-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
76 lines (60 loc) · 2.49 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import argparse
import os
from pathlib import Path
import torch
from lightning import Trainer, seed_everything
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from lightning.pytorch.loggers import TensorBoardLogger
from emp_ssl.config import PretrainConfig
from emp_ssl.data import PretrainDataModule
from emp_ssl.models import ResNet18, KNearestNeighbours
from emp_ssl.modules import PretrainModule
torch.set_float32_matmul_precision('medium')
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=Path, default='cifar10')
parser.add_argument('--invariance-coefficient', type=int, default=200)
parser.add_argument('--batch-size', type=int, default=100)
parser.add_argument('--train-patches', type=int, default=20)
parser.add_argument('--valid-patches', type=int, default=128)
parser.add_argument('--max-epochs', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=os.cpu_count() - 1)
parser.add_argument('--learning-rate', type=float, default=0.3)
parser.add_argument('--weight-decay', type=float, default=1e-4)
parser.add_argument('--projection-dim', type=int, default=1024)
parser.add_argument('--hidden-dim', type=int, default=4096)
parser.add_argument('--num-neighbours', type=int, default=20)
parser.add_argument('--temperature', type=float, default=0.07)
parser.add_argument('--seed', type=int, default=42)
return parser.parse_args()
def pretrain():
config = PretrainConfig.from_command_line(parse_arguments())
seed_everything(config.seed)
data = PretrainDataModule(config)
knn = KNearestNeighbours(config.num_neighbours, config.temperature)
model = ResNet18(config)
model = PretrainModule(model, knn, config)
callbacks = [
LearningRateMonitor(logging_interval='step'),
ModelCheckpoint(
monitor='Valid|Top1 Accuracy',
save_top_k=1,
mode='max',
verbose=True,
filename='{epoch}-{Valid|Top1 Accuracy:.2f}',
),
]
trainer = Trainer(
accelerator='gpu',
devices=1,
precision='16-mixed',
max_epochs=config.max_epochs,
logger=TensorBoardLogger(save_dir='logs', name=''),
callbacks=callbacks,
deterministic=True,
check_val_every_n_epoch=config.max_epochs,
log_every_n_steps=10
)
trainer.fit(model, datamodule=data)
if __name__ == '__main__':
pretrain()