-
Notifications
You must be signed in to change notification settings - Fork 4
/
dlt2dlclabels.py
240 lines (209 loc) · 11 KB
/
dlt2dlclabels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
This is a simpler function that uses data digitized in Argus or DLTdv and applies it as labels to extracted frames in DLC.
IMPORTANT: use deeplabcut to create a project, add videos, and extract the frames. Use this simply to bypass the label_frames function of deeplabcut.
Extracting frames in deeplabcut creates images in the labeled-data folder in a dlc project
This function pulls labels for those frames from DLTdv or Argus based DLT 3D projects, one camera at a time.
This is written to only work with deeplabcut multianimal projects (even if only one individual animal)
and for now it considers all labels to apply to individual 1, so only pass it videos with one animal in view
After running, you can open the labeling GUI in deeplabcut to check, edit, and add labels, or run dlc.check_labels to make sure everything imported properly.
VERY IMPORTANT: Argus/DLTdv track names must exactly match DLC bodyparts (in config) for this to work. You can edit config or the xypts.csv file header to make them match if you need.
If you go back to Argus/DLTdv and digitize new frames/points, you have two options
1. delete the Collected_Data_...h5 file in labeled-data/camerafolder to fully reimport. This is your only option if you "correct" points in Argus/DLT
2. If you are adding frames/points from DLT, but already made corrections in the label frames GUI in DLC, add -addbp to the command line call
Author: Brandon E. Jackson, Ph.D.
email: [email protected]
Last edited: 15 June 2022
"""
import argparse
import pandas as pd
import numpy as np
from pathlib import Path
import os
import re
import warnings
from deeplabcut.utils.auxiliaryfunctions import read_config
from deeplabcut.utils import conversioncode
warnings.filterwarnings('ignore', category=pd.io.pytables.PerformanceWarning)
# TODO: set up to call deeplabcut functions for "add video" and "extract frames", including manually passing a set of frame numbers
def dlt2dlclabels(config, xyfname, vid, cnum, offset, flipy=True, ind=0, addbp=False, cleanup=False):
# make paths into Paths
config=Path(config)
xyfname=Path(xyfname)
vid=Path(vid)
camname=vid.stem
#load dlc config
cfg = read_config(config)
labdir = Path(cfg['project_path']) / 'labeled-data' / camname
scorer = cfg['scorer']
ma = cfg['multianimalproject']
if ma:
individuals = cfg['individuals']
indiv = individuals[ind]
bodyparts = cfg['multianimalbodyparts']
else:
bodyparts=cfg['bodyparts']
coords = ['x', 'y']
# load xypts file to dataframe
xypts = pd.read_csv(xyfname)
xypts = xypts.astype('float64')
# make all columns lowercase for argus DLT compatibility
xypts.columns = [c.lower() for c in xypts.columns]
# just get the columns for this camera
camstr = 'cam_{}_'.format(cnum)
thiscam = [x for x in xypts.columns if camstr in x]
if len(thiscam ) ==0:
#DLTdv8 naming
camstr = 'cam{}_'.format(cnum)
thiscam = [x for x in xypts.columns if camstr in x]
xypts = xypts[thiscam]
newcols = {}
# store track name and column index - start of tracks - in dict
for i in range(0, len(xypts.columns), 2):
newcol = xypts.columns[i].split('_')[0]
newcols[newcol]=i
# find existing ./CollectedData_scorerintitials.h5 in labdir
colldata = list(labdir.glob('**/CollectedData_*.h5'))
# find extracted images
imgs = list(labdir.glob('**/*.png'))
# if the labeled data file has NOT already been created with DLC label frames function
if len(colldata) == 0:
# no file exists, check to see if images extracted, and make the file based on config
index = ['labeled-data{}{}{}{}'.format(os.sep, camname, os.sep, im.name) for im in imgs]
# build the empty df
# get tracknames from cfg
if ma:
header = pd.MultiIndex.from_product([[scorer],
individuals,
bodyparts,
coords],
names=['scorer', 'individuals','bodyparts', 'coords'])
else:
header = pd.MultiIndex.from_product([[scorer],
bodyparts,
coords],
names=['scorer', 'bodyparts', 'coords'])
#copy just the rows of interest from DLT to a new df
#get frame numbers from imgs, from full path, after img, before .png
#idx = [int(re.findall(r'\d+', s)[0]) for s in [x.stem for x in imgs]]
df = pd.DataFrame(np.nan, columns=header, index=index)
else:
# the file has already been created
#load the file
df = pd.read_hdf(colldata[0], 'df_with_missing')
# build an index based on images in folder
# newindex = ['labeled-data{}{}{}{}'.format(os.sep, camname, os.sep, im.name) for im in imgs]
newindex = [('labeled-data', camname, im.name) for im in imgs]
# compare to index in Collected data, add non-existent entries
newindex = list(set(newindex) - set(df.index))
#create a temp df
newimdf = pd.DataFrame(np.nan, index=newindex, columns=df.columns)
