-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvariables.tf
104 lines (89 loc) · 2.92 KB
/
variables.tf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
variable "accuracy_mse_threshold" {
type = number
description = "Maximum value for mse before requiring an update to the model"
default = 10.0
}
variable "bucket_name" {
type = string
description = "The existing s3 bucket that is used to store the training data"
}
variable "bucket_prefix" {
type = string
description = "S3 srefix for all s3 data"
}
variable "bucket_inf_prefix" {
type = string
description = "S3 prefix for inference data"
}
variable "bucket_train_prefix" {
type = string
description = "S3 prefix for training data"
}
variable "custom_notification_config" {
description = "The custom notification message for specific SageMaker Model Building Pipeline steps with specific execution status"
type = list(object({
step_name = string
step_status = string
step_custom_message = string
}))
}
variable "email_recipient" {
type = list(string)
description = "The email address list for receiving Sagemaker pipeline notification messages"
}
variable "kms_key" {
type = string
description = "KMS key ARN for s3 and SageMaker pipeline encryption"
}
variable "model_package_group_name" {
type = string
description = "Name of the model used in the SageMaker pipelines"
}
variable "notification_function_name" {
type = string
description = "Name of the Sagemaker domain module email notification lambda function"
default = "pipeline-notification-lambda"
}
variable "pipeline_trainwhpo" {
type = string
description = "Name of training pipeline with hyper parameter optimization"
default = "TrainingWHPOPipeline"
}
variable "pipeline_train" {
type = string
description = "The name of Sagemaker training pipeline"
default = "TrainingPipeline"
}
variable "pipeline_inf" {
type = string
description = "The name of Sagemaker inference pipeline"
default = "InferencePipeline"
}
variable "recreate_pipelines" {
type = string
description = "If set to true, any existing Sagemaker Pipelines will be deleted prior to creation"
default = true
}
variable "role_arn" {
type = string
description = "The IAM resource arn of the Sagemaker pipeline role"
}
variable "upload_training_data" {
type = bool
description = "If set to true, training data will be uploaded to s3 and this upload operation will trigger the training pipeline to execute"
default = true
}
variable "upload_inference_data" {
type = bool
description = "If set to true, inference data will be uploaded to s3 and this upload operation will trigger the inference pipeline to execute"
default = false
}
variable "user_id" {
type = string
description = "The id of current SageMaker user, eg a12345. This can be used to distinguish between different users"
}
variable "tags" {
type = map(string)
description = "Resource Tags"
default = {}
}