-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcode.html
2478 lines (2090 loc) · 875 KB
/
code.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title></title>
<script type="text/javascript">
window.onload = function() {
var imgs = document.getElementsByTagName('img'), i, img;
for (i = 0; i < imgs.length; i++) {
img = imgs[i];
// center an image if it is the only element of its parent
if (img.parentElement.childElementCount === 1)
img.parentElement.style.textAlign = 'center';
}
};
</script>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: #990073
}
pre .number {
color: #099;
}
pre .comment {
color: #998;
font-style: italic
}
pre .keyword {
color: #900;
font-weight: bold
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: #d14;
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 13px;
}
body {
max-width: 800px;
margin: auto;
padding: 1em;
line-height: 20px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre, img {
max-width: 100%;
}
pre {
overflow-x: auto;
}
pre code {
display: block; padding: 0.5em;
}
code {
font-size: 92%;
border: 1px solid #ccc;
}
code[class] {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<pre><code class="r">### IMPLEMENTING APPROXIMATE BAYESIAN INFERENCE USINGN ADAPTIVE QUADRATURE: THE AGHQ PACKAGE ###
# This script reproduces the results in that paper
# See https://github.com/awstringer1/aghq-software-paper-code for README
# Alex Stringer
# 2021/05/11
#
# IMPORTANT NOTES:
# - Use CRAN version 2.1 of aghq.
# - The script depends on external resources only through the following two lines (1024, 1025):
# cameroonBorderLL = raster::getData("GADM", country=c('CMR'), level=2)
# nigeriaBorderLL = raster::getData("GADM", country=c('NGA'), level=2)
# I have observed a small number of times that the server where this pulls data from has been down.
# If this happens, it usually comes back up in a day or so.
# - The compilation of the TMB templates creates a ton of output from the compiler. Each
# template can take a few minutes at least to compile.
#
# TIMING:
# - The most recent testing on a private Ubuntu server yielded run times as follows:
# - Example 2: <10s
# - Example 4.1: 6m24s
# - Example 4.2: 5m43s
# - Example 5.1: 47m50s
# - Example 5.2: 10m44s
# - Example 6.1: 11s
#
# - The only operation that takes a long time is the MCMC within Example 5.1.
# To skip Example 5.1, set dofast = TRUE
dofast = FALSE
#
# VARIABLES TO SET:
# Example 5.2:
# Set the resolution for the spatial interpolations.
# The results shown in the paper use:
# reslist <- list(nrow = 200,ncol = 400)
# but this takes a couple hours. Here I set:
reslist <- list(nrow = 50,ncol = 100)
# which is faster but produces a blockier map.
# So some plots show up properly in the spinning:
par(mar = c(5,5,0,0))
## Check for missing packages ----
# The astro example requires ipoptr, and IPOPT (https://coin-or.github.io/Ipopt/INSTALL.html).
# This is a laborious installation.
# If you want to not run the astro example set doastro = FALSE
doastro <- TRUE
if (!('ipoptr' %in% installed.packages()[ ,'Package'])) {
warning("No installation of ipoptr found. Skipping the astro example.\n")
doastro <- FALSE
}
# Obtain the disease example data
# If can't obtain, then skip that example
dodisease <- TRUE
if (dodisease) {
# Get the Tomato disease data
if (require('EpiILMCT')) {
data("tswv", package = "EpiILMCT")
} else {
download.file("https://github.com/waleedalmutiry/EpiILMCT/blob/master/data/tswv.RData?raw=true",destfile = file.path(globalpath,"tomato.RData"))
load(file.path(globalpath,'tomato.RData'))
}
if (!exists('tswv')) {
warning('You asked to do the disease example but the data cannot be obtained. This is either because you do not have the EpiILMCT package installed or because something is preventing downloading the data from github on https using download.file(). In any event, skipping the disease example.\n')
dodisease <- FALSE
}
}
</code></pre>
<pre><code>## Loading required package: EpiILMCT
</code></pre>
<pre><code>## Loading required package: coda
</code></pre>
<pre><code>## Loading required package: parallel
</code></pre>
<pre><code class="r"># See if INLA is installed.
