-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathbfuse8.rs
188 lines (161 loc) · 5.88 KB
/
bfuse8.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
//! Implements BinaryFuse8 filters.
use crate::{bfuse_contains_impl, bfuse_from_impl, Filter};
use alloc::{boxed::Box, vec::Vec};
use core::convert::TryFrom;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "bincode")]
use bincode::{Decode, Encode};
/// A `BinaryFuse8` filter is an Xor-like filter with 8-bit fingerprints arranged in a binary-partitioned [fuse graph].
/// `BinaryFuse8`s are similar to [`Fuse8`]s, but their construction is faster, uses less
/// memory, and is more likely to succeed.
///
/// A `BinaryFuse8` filter uses ≈9 bits per entry of the set is it constructed from, and has a false
/// positive rate of ≈2^-8 (<0.4%). As with other probabilistic filters, a higher number of entries decreases
/// the bits per entry but increases the false positive rate.
///
/// A `BinaryFuse8` is constructed from a set of 64-bit unsigned integers and is immutable.
/// Construction may fail, but usually only if there are duplicate keys.
///
/// ```
/// # extern crate alloc;
/// use xorf::{Filter, BinaryFuse8};
/// use core::convert::TryFrom;
/// # use alloc::vec::Vec;
/// # use rand::Rng;
///
/// # let mut rng = rand::thread_rng();
/// const SAMPLE_SIZE: usize = 1_000_000;
/// let keys: Vec<u64> = (0..SAMPLE_SIZE).map(|_| rng.gen()).collect();
/// let filter = BinaryFuse8::try_from(&keys).unwrap();
///
/// // no false negatives
/// for key in keys {
/// assert!(filter.contains(&key));
/// }
///
/// // bits per entry
/// let bpe = (filter.len() as f64) * 8.0 / (SAMPLE_SIZE as f64);
/// assert!(bpe < 9.1, "Bits per entry is {}", bpe);
///
/// // false positive rate
/// let false_positives: usize = (0..SAMPLE_SIZE)
/// .map(|_| rng.gen())
/// .filter(|n| filter.contains(n))
/// .count();
/// let fp_rate: f64 = (false_positives * 100) as f64 / SAMPLE_SIZE as f64;
/// assert!(fp_rate < 0.406, "False positive rate is {}", fp_rate);
/// ```
///
/// Serializing and deserializing `BinaryFuse8` filters can be enabled with the [`serde`] feature (or [`bincode`] for bincode).
///
/// [fuse graph]: https://arxiv.org/abs/1907.04749
/// [`Fuse8`]: crate::Fuse8
/// [`serde`]: http://serde.rs
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bincode", derive(Encode, Decode))]
#[derive(Debug, Clone)]
pub struct BinaryFuse8 {
seed: u64,
segment_length: u32,
segment_length_mask: u32,
segment_count_length: u32,
/// The fingerprints for the filter
pub fingerprints: Box<[u8]>,
}
impl Filter<u64> for BinaryFuse8 {
/// Returns `true` if the filter contains the specified key.
/// Has a false positive rate of <0.4%.
/// Has no false negatives.
fn contains(&self, key: &u64) -> bool {
bfuse_contains_impl!(*key, self, fingerprint u8)
}
fn len(&self) -> usize {
self.fingerprints.len()
}
}
impl BinaryFuse8 {
/// Try to construct the filter from a key iterator. Can be used directly
/// if you don't have a contiguous array of u64 keys.
///
/// Note: the iterator will be iterated over multiple times while building
/// the filter. If using a hash function to map the key, it may be cheaper
/// just to create a scratch array of hashed keys that you pass in.
pub fn try_from_iterator<T>(keys: T) -> Result<Self, &'static str>
where
T: ExactSizeIterator<Item = u64> + Clone,
{
bfuse_from_impl!(keys fingerprint u8, max iter 1_000)
}
}
impl TryFrom<&[u64]> for BinaryFuse8 {
type Error = &'static str;
fn try_from(keys: &[u64]) -> Result<Self, Self::Error> {
Self::try_from_iterator(keys.iter().copied())
}
}
impl TryFrom<&Vec<u64>> for BinaryFuse8 {
type Error = &'static str;
fn try_from(v: &Vec<u64>) -> Result<Self, Self::Error> {
Self::try_from_iterator(v.iter().copied())
}
}
impl TryFrom<Vec<u64>> for BinaryFuse8 {
type Error = &'static str;
fn try_from(v: Vec<u64>) -> Result<Self, Self::Error> {
Self::try_from_iterator(v.iter().copied())
}
}
#[cfg(test)]
mod test {
use crate::{BinaryFuse8, Filter};
use core::convert::TryFrom;
use alloc::vec::Vec;
use rand::Rng;
#[test]
fn test_initialization() {
const SAMPLE_SIZE: usize = 1_000_000;
let mut rng = rand::thread_rng();
let keys: Vec<u64> = (0..SAMPLE_SIZE).map(|_| rng.gen()).collect();
let filter = BinaryFuse8::try_from(&keys).unwrap();
for key in keys {
assert!(filter.contains(&key));
}
}
#[test]
fn test_bits_per_entry() {
const SAMPLE_SIZE: usize = 1_000_000;
let mut rng = rand::thread_rng();
let keys: Vec<u64> = (0..SAMPLE_SIZE).map(|_| rng.gen()).collect();
let filter = BinaryFuse8::try_from(&keys).unwrap();
let bpe = (filter.len() as f64) * 8.0 / (SAMPLE_SIZE as f64);
assert!(bpe < 9.1, "Bits per entry is {}", bpe);
}
#[test]
fn test_false_positives() {
const SAMPLE_SIZE: usize = 1_000_000;
let mut rng = rand::thread_rng();
let keys: Vec<u64> = (0..SAMPLE_SIZE).map(|_| rng.gen()).collect();
let filter = BinaryFuse8::try_from(&keys).unwrap();
let false_positives: usize = (0..SAMPLE_SIZE)
.map(|_| rng.gen())
.filter(|n| filter.contains(n))
.count();
let fp_rate: f64 = (false_positives * 100) as f64 / SAMPLE_SIZE as f64;
assert!(fp_rate < 0.406, "False positive rate is {}", fp_rate);
}
#[test]
#[cfg(debug_assertions)]
#[should_panic(
expected = "Binary Fuse filters must be constructed from a collection containing all distinct keys."
)]
fn test_debug_assert_duplicates() {
let _ = BinaryFuse8::try_from(vec![1, 2, 1]);
}
#[test]
fn test_build_failure_with_subtraction_overflow() {
let key = rand::random();
let filter = BinaryFuse8::try_from(vec![key]).unwrap();
assert!(filter.contains(&key));
}
}