-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathAggregatingAttributeMapper.java
600 lines (548 loc) · 25.3 KB
/
AggregatingAttributeMapper.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// Copyright 2014 The Bazel Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.devtools.build.lib.packages;
import static com.google.common.base.Preconditions.checkArgument;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Maps;
import com.google.devtools.build.lib.cmdline.Label;
import com.google.devtools.build.lib.collect.CollectionUtils;
import com.google.devtools.build.lib.packages.Attribute.ComputationLimiter;
import com.google.devtools.build.lib.packages.Attribute.ComputedDefault;
import com.google.devtools.build.lib.packages.BuildType.Selector;
import com.google.devtools.build.lib.packages.BuildType.SelectorList;
import com.google.devtools.build.lib.packages.Type.LabelClass;
import com.google.devtools.build.lib.packages.Type.ListType;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Deque;
import java.util.HashMap;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import javax.annotation.Nullable;
/**
* {@link AttributeMap} implementation that provides the ability to retrieve <i>all possible</i>
* values an attribute might take.
*/
public class AggregatingAttributeMapper extends AbstractAttributeMapper {
private AggregatingAttributeMapper(Rule rule) {
super(rule);
}
public static AggregatingAttributeMapper of(Rule rule) {
return new AggregatingAttributeMapper(rule);
}
/**
* Returns all of this rule's attributes that are non-configurable. These are unconditionally
* available to computed defaults no matter what dependencies they've declared.
*/
private List<String> getNonConfigurableAttributes() {
return rule.getRuleClassObject().getNonConfigurableAttributes();
}
/**
* Override that also visits the rule's configurable attribute keys (which are themselves labels).
*
* <p>This method directly parses each selector, vs. calling {@link #visitAttribute} to iterate
* over all possible values. The latter has dangerous efficiency consequences, as discussed in
* {@link #visitAttribute}'s documentation. So we want to avoid that code path when possible.
*/
@Override
<T> void visitLabels(Attribute attribute, Type<T> type, Type.LabelVisitor visitor) {
visitLabels(attribute, type, /*includeSelectKeys=*/ true, visitor);
}
@SuppressWarnings("unchecked")
private <T> void visitLabels(
Attribute attribute, Type<T> type, boolean includeSelectKeys, Type.LabelVisitor visitor) {
String name = attribute.getName();
// The only way for LabelClass.NONE to contain labels is in select keys.
if (type.getLabelClass() == LabelClass.NONE) {
if (includeSelectKeys && attribute.isConfigurable()) {
SelectorList<T> selectorList = getSelectorList(name, type);
if (selectorList != null) {
visitLabelsInSelect(
selectorList,
attribute,
type,
visitor,
/*includeKeys=*/ true,
/*includeValues=*/ false);
}
}
return;
}
Object rawVal = rule.getAttr(name, type);
if (rawVal instanceof SelectorList) {
visitLabelsInSelect(
(SelectorList<T>) rawVal,
attribute,
type,
visitor,
includeSelectKeys,
/*includeValues=*/ true);
} else if (rawVal instanceof ComputedDefault) {
// Computed defaults are a special pain: we have no choice but to iterate through their
// (computed) values and look for labels.
for (T value : ((ComputedDefault) rawVal).getPossibleValues(type, rule)) {
if (value != null) {
type.visitLabels(visitor, value, attribute);
}
}
} else {
T value = getFromRawAttributeValue(rawVal, name, type);
if (value != null) {
type.visitLabels(visitor, value, attribute);
}
}
}
private static <T> void visitLabelsInSelect(
SelectorList<T> selectorList,
Attribute attribute,
Type<T> type,
Type.LabelVisitor visitor,
boolean includeKeys,
boolean includeValues) {
for (Selector<T> selector : selectorList.getSelectors()) {
for (Map.Entry<Label, T> selectorEntry : selector.getEntries().entrySet()) {
if (includeKeys && !Selector.isReservedLabel(selectorEntry.getKey())) {
visitor.visit(selectorEntry.getKey(), attribute);
}
if (includeValues) {
T value =
selector.isValueSet(selectorEntry.getKey())
? selectorEntry.getValue()
: type.cast(attribute.getDefaultValue(null));
type.visitLabels(visitor, value, attribute);
}
}
}
}
/**
* Returns all labels reachable via the given attribute, with duplicate instances removed.
*
* <p>Use this interface over {@link #visitAttribute} whenever possible, since the latter has
* efficiency problems discussed in that method's documentation.