# If INLA is not installed then cannot compare to it in the loaloa example so skip it.
doloaloa <- TRUE
if (!('INLA' %in% installed.packages()[ ,'Package'])) {
warning("No installation of INLA found. Skipping the loaloa example.\n")
doloaloa <- FALSE
}
# But, don't do loaloa if the dofast flag is TRUE
if (dofast) doloaloa <- FALSE
## Install and load packages ----
# Check if installed
neededpackages <- c(
'aghq',
'TMB',
'tmbstan',
'parallel',
'glmmTMB',
'geostatsp',
'PrevMap',
'geoR',
'trustOptim',
'numDeriv'
)
missingpackages <- setdiff(neededpackages,installed.packages()[ ,'Package'])
if (length(missingpackages)) stop(paste0("Missing the following packages, please install: ",missingpackages,"\n"))
# Code for users to run interactively, if they like
if (FALSE) {
install.packages(missingpackages)
}
library(aghq)
library(TMB)
precompile()
</code></pre>
<pre><code>## Removing: libTMB.cpp libTMB.o libTMBdbg.cpp libTMBomp.cpp
</code></pre>
<pre><code>## Precompilation sources generated
</code></pre>
<pre><code class="r">library(tmbstan)
</code></pre>
<pre><code>## Loading required package: rstan
</code></pre>
<pre><code>## Loading required package: StanHeaders
</code></pre>
<pre><code>## Loading required package: ggplot2
</code></pre>
<pre><code>## rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)
</code></pre>
<pre><code>## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
</code></pre>
<pre><code>##
## Attaching package: 'rstan'
</code></pre>
<pre><code>## The following object is masked from 'package:coda':
##
## traceplot
</code></pre>
<pre><code class="r">library(parallel)
options(mc.cores = parallel::detectCores())
library(Matrix)
library(glmmTMB)
library(geostatsp)
</code></pre>
<pre><code>## Loading required package: raster
</code></pre>
<pre><code>## Loading required package: sp
</code></pre>
<pre><code>##
## Attaching package: 'raster'
</code></pre>
<pre><code>## The following object is masked from 'package:rstan':
##
## extract
</code></pre>
<pre><code class="r">library(PrevMap)
</code></pre>
<pre><code>## Loading required package: maxLik
</code></pre>
<pre><code>## Loading required package: miscTools
</code></pre>
<pre><code>##
## Please cite the 'maxLik' package as:
## Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.
##
## If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site:
## https://r-forge.r-project.org/projects/maxlik/
</code></pre>
<pre><code>##
## Attaching package: 'maxLik'
</code></pre>
<pre><code>## The following object is masked from 'package:raster':
##
## maxValue
</code></pre>
<pre><code>## Loading required package: pdist
</code></pre>
<pre><code class="r">library(geoR)
</code></pre>
<pre><code>## Warning: no DISPLAY variable so Tk is not available
</code></pre>
<pre><code>## --------------------------------------------------------------
## Analysis of Geostatistical Data
## For an Introduction to geoR go to http://www.leg.ufpr.br/geoR
## geoR version 1.8-1 (built on 2020-02-08) is now loaded
## --------------------------------------------------------------
</code></pre>
<pre><code>##
## Attaching package: 'geoR'
</code></pre>
<pre><code>## The following objects are masked from 'package:geostatsp':
##
## matern, variog
</code></pre>
<pre><code class="r">## Set up the directory structure ----
# Each example gets its own directory within the tempdir()
globalpath <- tempdir()
## Example 2: Basic Use ----
plotpath <- file.path(globalpath,"basic-use")
if (!dir.exists(plotpath)) dir.create(plotpath)
set.seed(84343124)
y <- rpois(10,5) # True lambda = 5, n = 10
# Define the log posterior, log(pi(theta,y)) here
logpithetay <- function(theta,y) {
sum(y) * theta - (length(y) + 1) * exp(theta) - sum(lgamma(y+1)) + theta
}
objfunc <- function(x) logpithetay(x,y)
objfuncgrad <- function(x) numDeriv::grad(objfunc,x)
objfunchess <- function(x) numDeriv::hessian(objfunc,x)
# Now create the list to pass to aghq()
funlist <- list(
fn = objfunc,
gr = objfuncgrad,
he = objfunchess
)
# AGHQ with k = 3
# Use theta = 0 as a starting value
thequadrature <- aghq::aghq(ff = funlist,k = 3,startingvalue = 0)
summary(thequadrature)