# combine and sort
df = df.append(newimdf)
df.sort_index(inplace=True)
addbp = True
conversioncode.guarantee_multiindex_rows(df)
df.sort_index(inplace=True)
if offset < 0:
# the DLT digitized value on the n-th row of the csv was actually digitized at n+offset frame of video file
# e.g. if offset = -5, a point digitized in the first frame of the video will be placed
# on the 5th row of the xypts csv file, so negative offsets mean that many blank rows
# need to be removed from the front of the df
print('dropping offset')
xypts.drop(range(-1 * offset), inplace=True)
xypts.reset_index(drop=True, inplace=True)
if offset > 0:
# need to insert blank rows at the start
_ = pd.DataFrame(np.nan, index=range(offset), columns=xypts.columns)
xypts = pd.concat([_, xypts], ignore_index=True)
# remove that many rows from the end of the df
xypts.drop(range(len(xypts) - offset, len(xypts)), inplace=True)
# and then reindex
if flipy is True:
print('flipping')
# get the vertical resolution from cropped parameter in config
height = int(cfg['video_sets'][str(vid)]['crop'].split(',')[3])
# flip the y-coordinates (origin is lower left in Argus and DLTdv 1-7, upper left in openCV, DLC, DLTdv8)
ycols = [x for x in xypts.columns if '_y' in x]
xypts.loc[:, ycols] = height - xypts.loc[:, ycols]
print(bodyparts)
# make if option flag is thrown, it checks if any bodypart x/y is empty, might be a touch slower for large data frames,
#but allows more control over overwriting existing labels
if addbp:
newbp=[]
indx=[]
for bp in bodyparts:
#isolate the bodypart
if ma:
_ = df.loc[:, (scorer, indiv, bp)]
else:
_ = df.loc[:, (scorer, bp)]
#find empty rows
r = _.index[_.isnull().all(1)]
#if there are empty rows for that bp
if len(r) > 0:
# add to list of places to fill
newbp.extend([bp] * len(r))
indx.extend(r)
news = list(zip(indx, newbp))
for new in news:
xyrow = int(re.findall(r'img(\d+)\.png', new[0][2])[0])
bp = new[1]
try:
if ma:
df.loc[new[0], (scorer, indiv, bp, ['x', 'y'])] = xypts.loc[
xyrow, ['{}_{}x'.format(bp, camstr), '{}_{}y'.format(bp, camstr)]].values
else:
df.loc[new[0], (scorer, bp, ['x', 'y'])] = xypts.loc[
xyrow, ['{}_{}x'.format(bp, camstr), '{}_{}y'.format(bp, camstr)]].values
except:
#image or xypts row not found due to offsets deletions
continue
else:
# go through df find indexes without any entries, extract those entries from xydata, and add
news = df.index[df.isnull().all(1)]
# go through news and get insert digitized points from xydata
for new in news:
for bp in bodyparts:
xyrow = int(re.findall(r'img(\d+)\.png', new[2])[0])
try:
if ma:
df.loc[new, (scorer, indiv, bp, ['x', 'y'])] = xypts.loc[
xyrow, ['{}_{}x'.format(bp, camstr), '{}_{}y'.format(bp, camstr)]].values
else:
df.loc[new, (scorer, bp, ['x', 'y'])] = xypts.loc[
xyrow, ['{}_{}x'.format(bp, camstr), '{}_{}y'.format(bp, camstr)]].values
except:
# image or xypts row not found due to offsets deletions
continue
if cleanup:
# clean out rows and images with no annotation data
blanks = df.index[df.isnull().all(1)]
df = df.drop(blanks)
blankimgs = [labdir / Path(x[2].split(os.sep)[-1]) for x in list(blanks)]
for bl in blankimgs:
try:
bl.unlink()
except FileNotFoundError:
continue
# replace DLT nans with empty entries for DLC formatting
df.astype('float64')
df.sort_index(inplace=True)
# # save out hdf and csv files
df.to_hdf(Path(labdir) / ('CollectedData_' + scorer + '.h5'), 'df_with_missing')#, format='table', mode='w')
df.to_csv(Path(labdir) / ('CollectedData_' + scorer + '.csv'))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='convert argus to DLC labeled frames for training')
parser.add_argument('-config', help='input path to DLC config file')
parser.add_argument('-xy',
help='input path to xypts file')
parser.add_argument('-vid', help='input path to video file')
parser.add_argument('-cnum', default=1, type=int, help='enter 1-indexed camera number for extraction')
parser.add_argument('-flipy', default=True,
help='flip y coordinates - necessary for DLTdv versions 1-7 and Argus, set to False for DLTdv8')
parser.add_argument('-offset', default=0, type=int, help='enter offset of chosen camera as integer')
parser.add_argument('-ind', default=0, type=int, help='enter 0-indexed individual number from config file. \n xypts.csv must have only one indiv digitized.')
parser.add_argument('-addbp', default=False, help='if new tracks/bodyparts were digitized in Argus/DLTdv, add this flag to add those to labeled data')
parser.add_argument('-cleanup', default=False, help='if true, this will delete images and table rows for which no annotations exist in DLT or DLC data - use with caution')
args = parser.parse_args()
dlt2dlclabels(args.config, args.xy, args.vid, args.cnum, int(args.offset), flipy=args.flipy, ind=args.ind, addbp=args.addbp, cleanup=args.cleanup)