*
* @param includeSelectKeys whether to include config_setting keys for configurable attributes
*/
public ImmutableSet<Label> getReachableLabels(String attributeName, boolean includeSelectKeys) {
Attribute attribute = getAttributeDefinition(attributeName);
ImmutableSet.Builder<Label> builder = ImmutableSet.builder();
visitLabels(
attribute, attribute.getType(), includeSelectKeys, (label, attr) -> builder.add(label));
return builder.build();
}
/** Returns the labels that appear multiple times in the same attribute value. */
@SuppressWarnings("unchecked")
public Set<Label> checkForDuplicateLabels(Attribute attribute) {
Type<List<Label>> attrType = BuildType.LABEL_LIST;
checkArgument(attribute.getType() == attrType, "Not a label list type: %s", attribute);
String attrName = attribute.getName();
Object rawVal = rule.getAttr(attrName, attrType);
// Plain old attribute (no selects).
if (!(rawVal instanceof SelectorList)) {
return checkForDuplicateLabels(
visitRawNonConfigurableAttributeValue(rawVal, attrName, attrType));
}
List<Selector<List<Label>>> selectors = ((SelectorList<List<Label>>) rawVal).getSelectors();
// "attr = select({...})" with just a single select.
if (selectors.size() == 1) {
return checkForDuplicateLabels(selectors.get(0).getEntries().values());
}
// Multiple selects concatenated together. It's expensive to iterate over every possible
// permutation of values, so instead check for duplicates within a single select branch while
// also collecting all labels for a cross-select duplicate check at the end. This is overly
// strict, since this counts values present in mutually exclusive select branches. We can
// presumably relax this if necessary, but doing so would incur some of the expense this code
// path avoids.
ImmutableSet.Builder<Label> duplicates = null;
List<Label> combinedLabels = new ArrayList<>(); // Labels that appear across all selectors.
for (Selector<List<Label>> selector : selectors) {
// Labels within a single selector. It's okay for there to be duplicates as long as
// they're in different selector paths (since only one path can actually get chosen).
Set<Label> selectorLabels = new LinkedHashSet<>();
for (List<Label> labelsInSelectorValue : selector.getEntries().values()) {
// Duplicates within a single select branch are not okay.
duplicates = addDuplicateLabels(duplicates, labelsInSelectorValue);
selectorLabels.addAll(labelsInSelectorValue);
}
combinedLabels.addAll(selectorLabels);
}
duplicates = addDuplicateLabels(duplicates, combinedLabels);
return duplicates == null ? ImmutableSet.of() : duplicates.build();
}
private static Set<Label> checkForDuplicateLabels(Collection<List<Label>> possibleLabels) {
switch (possibleLabels.size()) {
case 0:
return ImmutableSet.of();
case 1:
List<Label> onlyPossibility =
possibleLabels instanceof List
? ((List<List<Label>>) possibleLabels).get(0) // Avoid overhead of list iterator.
: possibleLabels.iterator().next();
return CollectionUtils.duplicatedElementsOf(onlyPossibility);
default:
ImmutableSet.Builder<Label> duplicates = null;
for (List<Label> labels : possibleLabels) {
duplicates = addDuplicateLabels(duplicates, labels);
}
return duplicates == null ? ImmutableSet.of() : duplicates.build();
}
}
private static ImmutableSet.Builder<Label> addDuplicateLabels(
@Nullable ImmutableSet.Builder<Label> builder, List<Label> labels) {
Set<Label> duplicates = CollectionUtils.duplicatedElementsOf(labels);
if (duplicates.isEmpty()) {
return builder;
}
if (builder == null) {
builder = ImmutableSet.builder();
}
return builder.addAll(duplicates);
}
/**
* If the attribute is a selector list of list type, then this method returns a list with number
* of elements equal to the number of select statements in the selector list. Each element of this
* list is equal to concatenating every possible attribute value in a single select statement.
* The conditions themselves in the select statements are completely ignored. Returns {@code null}
* if the attribute isn't of the desired format.
*
* As an example, if we have select({a: ["a"], b: ["a", "b"]}) + select({a: ["c", "d"], c: ["e"])
* The output will be [["a", "a", "b"], ["c", "d", "e"]]. The idea behind this structure is that
* at least some of the structure in the original selector list is preserved and we know any
* possible attribute value is the result of concatenating some sublist of each element.
