-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtotal_vs_robust_demo.jl
47 lines (36 loc) · 1.51 KB
/
total_vs_robust_demo.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
using TotalLeastSquares, Plots, ThreadTools
N = 500
σvec = exp10.(LinRange(-3, 3, 40))
results1 = tmap(σvec) do σ
inner = map(1:N) do _
x = randn(5)
A = randn(500,5)
An = A + σ*randn(size(A)) .* (rand(size(A)...) .< 0.01)
y = A*x
yn = y + σ*randn(size(y)) .* (rand(size(y)...) .< 0.01)
x̂t = tls(An,yn)
x̂r = rtls(An,yn)
norm(x-x̂t), norm(x-x̂r)
end
mean(getindex.(inner, 1)), mean(getindex.(inner, 2))
end
res_tls1, res_rtls1 = getindex.(results1, 1), getindex.(results1, 2)
scatter(σvec, [res_tls1 res_rtls1], xscale=:log10, yscale=:log10, lab=["TLS" "RTLS"], xlabel="Noise std", ylabel="Parameter error norm", legend=:topleft, title="Noise Sparsity = 0.01")
##
σ = 5
svec = exp10.(LinRange(-3, 0, 40))
results2 = tmap(svec) do s
inner = map(1:N) do _
x = randn(5)
A = randn(500,5)
An = A + σ*randn(size(A)) .* (rand(size(A)...) .< s)
y = A*x
yn = y + σ*randn(size(y)) .* (rand(size(y)...) .< s)
x̂t = tls(An,yn)
x̂r = rtls(An,yn)
norm(x-x̂t), norm(x-x̂r)
end
mean(getindex.(inner, 1)), mean(getindex.(inner, 2))
end
res_tls2, res_rtls2 = getindex.(results2, 1), getindex.(results2, 2)
scatter((svec), [res_tls2 res_rtls2], xscale=:log10, yscale=:log10, lab=["TLS" "RTLS"], xlabel="Noise sparsity", ylabel="Parameter error norm", legend=:topleft, title="Noise std = $σ")