forked from tato123/nrf8001_arm_support
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hal_aci_tl.cpp
executable file
·463 lines (392 loc) · 12.5 KB
/
hal_aci_tl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/* Copyright (c) 2014, Nordic Semiconductor ASA
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/** @file
@brief Implementation of the ACI transport layer module
*/
#include <SPI.h>
#include "hal_platform.h"
#include "hal_aci_tl.h"
#include "aci_queue.h"
#if ( !defined(__SAM3X8E__) && !defined(__PIC32MX__) )
#include <avr/sleep.h>
#endif
/*
PIC32 supports only MSbit transfer on SPI and the nRF8001 uses LSBit
Use the REVERSE_BITS macro to convert from MSBit to LSBit
The outgoing command and the incoming event needs to be converted
*/
//Board dependent defines
#if defined (__AVR__)
//For Arduino add nothing
#elif defined(__PIC32MX__)
//For ChipKit as the transmission has to be reversed, the next definitions have to be added
#define REVERSE_BITS(byte) (((reverse_lookup[(byte & 0x0F)]) << 4) + reverse_lookup[((byte & 0xF0) >> 4)])
static const uint8_t reverse_lookup[] = { 0, 8, 4, 12, 2, 10, 6, 14,1, 9, 5, 13,3, 11, 7, 15 };
#endif
static void m_aci_data_print(hal_aci_data_t *p_data);
static void m_aci_event_check(void);
static void m_aci_isr(void);
static void m_aci_pins_set(aci_pins_t *a_pins_ptr);
static inline void m_aci_reqn_disable (void);
static inline void m_aci_reqn_enable (void);
static void m_aci_q_flush(void);
static bool m_aci_spi_transfer(hal_aci_data_t * data_to_send, hal_aci_data_t * received_data);
static uint8_t spi_readwrite(uint8_t aci_byte);
static bool aci_debug_print = false;
aci_queue_t aci_tx_q;
aci_queue_t aci_rx_q;
static aci_pins_t *a_pins_local_ptr;
void m_aci_data_print(hal_aci_data_t *p_data)
{
const uint8_t length = p_data->buffer[0];
uint8_t i;
Serial.print(length, DEC);
Serial.print(" :");
for (i=0; i<=length; i++)
{
Serial.print(p_data->buffer[i], HEX);
Serial.print(F(", "));
}
Serial.println(F(""));
}
/*
Interrupt service routine called when the RDYN line goes low. Runs the SPI transfer.
*/
static void m_aci_isr(void)
{
hal_aci_data_t data_to_send;
hal_aci_data_t received_data;
// Receive from queue
if (!aci_queue_dequeue_from_isr(&aci_tx_q, &data_to_send))
{
/* queue was empty, nothing to send */
data_to_send.status_byte = 0;
data_to_send.buffer[0] = 0;
}
// Receive and/or transmit data
m_aci_spi_transfer(&data_to_send, &received_data);
if (!aci_queue_is_full_from_isr(&aci_rx_q) && !aci_queue_is_empty_from_isr(&aci_tx_q))
{
m_aci_reqn_enable();
}
// Check if we received data
if (received_data.buffer[0] > 0)
{
if (!aci_queue_enqueue_from_isr(&aci_rx_q, &received_data))
{
/* Receive Buffer full.
Should never happen.
Spin in a while loop.
*/
while(1);
}
// Disable ready line interrupt until we have room to store incoming messages
if (aci_queue_is_full_from_isr(&aci_rx_q))
{
detachInterrupt(a_pins_local_ptr->interrupt_number);
}
}
return;
}
/*
Checks the RDYN line and runs the SPI transfer if required.
*/
static void m_aci_event_check(void)
{
hal_aci_data_t data_to_send;
hal_aci_data_t received_data;
// No room to store incoming messages
if (aci_queue_is_full(&aci_rx_q))
{
return;
}
// If the ready line is disabled and we have pending messages outgoing we enable the request line
if (HIGH == digitalRead(a_pins_local_ptr->rdyn_pin))
{
if (!aci_queue_is_empty(&aci_tx_q))
{
m_aci_reqn_enable();
}
return;
}
// Receive from queue
if (!aci_queue_dequeue(&aci_tx_q, &data_to_send))
{
/* queue was empty, nothing to send */
data_to_send.status_byte = 0;
data_to_send.buffer[0] = 0;
}
// Receive and/or transmit data
m_aci_spi_transfer(&data_to_send, &received_data);
/* If there are messages to transmit, and we can store the reply, we request a new transfer */
if (!aci_queue_is_full(&aci_rx_q) && !aci_queue_is_empty(&aci_tx_q))
{
m_aci_reqn_enable();
}
// Check if we received data
if (received_data.buffer[0] > 0)
{
if (!aci_queue_enqueue(&aci_rx_q, &received_data))
{
/* Receive Buffer full.