*/
@Nullable
public <T> Iterable<T> getConcatenatedSelectorListsOfListType(
String attributeName, Type<T> type) {
SelectorList<T> selectorList = getSelectorList(attributeName, type);
if (selectorList != null && type instanceof ListType) {
List<T> selectList = new ArrayList<>();
for (Selector<T> selector : selectorList.getSelectors()) {
selectList.add(type.concat(selector.getEntries().values()));
}
return ImmutableList.copyOf(selectList);
}
return null;
}
/**
* Returns a list of all possible values an attribute can take for this rule.
*
* <p>If the attribute's value is a simple value, then this returns a singleton list of that
* value.
*
* <p>If the attribute's value is an expression containing one or many {@code select(...)}
* expressions, then this returns a list of all values that expression may evaluate to. This is
* dangerous because it's easy to write attributes with an exponential number of possible values:
*
* <pre>
* foo = select({a: 1, b: 2} + select({c: 3, d: 4}) + select({e: 5, f: 6})
* </pre>
*
* <p>Possible values: <code>[135, 136, 145, 146, 235, 236, 245, 246]</code> (i.e. 2^3).
*
* <p>This is true not just for attributes with multiple selects, but also {@link
* Attribute.ComputedDefault}s depending on such attributes.
*
* <p>If the attribute does not have an explicit value for this rule, and the rule provides a
* computed default, the computed default function is evaluated given the rule's other attribute
* values as inputs and the output is returned in a singleton list.
*
* <p>If the attribute does not have an explicit value for this rule, and the rule provides a
* computed default, and the computed default function depends on other attributes whose values
* contain {@code select(...)} expressions, then the computed default function is evaluated for
* every possible combination of input values, and the list of outputs is returned.
*
* <p><b>EFFICIENCY WARNING:</b> Do not use this method unless you really need every single value
* the attribute might take.
*
* <p>More often than not, calling code doesn't really need every value, but really just wants to
* know, e.g., which labels might appear in a dependency list. For such cases, merging methods
* like {@link #getReachableLabels} work just as well without the efficiency hit. Use those
* whenever possible.
*/
public <T> Iterable<T> visitAttribute(String attributeName, Type<T> type) {
return visitAttribute(attributeName, type, /*mayTreatMultipleAsNone=*/ false);
}
/**
* Specialization of {@link #visitAttribute(String, Type)} for query output formatters which need
* one attribute value or none at all. Should be used with the same care as its sibling method.
*
* @param mayTreatMultipleAsNone signals if attribute-value computation <b>may</b> be aborted if
* more than one possible value is encountered. This parameter is respected on a best-effort
* basis - multiple values may still be returned if an unoptimized code path is visited.
*/
@SuppressWarnings("unchecked")
public <T> Iterable<T> visitAttribute(
String attributeName, Type<T> type, boolean mayTreatMultipleAsNone) {
Object rawVal = rule.getAttr(attributeName, type);
// If this attribute value is configurable, visit all possible values.
if (rawVal instanceof SelectorList) {
return getAllValues(((SelectorList<T>) rawVal).getSelectors(), type, mayTreatMultipleAsNone);
}
return visitRawNonConfigurableAttributeValue(rawVal, attributeName, type);
}
private <T> List<T> visitRawNonConfigurableAttributeValue(
Object rawVal, String attributeName, Type<T> type) {
// If this attribute is a computed default, feed it all possible value combinations of
// its declared dependencies and return all computed results. For example, if this default
// uses attributes x and y, x can configurably be x1 or x2, and y can configurably be y1
// or y1, then compute default values for the (x1,y1), (x1,y2), (x2,y1), and (x2,y2) cases.
if (rawVal instanceof Attribute.ComputedDefault) {
return ((Attribute.ComputedDefault) rawVal).getPossibleValues(type, rule);
}
if ("visibility".equals(attributeName) && type.equals(BuildType.NODEP_LABEL_LIST)) {
// This special case for the visibility attribute is needed because its value is replaced
// with an empty list during package loading if it is public or private in order not to visit
// the package called 'visibility'.
return ImmutableList.of(type.cast(rule.getVisibility().getDeclaredLabels()));
}
// For any other attribute, just return its direct value.
T value = getFromRawAttributeValue(rawVal, attributeName, type);
return value == null ? ImmutableList.of() : ImmutableList.of(value);
}
/**
* Given a list of attributes, creates an {attrName -> attrValue} map for every possible
* combination of those attributes' values and returns a list of all the maps.