</code></pre>
<pre><code>## AGHQ on a 1 dimensional posterior with 3 quadrature points
##
## The posterior mode is: 1.493925
##
## The log of the normalizing constant/marginal likelihood is: -23.32123
##
## The posterior Hessian at the mode is:
## [,1]
## [1,] 49
##
## The covariance matrix used for the quadrature is...
## [,1]
## [1,] 0.02040816
##
## ...and its Cholesky is:
## [,1]
## [1,] 0.1428571
##
## Here are some moments and quantiles for theta:
##
## mean median mode sd 2.5% 97.5%
## theta1 1.483742 1.482532 1.493925 0.1424943 1.204135 1.762909
</code></pre>
<pre><code class="r">plot(thequadrature)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-1"/><img src="" alt="plot of chunk unnamed-chunk-1"/></p>
<pre><code class="r"># The posterior
thequadrature$normalized_posterior$nodesandweights
</code></pre>
<pre><code>## theta1 weights logpost logpost_normalized
## 1 1.246489 0.2674745 -23.67784 -0.3566038
## 2 1.493925 0.2387265 -22.29426 1.0269677
## 3 1.741361 0.2674745 -23.92603 -0.6047982
</code></pre>
<pre><code class="r"># The log normalization constant:
thequadrature$normalized_posterior$lognormconst
</code></pre>
<pre><code>## [1] -23.32123
</code></pre>
<pre><code class="r"># Compare to the truth:
lgamma(1 + sum(y)) - (1 + sum(y)) * log(length(y) + 1) - sum(lgamma(y+1))
</code></pre>
<pre><code>## [1] -23.31954
</code></pre>
<pre><code class="r"># Quite accurate with only n = 10 and k = 3; this example is very simple.
# The mode found by the optimization:
thequadrature$optresults$mode
</code></pre>
<pre><code>## [1] 1.493925
</code></pre>
<pre><code class="r"># The true mode:
log((sum(y) + 1)/(length(y) + 1))
</code></pre>
<pre><code>## [1] 1.493925
</code></pre>
<pre><code class="r"># Compute the pdf for theta
transformation <- list(totheta = log,fromtheta = exp)
pdfwithlambda <- compute_pdf_and_cdf(
thequadrature,
transformation = transformation
)[[1]]
head(pdfwithlambda,n = 2)
</code></pre>
<pre><code>## theta pdf cdf transparam pdf_transparam
## 1 0.9990534 0.008604132 0.000000e+00 2.715710 0.003168281
## 2 1.0000441 0.008809832 8.728201e-06 2.718402 0.003240813
</code></pre>
<pre><code class="r">lambdapostsamps <- sample_marginal(thequadrature,1e04,transformation = transformation)[[1]]
# Plot along with the true posterior
# pdf(file = file.path(plotpath,'lambda-post-plot.pdf'))
with(pdfwithlambda,{
hist(lambdapostsamps,breaks = 50,freq = FALSE,main = "",xlab = expression(lambda))
lines(transparam,pdf_transparam)
lines(transparam,dgamma(transparam,1+sum(y),1+length(y)),lty='dashed')
})
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-1"/></p>
<pre><code class="r"># dev.off()
# Check if the posterior integrates to 1, by computing the "moment" of "1":
compute_moment(thequadrature$normalized_posterior,
ff = function(x) 1)
</code></pre>
<pre><code>## [1] 1
</code></pre>
