-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathSimplE.py
38 lines (31 loc) · 1.63 KB
/
SimplE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import torch.nn as nn
import math
class SimplE(nn.Module):
def __init__(self, num_ent, num_rel, emb_dim, device):
super(SimplE, self).__init__()
self.num_ent = num_ent
self.num_rel = num_rel
self.emb_dim = emb_dim
self.device = device
self.ent_h_embs = nn.Embedding(num_ent, emb_dim).to(device)
self.ent_t_embs = nn.Embedding(num_ent, emb_dim).to(device)
self.rel_embs = nn.Embedding(num_rel, emb_dim).to(device)
self.rel_inv_embs = nn.Embedding(num_rel, emb_dim).to(device)
sqrt_size = 6.0 / math.sqrt(self.emb_dim)
nn.init.uniform_(self.ent_h_embs.weight.data, -sqrt_size, sqrt_size)
nn.init.uniform_(self.ent_t_embs.weight.data, -sqrt_size, sqrt_size)
nn.init.uniform_(self.rel_embs.weight.data, -sqrt_size, sqrt_size)
nn.init.uniform_(self.rel_inv_embs.weight.data, -sqrt_size, sqrt_size)
def l2_loss(self):
return ((torch.norm(self.ent_h_embs.weight, p=2) ** 2) + (torch.norm(self.ent_t_embs.weight, p=2) ** 2) + (torch.norm(self.rel_embs.weight, p=2) ** 2) + (torch.norm(self.rel_inv_embs.weight, p=2) ** 2)) / 2
def forward(self, heads, rels, tails):
hh_embs = self.ent_h_embs(heads)
ht_embs = self.ent_h_embs(tails)
th_embs = self.ent_t_embs(heads)
tt_embs = self.ent_t_embs(tails)
r_embs = self.rel_embs(rels)
r_inv_embs = self.rel_inv_embs(rels)
scores1 = torch.sum(hh_embs * r_embs * tt_embs, dim=1)
scores2 = torch.sum(ht_embs * r_inv_embs * th_embs, dim=1)
return torch.clamp((scores1 + scores2) / 2, -20, 20)