*
* <p>For example, given attributes x and y, which respectively have possible values x1, x2 and
* y1, y2, this returns:
*
* <pre>
* [
* {x: x1, y: y1},
* {x: x1, y: y2},
* {x: x2, y: y1},
* {x: x2, y: y2}
* ]
* </pre>
*
* <p>The work done by this method may be limited by providing a {@link ComputationLimiter} that
* throws if too much work is attempted.
*/
<TException extends Exception> List<Map<String, Object>> visitAttributes(
List<String> attributes, ComputationLimiter<TException> limiter) throws TException {
List<Map<String, Object>> depMaps = new LinkedList<>();
AtomicInteger combinationsSoFar = new AtomicInteger(0);
visitAttributesInner(
attributes,
depMaps,
Maps.newHashMapWithExpectedSize(attributes.size()),
combinationsSoFar,
limiter);
return depMaps;
}
/**
* A recursive function used in the implementation of {@link #visitAttributes}.
*
* @param attributes a list of attributes that are yet to be visited.
* @param mappings a mutable list of {attrName --> attrValue} maps collected so far. This method
* will add newly discovered maps to the list.
* @param currentMap {attrName --> attrValue} assignments accumulated so far, not including those
* in {@code attributes}. This map may be mutated and as such must be copied if we wish to
* preserve its state, such as in the base case.
* @param combinationsSoFar a counter for all previously processed combinations of possible
* values.
* @param limiter a strategy to limit the work done by invocations of this method.
*/
private <TException extends Exception> void visitAttributesInner(
List<String> attributes,
List<Map<String, Object>> mappings,
Map<String, Object> currentMap,
AtomicInteger combinationsSoFar,
ComputationLimiter<TException> limiter)
throws TException {
if (attributes.isEmpty()) {
// Because this method uses exponential time/space on the number of inputs, we may limit
// the total number of method calls.
limiter.onComputationCount(combinationsSoFar.incrementAndGet());
// Recursive base case: snapshot and store whatever's already been populated in currentMap.
mappings.add(new HashMap<>(currentMap));
return;
}
// Take the first attribute in the dependency list and iterate over all its values. For each
// value x, update currentMap with the additional entry { firstAttrName: x }, then feed
// this recursively into a subcall over all remaining dependencies. This recursively
// continues until we run out of values.
String currentAttribute = attributes.get(0);
Iterable<?> firstAttributePossibleValues =
visitAttribute(currentAttribute, getAttributeType(currentAttribute));
List<String> restOfAttrs = attributes.subList(1, attributes.size());
for (Object value : firstAttributePossibleValues) {
// Overwrite each time.
currentMap.put(currentAttribute, value);
visitAttributesInner(restOfAttrs, mappings, currentMap, combinationsSoFar, limiter);
}
}
/**
* Returns an {@link AttributeMap} that delegates to {@code AggregatingAttributeMapper.this}
* except for {@link #get} calls for attributes that are configurable. In that case, the {@link
* AttributeMap} looks up an attribute's value in {@code directMap}. Any attempt to {@link #get} a
* configurable attribute that's not in {@code directMap} causes an {@link
* IllegalArgumentException} to be thrown.
*/
AttributeMap createMapBackedAttributeMap(Map<String, Object> directMap) {
AggregatingAttributeMapper owner = this;
return new DelegatingAttributeMapper(owner) {
@Override
@Nullable
public <T> T get(String attributeName, Type<T> type) {
owner.checkType(attributeName, type);
if (getNonConfigurableAttributes().contains(attributeName)) {
return owner.get(attributeName, type);
}
Object val = directMap.get(attributeName);
if (val == null) {
checkArgument(
directMap.containsKey(attributeName),
"attribute \"%s\" isn't available in this computed default context",
attributeName);
return null;
}
return type.cast(val);
}
@Override
public ImmutableList<String> getAttributeNames() {
List<String> nonConfigurableAttributes = getNonConfigurableAttributes();
return ImmutableList.<String>builderWithExpectedSize(
directMap.size() + nonConfigurableAttributes.size())
.addAll(directMap.keySet())
.addAll(nonConfigurableAttributes)
.build();
}
};
}
/**
* Helper class for {@link #getAllValues}. Represents a node in the logical DAG of combinations of
* {@link Selector}s' values.
*/
private static class ConfigurableAttrVisitationNode<T> {
/** Offset into the list of selectors being combined. */
private final int offset;
/** Key of the selector taken. */
private final Label boundKey;
/** Accumulated value through this node. */
private final T valueSoFar;
private ConfigurableAttrVisitationNode(int offset, Label boundKey, T valueSoFar) {
this.offset = offset;
this.boundKey = boundKey;
this.valueSoFar = valueSoFar;
}
}
/**
* Represents a path previously taken through a previous selector.