<pre><code class="r"># Posterior mean for theta:
compute_moment(thequadrature$normalized_posterior,
ff = function(x) x)
</code></pre>
<pre><code>## [1] 1.483742
</code></pre>
<pre><code class="r"># Posterior mean for lambda = exp(theta)
compute_moment(thequadrature$normalized_posterior,
ff = function(x) exp(x))
</code></pre>
<pre><code>## [1] 4.454407
</code></pre>
<pre><code class="r"># Compare to the truth:
(sum(y) + 1)/(length(y) + 1)
</code></pre>
<pre><code>## [1] 4.454545
</code></pre>
<pre><code class="r"># Quantiles
compute_quantiles(
thequadrature,
q = c(.01,.25,.50,.75,.99),
transformation = transformation
)[[1]]
</code></pre>
<pre><code>## 1% 25% 50% 75% 99%
## 3.166469 4.000544 4.404081 4.848323 6.149735
</code></pre>
<pre><code class="r"># The truth:
qgamma(c(.01,.25,.50,.75,.99),1+sum(y),1+length(y))
</code></pre>
<pre><code>## [1] 3.108896 4.010430 4.424279 4.865683 6.067076
</code></pre>
<pre><code class="r">#### END EXAMPLE 2 ####
## Example 4.1: Infectious Disease Modelling ----
if (dodisease) {
set.seed(8097968)
# use temp dirs
plotpath <- file.path(globalpath,"disease")
if (!dir.exists(plotpath)) dir.create(plotpath)
datapath <- plotpath
# the TMB template is part of the package. move it to a temp dir
# for compiling since this generates a bunch of new files
file.copy(system.file('extsrc/02_disease.cpp',package='aghq'),globalpath)
# Compile TMB template-- only need to do once
compile(file.path(globalpath,"02_disease.cpp"))
dyn.load(dynlib(file.path(globalpath,"02_disease")))
# Create the functions
dat <- tswv$tswvsir
dat$epidat <- dat$epidat[order(dat$epidat[ ,4]), ]
I <- dat$epidat[ ,4]
R <- dat$epidat[ ,2]
infected <- !is.infinite(I)
datlist <- list(
D = as.matrix(dist(dat$location[dat$epidat[ ,1], ])),
I = I,
R = R,
infected = as.numeric(infected[infected])
)
ff <- MakeADFun(data = datlist,
parameters = list(theta1 = 0,theta2 = 0),
DLL = "02_disease",
ADreport = FALSE,
silent = TRUE)
## Inference ----
# AGHQ
tm <- Sys.time()
quadmod <- aghq(ff,9,c(0,0),control = default_control(negate = TRUE))
aghqtime <- difftime(Sys.time(),tm,units='secs')
# STAN
stanmod <- tmbstan(
ff,
chains = 4,
cores = 4,
iter = 1e04,
warmup = 1e03,
init = quadmod$optresults$mode,
seed = 124698,
algorithm = "NUTS"
)
# save(stanmod,file = file.path(datapath,"disease-stanmod-20210503.RData"))
# load(file.path(globalpath,"data/disease-stanmod-20210405.RData"))
## Summarize ----
# pdf(file = file.path(plotpath,"stanmod-trace.pdf"),width=7,height=7)
# traceplot(stanmod,window = c(9000,10000))
# dev.off()
# Run time
max(get_elapsed_time(stanmod)[,2])
# Number of iterations
as.numeric(aghqtime) * stanmod@sim$iter / max(get_elapsed_time(stanmod)[,2])
stansamps <- as.data.frame(stanmod)
stansamps$alpha <- exp(stansamps$`par[1]`)
stansamps$beta <- exp(stansamps$`par[2]`)
posttrans <- list(totheta = log,fromtheta = exp)
