-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.lua
executable file
·136 lines (99 loc) · 3.68 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env th
local torch = require 'torch'
torch.setdefaulttensortype('torch.DoubleTensor')
local gurobi = require 'gurobi'
collectgarbage()
collectgarbage()
local tester = torch.Tester()
local gurobiTest = torch.TestSuite()
local eps = 1e-5
function gurobiTest.SmallLP()
local env = gurobi.loadenv("")
local c = torch.Tensor{2.0, 1.0}
local G = torch.Tensor{{-1, 1}, {-1, -1}, {0, -1}, {1, -2}}
local h = torch.Tensor{1.0, -2.0, 0.0, 4.0}
local model = gurobi.newmodel(env, "", c)
gurobi.addconstrs(model, G, 'LE', h)
local status, x = gurobi.solve(model)
local optX = torch.Tensor{0.5, 1.5}
tester:asserteq(status, 2, 'Non-optimal status: ' .. status)
tester:assertTensorEq(x, optX, eps, 'Invalid optimal value.')
gurobi.free(env, model)
end
function gurobiTest.SmallLP_Incremental()
-- minimize y
-- subject to y >= x
-- y >= -x
-- y >= x + 1
local c = torch.Tensor{0.0, 1.0}
local G = torch.Tensor{{1, -1}, {-1, -1}, {1, -1}}
local h = torch.Tensor{0.0, 0.0, -1.0}
local env = gurobi.loadenv("")
local model = gurobi.newmodel(env, "", c)
local I = {{1,2}}
gurobi.addconstrs(model, G[I], 'LE', h[I])
local status, x = gurobi.solve(model)
local optX = torch.Tensor{0.0, 0.0}
tester:asserteq(status, 2, 'Non-optimal status: ' .. status)
tester:assertTensorEq(x, optX, eps, 'Invalid optimal value.')
gurobi.addconstr(model, G[3], 'LE', h[3])
status, x = gurobi.solve(model)
optX = torch.Tensor{-0.5, 0.5}
tester:asserteq(status, 2, 'Non-optimal status: ' .. status)
tester:assertTensorEq(x, optX, eps, 'Invalid optimal value.')
gurobi.free(env, model)
end
function gurobiTest.SmallQP()
local env = gurobi.loadenv("")
local c = torch.Tensor{2.0, 1.0}
local model = gurobi.newmodel(env, "", c)
local Q = torch.eye(2)
gurobi.addqpterms(model, Q)
local status, x = gurobi.solve(model)
local optX = torch.Tensor{-1.0, -0.5}
tester:asserteq(status, 2, 'Non-optimal status: ' .. status)
tester:assertTensorEq(x, optX, eps, 'Invalid optimal value.')
gurobi.free(env, model)
end
function gurobiTest.ChangeObj()
local env = gurobi.loadenv("")
local c = torch.Tensor{0.0, 1.0}
local lb = torch.Tensor{0.0, 0.0}
local ub = torch.Tensor{3.0, 3.0}
local model = gurobi.newmodel(env, "", c, lb, ub)
local A = torch.Tensor{1.0, -1.0}
gurobi.addconstr(model, A, 'EQ', 0.0)
local status, x = gurobi.solve(model)
local optX = torch.Tensor{0.0, 0.0}
tester:asserteq(status, 2, 'Non-optimal status: ' .. status)
tester:assertTensorEq(x, optX, eps, 'Invalid optimal value.')
local newC = torch.Tensor{0.0, -1.0}
gurobi.updateObj(model, newC)
status, x = gurobi.solve(model)
optX = torch.Tensor{3.0, 3.0}
tester:asserteq(status, 2, 'Non-optimal status: ' .. status)
tester:assertTensorEq(x, optX, eps, 'Invalid optimal value.')
gurobi.free(env, model)
end
function gurobiTest.par()
local c = torch.Tensor{2.0, 1.0}
local G = torch.Tensor{{-1, 1}, {-1, -1}, {0, -1}, {1, -2}}
local h = torch.Tensor{1.0, -2.0, 0.0, 4.0}
local env = gurobi.loadenv("")
local model1 = gurobi.newmodel(env, "", c)
gurobi.addconstrs(model1, G, 'LE', h)
local model2 = gurobi.newmodel(env, "", c)
gurobi.addconstrs(model2, G, 'LE', h)
local status, xs = gurobi.solvePar({model1, model2})
local optX = torch.Tensor{0.5, 1.5}
for i = 1,2 do
local status_i = status[i]
local x = xs[i]
tester:asserteq(status_i, 2, 'Non-optimal status: ' .. status_i)
tester:assertTensorEq(x, optX, eps, 'Invalid optimal value.')
end
gurobi.free(nil, model1)
gurobi.free(env, model2)
end
tester:add(gurobiTest)
tester:run()