Should never happen.
Spin in a while loop.
*/
while(1);
}
}
return;
}
/** @brief Point the low level library at the ACI pins specified
* @details
* The ACI pins are specified in the application and a pointer is made available for
* the low level library to use
*/
static void m_aci_pins_set(aci_pins_t *a_pins_ptr)
{
a_pins_local_ptr = a_pins_ptr;
}
static inline void m_aci_reqn_disable (void)
{
digitalWrite(a_pins_local_ptr->reqn_pin, 1);
}
static inline void m_aci_reqn_enable (void)
{
digitalWrite(a_pins_local_ptr->reqn_pin, 0);
}
static void m_aci_q_flush(void)
{
noInterrupts();
/* re-initialize aci cmd queue and aci event queue to flush them*/
aci_queue_init(&aci_tx_q);
aci_queue_init(&aci_rx_q);
interrupts();
}
static bool m_aci_spi_transfer(hal_aci_data_t * data_to_send, hal_aci_data_t * received_data)
{
uint8_t byte_cnt;
uint8_t byte_sent_cnt;
uint8_t max_bytes;
m_aci_reqn_enable();
// Send length, receive header
byte_sent_cnt = 0;
received_data->status_byte = spi_readwrite(data_to_send->buffer[byte_sent_cnt++]);
// Send first byte, receive length from slave
received_data->buffer[0] = spi_readwrite(data_to_send->buffer[byte_sent_cnt++]);
if (0 == data_to_send->buffer[0])
{
max_bytes = received_data->buffer[0];
}
else
{
// Set the maximum to the biggest size. One command byte is already sent
max_bytes = (received_data->buffer[0] > (data_to_send->buffer[0] - 1))
? received_data->buffer[0]
: (data_to_send->buffer[0] - 1);
}
if (max_bytes > HAL_ACI_MAX_LENGTH)
{
max_bytes = HAL_ACI_MAX_LENGTH;
}
// Transmit/receive the rest of the packet
for (byte_cnt = 0; byte_cnt < max_bytes; byte_cnt++)
{
received_data->buffer[byte_cnt+1] = spi_readwrite(data_to_send->buffer[byte_sent_cnt++]);
}
// RDYN should follow the REQN line in approx 100ns
m_aci_reqn_disable();
return (max_bytes > 0);
}
void hal_aci_tl_debug_print(bool enable)
{
aci_debug_print = enable;
}
void hal_aci_tl_pin_reset(void)
{
if (UNUSED != a_pins_local_ptr->reset_pin)
{
pinMode(a_pins_local_ptr->reset_pin, OUTPUT);
if ((REDBEARLAB_SHIELD_V1_1 == a_pins_local_ptr->board_name) ||
(REDBEARLAB_SHIELD_V2012_07 == a_pins_local_ptr->board_name))
{
//The reset for the Redbearlab v1.1 and v2012.07 boards are inverted and has a Power On Reset
//circuit that takes about 100ms to trigger the reset
digitalWrite(a_pins_local_ptr->reset_pin, 1);
delay(100);
digitalWrite(a_pins_local_ptr->reset_pin, 0);
}
else
{
digitalWrite(a_pins_local_ptr->reset_pin, 1);
digitalWrite(a_pins_local_ptr->reset_pin, 0);
digitalWrite(a_pins_local_ptr->reset_pin, 1);
}
}
}
bool hal_aci_tl_event_peek(hal_aci_data_t *p_aci_data)
{
if (!a_pins_local_ptr->interface_is_interrupt)
{
m_aci_event_check();
}
if (aci_queue_peek(&aci_rx_q, p_aci_data))
{
return true;
}
return false;
}
bool hal_aci_tl_event_get(hal_aci_data_t *p_aci_data)
{
bool was_full;
if (!a_pins_local_ptr->interface_is_interrupt && !aci_queue_is_full(&aci_rx_q))
{
m_aci_event_check();
}
was_full = aci_queue_is_full(&aci_rx_q);
if (aci_queue_dequeue(&aci_rx_q, p_aci_data))
{
if (aci_debug_print)
{
Serial.print(" E");
m_aci_data_print(p_aci_data);
}
if (was_full && a_pins_local_ptr->interface_is_interrupt)
{
/* Enable RDY line interrupt again */