*
* <p>Used to short-circuit visitation when encountering selectors with <i>equivalent</i> key
* sets. See uses for details. Note that this optimization is not safe for overlapping but
* <i>different</i> keysets due to specialization (see {@link ConfiguredAttributeMapper}).
*/
private static class BoundKeyAndOffset {
/** Key chosen from associated select. */
private final Label key;
/**
* Offset into the list of selectors where this key was bound. Used to determine when {@link
* #key} is safe to follow through equivalent selects.
*/
private final int offset;
private BoundKeyAndOffset(Label key, int offset) {
this.key = key;
this.offset = offset;
}
}
/**
* Determines all possible values a configurable attribute can take. Do not call this method
* unless really necessary and avoid all new uses.
*/
// TODO(bazel-team): minimize or eliminate uses of this interface. It necessarily grows
// exponentially with the number of selects in the attribute. Is that always necessary?
// For example, dependency resolution just needs to know every possible label an attribute
// might reference, but it doesn't need to know the exact combination of labels that make
// up a value. This may be even less important for non-label values (e.g. strings), which
// have no impact on the dependency structure.
private static <T> ImmutableList<T> getAllValues(
List<Selector<T>> selectors, Type<T> type, boolean mayTreatMultipleAsNone) {
if (selectors.isEmpty()) {
return ImmutableList.of();
}
if (selectors.size() == 1) {
// Optimize for common case.
return selectors.get(0).getEntries().values().stream()
.filter(Objects::nonNull)
.collect(ImmutableList.toImmutableList());
}
Deque<ConfigurableAttrVisitationNode<T>> nodes = new ArrayDeque<>();
// Track per selector key set when we started visiting a specific key.
Map<Set<Label>, BoundKeyAndOffset> boundKeysAndOffsets = new HashMap<>();
ImmutableList.Builder<T> result = ImmutableList.builder();
// Seed visitation.
for (Map.Entry<Label, T> root : selectors.get(0).getEntries().entrySet()) {
nodes.push(new ConfigurableAttrVisitationNode<>(0, root.getKey(), root.getValue()));
}
boolean foundResults = false;
while (!nodes.isEmpty()) {
ConfigurableAttrVisitationNode<T> node = nodes.pop();
int nextOffset = node.offset + 1;
if (nextOffset >= selectors.size()) {
// Null values arise when a None is used as the value of a Selector for a type without a
// default value.
if (node.valueSoFar != null) {
if (foundResults && mayTreatMultipleAsNone) {
// Caller wanted one value or none at all, this is the second, so bail.
return ImmutableList.of();
}
foundResults = true;
// TODO(gregce): visitAttribute should probably convey that an unset attribute is
// possible. Therefore we need to actually handle null values here.
result.add(node.valueSoFar);
}
continue;
}
Map<Label, T> nextSelectorEntries = selectors.get(nextOffset).getEntries();
BoundKeyAndOffset boundKeyAndOffset = boundKeysAndOffsets.get(nextSelectorEntries.keySet());
if (boundKeyAndOffset != null && boundKeyAndOffset.offset < node.offset) {
// We've seen this select key set before along this path and chosen this key.
nodes.push(
new ConfigurableAttrVisitationNode<>(
nextOffset,
boundKeyAndOffset.key,
concat(type, node.valueSoFar, nextSelectorEntries.get(boundKeyAndOffset.key))));
continue;
}
Set<Label> currentKeys = selectors.get(node.offset).getEntries().keySet();
// Record that we've descended along node.boundKey starting at this offset.
boundKeysAndOffsets.put(currentKeys, new BoundKeyAndOffset(node.boundKey, node.offset));
if (currentKeys.equals(nextSelectorEntries.keySet())) {
nodes.push(
new ConfigurableAttrVisitationNode<>(
nextOffset,
node.boundKey,
concat(type, node.valueSoFar, nextSelectorEntries.get(node.boundKey))));
continue;
}
for (Map.Entry<Label, T> entry : nextSelectorEntries.entrySet()) {
nodes.push(
new ConfigurableAttrVisitationNode<>(
nextOffset, entry.getKey(), concat(type, node.valueSoFar, entry.getValue())));
}
}
return result.build();
}
private static <T> T concat(Type<T> type, T lhs, T rhs) {
return type.concat(ImmutableList.of(lhs, rhs));
}
}