quaddens <- compute_pdf_and_cdf(quadmod,posttrans)
quaddensalpha <- quaddens[[1]]
quaddensbeta <- quaddens[[2]]
# alpha
# pdf(file.path(plotpath,"alpha-postplot.pdf"),width=7,height=7)
hist(stansamps$alpha,freq=FALSE,breaks=50,main = "",xlab = "",cex.lab=1.5,cex.axis = 1.5)
with(quaddensalpha,lines(transparam,pdf_transparam))
# dev.off()
# beta
# pdf(file.path(plotpath,"beta-postplot.pdf"),width=7,height=7)
hist(stansamps$beta,freq=FALSE,breaks=50,main = "",xlab = "",cex.lab=1.5,cex.axis = 1.5)
with(quaddensbeta,lines(transparam,pdf_transparam))
# dev.off()
# summary stats
moms <- compute_moment(quadmod,function(x) exp(x))
getks <- function(x,y) {
suppressWarnings(capture.output(ks <- ks.test(x,y)))
unname(ks$statistic)
}
M <- nrow(stansamps)
quadsamps <- sample_marginal(quadmod,M)
summstats <- data.frame(
stat = c('mean','sd','q2.5','q97.5','KS'),
alphamcmc = c(
mean(stansamps$alpha),
sd(stansamps$alpha),
quantile(stansamps$alpha,c(.025,.975)),
NA
),
alphaaghq = c(
moms[1],
sqrt( compute_moment(quadmod$normalized_posterior,function(x) ( (exp(x)[1] - moms[1])^2 )) ),
exp(compute_quantiles(quadmod$marginals[[1]])),
getks(stansamps$`par[1]`,quadsamps[[1]])
),
betamcmc = c(
mean(stansamps$beta),
sd(stansamps$beta),
quantile(stansamps$beta,c(.025,.975)),
NA
),
betaaghq = c(
moms[2],
sqrt( compute_moment(quadmod$normalized_posterior,function(x) ( (exp(x)[2] - moms[2])^2 )) ),
exp(compute_quantiles(quadmod$marginals[[2]])),
getks(stansamps$`par[2]`,quadsamps[[2]])
)
)
# readr::write_csv(summstats,file.path(plotpath,"summstattable.csv"))
knitr::kable(summstats,digits = 3)
# Joint moment
compute_moment(
quadmod,
function(x) exp(x)[1] * 2^(-exp(x)[2])
)
mean(stansamps$alpha * 2^(-stansamps$beta))
#### END EXAMPLE 4.1 ####
}
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-1"/><img src="" alt="plot of chunk unnamed-chunk-1"/></p>
<pre><code>## [1] 0.004809063
</code></pre>
<pre><code class="r">if (doastro) {
## Example 4.2: Galactic Mass Estimation ----
set.seed(563478)
plotpath <- file.path(globalpath,"astro")
if (!dir.exists(plotpath)) dir.create(plotpath)
# the TMB template is part of the package. move it to a temp dir
# for compiling since this generates a bunch of new files
file.copy(system.file('extsrc/01_astro.cpp',package='aghq'),globalpath)
# Compile TMB template-- only need to do once
compile(file.path(globalpath,"01_astro.cpp"))
data("gcdatalist",package = 'aghq')
dyn.load(dynlib(file.path(globalpath,"01_astro")))
# Function and its derivatives
ff <- MakeADFun(data = gcdatalist,
parameters = list(theta1 = 0,
theta2 = 0,
theta3 = 0,
theta4 = 0
),
DLL = "01_astro",
ADreport = FALSE,
silent = TRUE)
# Nonlinear constraints and their jacobian
Es <- MakeADFun(data = gcdatalist,
parameters = list(theta1 = 0,
theta2 = 0,
theta3 = 0,
theta4 = 0
),
DLL = "01_astro",
ADreport = TRUE,
silent = TRUE)