attachInterrupt(a_pins_local_ptr->interrupt_number, m_aci_isr, LOW);
}
/* Attempt to pull REQN LOW since we've made room for new messages */
if (!aci_queue_is_full(&aci_rx_q) && !aci_queue_is_empty(&aci_tx_q))
{
m_aci_reqn_enable();
}
return true;
}
return false;
}
void hal_aci_tl_init(aci_pins_t *a_pins, bool debug)
{
aci_debug_print = debug;
/* Needs to be called as the first thing for proper intialization*/
m_aci_pins_set(a_pins);
/*
The SPI lines used are mapped directly to the hardware SPI
MISO MOSI and SCK
Change here if the pins are mapped differently
The SPI library assumes that the hardware pins are used
*/
SPI.begin();
//Board dependent defines
#if defined (__AVR__)
//For Arduino use the LSB first
SPI.setBitOrder(LSBFIRST);
#elif defined(__PIC32MX__)
//For ChipKit use MSBFIRST and REVERSE the bits on the SPI as LSBFIRST is not supported
SPI.setBitOrder(MSBFIRST);
#elif defined(__arm__)
SPI.setBitOrder(LSBFIRST);
#endif
SPI.setClockDivider(a_pins->spi_clock_divider);
SPI.setDataMode(SPI_MODE0);
/* Initialize the ACI Command queue. This must be called after the delay above. */
aci_queue_init(&aci_tx_q);
aci_queue_init(&aci_rx_q);
//Configure the IO lines
pinMode(a_pins->rdyn_pin, INPUT_PULLUP);
pinMode(a_pins->reqn_pin, OUTPUT);
if (UNUSED != a_pins->active_pin)
{
pinMode(a_pins->active_pin, INPUT);
}
/* Pin reset the nRF8001, required when the nRF8001 setup is being changed */
hal_aci_tl_pin_reset();
/* Set the nRF8001 to a known state as required by the datasheet*/
digitalWrite(a_pins->miso_pin, 0);
digitalWrite(a_pins->mosi_pin, 0);
digitalWrite(a_pins->reqn_pin, 1);
digitalWrite(a_pins->sck_pin, 0);
delay(30); //Wait for the nRF8001 to get hold of its lines - the lines float for a few ms after the reset
/* Attach the interrupt to the RDYN line as requested by the caller */
if (a_pins->interface_is_interrupt)
{
// We use the LOW level of the RDYN line as the atmega328 can wakeup from sleep only on LOW
attachInterrupt(a_pins->interrupt_number, m_aci_isr, LOW);
}
}
bool hal_aci_tl_send(hal_aci_data_t *p_aci_cmd)
{
const uint8_t length = p_aci_cmd->buffer[0];
bool ret_val = false;
if (length > HAL_ACI_MAX_LENGTH)
{
return false;
}
ret_val = aci_queue_enqueue(&aci_tx_q, p_aci_cmd);
if (ret_val)
{
if(!aci_queue_is_full(&aci_rx_q))
{
// Lower the REQN only when successfully enqueued
m_aci_reqn_enable();
}
if (aci_debug_print)
{
Serial.print("C"); //ACI Command
m_aci_data_print(p_aci_cmd);
}
}
return ret_val;
}
static uint8_t spi_readwrite(const uint8_t aci_byte)
{
//Board dependent defines
#if defined (__AVR__)
//For Arduino the transmission does not have to be reversed
return SPI.transfer(aci_byte);
#elif defined(__PIC32MX__)
//For ChipKit the transmission has to be reversed
uint8_t tmp_bits;
tmp_bits = SPI.transfer(REVERSE_BITS(aci_byte));
return REVERSE_BITS(tmp_bits);
#elif defined(__arm__)
return SPI.transfer(aci_byte);
#endif
}
bool hal_aci_tl_rx_q_empty (void)
{
return aci_queue_is_empty(&aci_rx_q);
}
bool hal_aci_tl_rx_q_full (void)
{
return aci_queue_is_full(&aci_rx_q);
}
bool hal_aci_tl_tx_q_empty (void)
{
return aci_queue_is_empty(&aci_tx_q);
}
bool hal_aci_tl_tx_q_full (void)
{
return aci_queue_is_full(&aci_tx_q);
}
void hal_aci_tl_q_flush (void)
{
m_aci_q_flush();
}