labels.shape[0] != batchSize:
raise ValueError("must have a label per example.")
if labels.shape[1] != (predictions.shape[1] - 1):
raise ValueError("labels must be padded to maximum label length.")
check_dim(emissions, 3, "emissions")
check_dim(predictions, 3, "predictions")
check_dim(labels, 2, "labels")
check_dim(input_lengths, 1, "input_lengths")
check_dim(label_lengths, 1, "label_lengths")
max_T = torch.max(input_lengths)
max_U = torch.max(label_lengths)
T = emissions.shape[1]
U = predictions.shape[1]
if T != max_T:
raise ValueError("Input length mismatch")
if U < max_U + 1:
raise ValueError("Output length mismatch")