## Parameter transformations ##
parambounds <- list(
Psi0 = c(1,200),
gamma = c(.3,.7),
alpha = c(3.0,3.7),
beta = c(-.5,1)
)
get_psi0 <- function(theta) {
# theta = -log( (Psi0 - 1) / (200 - 1) )
(parambounds$Psi0[2] - parambounds$Psi0[1]) *
exp(-exp(theta)) + parambounds$Psi0[1]
}
get_theta1 <- function(Psi0) log(
-log(
(Psi0 - parambounds$Psi0[1]) / (parambounds$Psi0[2] - parambounds$Psi0[1])
)
)
get_gamma <- function(theta) {
# theta = -log( (gamma - .3) / (.7 - .3) )
(parambounds$gamma[2] - parambounds$gamma[1]) *
exp(-exp(theta)) + parambounds$gamma[1]
}
get_theta2 <- function(gamma) log(
-log(
(gamma - parambounds$gamma[1]) / (parambounds$gamma[2] - parambounds$gamma[1])
)
)
get_alpha <- function(theta) {
# theta = log(alpha - 3)
exp(theta) + parambounds$alpha[1]
}
get_theta3 <- function(alpha) log(alpha - parambounds$alpha[1])
get_beta <- function(theta) {
# theta = -log( (beta - (-.5)) / (1 - (-.5)) )
(parambounds$beta[2] - parambounds$beta[1]) *
exp(-exp(theta)) + parambounds$beta[1]
}
get_theta4 <- function(beta) log(
-log(
(beta - parambounds$beta[1]) / (parambounds$beta[2] - parambounds$beta[1])
)
)
## Optimization using IPOPT ##
# The template returns the NEGATIVE log posterior
# So leave these as negatives. IPOPT will minimize.
ipopt_objective <- function(theta) ff$fn(theta)
ipopt_objective_gradient <- function(theta) ff$gr(theta)
ipopt_objective_hessian <- function(theta) {
H <- forceSymmetric(ff$he(theta))
H <- as(H,"dsTMatrix")
H
}
ipopt_objective_hessian_x <- function(theta,obj_factor,hessian_lambda)
obj_factor * ipopt_objective_hessian(theta)@x
ipopt_objective_hessian_structure <- function(theta) {
H <- ipopt_objective_hessian(theta)
H <- as(forceSymmetric(H),'dsTMatrix')
forStruct = cbind(H@i+1, H@j+1)
tapply(forStruct[,1], forStruct[,2], c)
}
# Box constraints, to improve stability of optimization
lowerbounds <- c(
get_theta1(parambounds$Psi0[2] - .001),
get_theta2(parambounds$gamma[2] - .001),
get_theta3(parambounds$alpha[1] + .001),
get_theta4(parambounds$beta[2] - .001)
)
upperbounds <- c(
get_theta1(parambounds$Psi0[1] + 1),
get_theta2(parambounds$gamma[1] + .01),
get_theta3(parambounds$alpha[2] - .01),
get_theta4(parambounds$beta[1] + .01)
)
thetastart <- (lowerbounds + upperbounds)/2 # Start in the middle
# Nonlinear constraints, specified as a function
ipopt_nonlinear_constraints <- function(theta) Es$fn(theta)
ipopt_nonlinear_constraints_jacobian <- function(theta) {
J <- Es$gr(theta)
as(J,"dgTMatrix")
}
ipopt_nonlinear_constraints_jacobian_x <- function(theta)
ipopt_nonlinear_constraints_jacobian(theta)@x
ipopt_nonlinear_constraints_jacobian_structure <- function(theta) {
J <- ipopt_nonlinear_constraints_jacobian(theta)
J <- as(J,'dgTMatrix')
forStruct = cbind(J@i+1, J@j+1)
tapply(forStruct[,2], forStruct[,1], c)
}
nonlinear_lowerbound <- rep(0,nrow(gcdatalist$y)+2)
nonlinear_upperbound <- rep(Inf,nrow(gcdatalist$y)+2)
stopifnot(all(ipopt_nonlinear_constraints(thetastart) > 0))
tm <- Sys.time()
ipopt_result <- ipoptr::ipoptr(
x0 = thetastart,
eval_f = ipopt_objective,
eval_grad_f = ipopt_objective_gradient,
eval_h = ipopt_objective_hessian_x,
eval_h_structure = ipopt_objective_hessian_structure(thetastart),
eval_g = ipopt_nonlinear_constraints,
eval_jac_g = ipopt_nonlinear_constraints_jacobian_x,
eval_jac_g_structure = ipopt_nonlinear_constraints_jacobian_structure(thetastart),
lb = lowerbounds,
ub = upperbounds,
constraint_lb = nonlinear_lowerbound,
constraint_ub = nonlinear_upperbound,
opts = list(obj_scaling_factor = 1,
tol = 1e-03)
)
optruntime <- difftime(Sys.time(),tm,units = 'secs')
cat('Run time for mass model optimization:',optruntime,'seconds.\n')
## AGHQ ----
# Create the optimization template
useropt <- list(
ff = list(
fn = function(theta) -1*ff$fn(theta),
gr = function(theta) -1*ff$gr(theta),
he = function(theta) -1*ff$he(theta)
),
mode = ipopt_result$solution,
hessian = ff$he(ipopt_result$solution)
)
# Do the quadrature
tm <- Sys.time()
astroquad <- aghq::aghq(ff,5,thetastart,optresults = useropt,control = default_control(negate=TRUE))
quadruntime <- difftime(Sys.time(),tm,units = 'secs')
cat("Run time for mass model quadrature:",quadruntime,"seconds.\n")
# Total runtime
aghqtime <- optruntime + quadruntime
## MCMC ----
tm <- Sys.time()
stanmod <- tmbstan(
ff,
chains = 4,
cores = 4,
iter = 1e04,
warmup = 1e03,
init = thetastart,
seed = 48645,
algorithm = "NUTS"
)
stantime <- difftime(Sys.time(),tm,units = 'secs')
# Save the traceplot
# pdf(file = file.path(plotpath,"stan-trace.pdf"),width = 7,height = 7)
# traceplot(stanmod)
# dev.off()
## TMB ----
tm <- Sys.time()
tmbsd <- TMB::sdreport(ff)
tmbtime <- difftime(Sys.time(),tm,units = "secs")
tmbsddat <- data.frame(var = paste0('theta',1:4),est = tmbsd$par.fixed,sd = sqrt(diag(tmbsd$cov.fixed)))
rownames(tmbsddat) <- NULL
# Times
# AGHQ
as.numeric(aghqtime) * stanmod@sim$iter / as.numeric(stantime)
# TMB
as.numeric(optruntime) * stanmod@sim$iter / as.numeric(stantime)
# Redefine parameters functions for plotting
get_psi0 <- function(theta)
(parambounds$Psi0[2] - parambounds$Psi0[1]) *
exp(-exp(theta)) + parambounds$Psi0[1]
get_theta1 <- function(Psi0)
log(-log( (Psi0 - parambounds$Psi0[1]) /
(parambounds$Psi0[2] - parambounds$Psi0[1]) ))
get_gamma <- function(theta)
(parambounds$gamma[2] - parambounds$gamma[1]) *
exp(-exp(theta)) + parambounds$gamma[1]
# Add a little buffer, for stability
get_theta2 <- function(gamma)
log(-log( (gamma - parambounds$gamma[1] + 1e-03) /
(parambounds$gamma[2] - parambounds$gamma[1] + 1e-03) ))
get_alpha <- function(theta)
exp(theta) + parambounds$alpha[1]
# Add a little buffer, for stability
get_theta3 <- function(alpha)
log(alpha - parambounds$alpha[1] + 1e-03)