-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_circuit.py
279 lines (233 loc) · 9.35 KB
/
generate_circuit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""Scrpit to generate random circuits according to Sergio Boixo's prescription.
Parameters:
--L1: first lateral dimension of the circuit.
--L2: second lateral dimension of the circuit.
--depth: depth of the circuit (greater than 1).
--seed: random seed to generate the circuit.
--outfile: output file for the circuit.
Raises:
ValueError: if the depth is smaller than 2.
Example:
``python generate_circuit.py --L1 7 --L2 7 --depth 100 --seed 0 --outfile example_circuits/inst_7_7_100_0``
This command will generate a file *inst_7_7_100_0* in folder *example_circuits/* of a circuits with dimensions 7x7 and depth 100, randomly generated from seed 0.
Creates a file *outfile* (no extension added) with the circuit in the format:
* First line has the number of qubits.
* Subsequent lines have either 3 or 4 fields: cycle, gate (*h*, *x_1_2*, *y_1_2*, *t*, or *cz*).
First lay down the Hadamard gates on the first cycle. Then lay down the layers of cz gates according to the prescription. Finnaly, fill in the *t*, *x_1_2*, and *y_1_2* gates in between. Last step would be to print all layers in order according to the cycles.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import itertools as it
import argparse
import logging
parser = argparse.ArgumentParser(description='Generate a random circuit.')
parser.add_argument('--L1', type=int,
help='First lateral dimension of the circuit.')
parser.add_argument('--L2', type=int,
help='Second lateral dimension of the circuit.')
parser.add_argument('--depth', type=int,
help='Depth of the circuit (greater than 1)')
parser.add_argument('--seed', type=int,
help='Random seed to generate the circuit.')
parser.add_argument('--outfile', type=str,
help='Output filename.')
_GATES = ['h', 't', 'x_1_2', 'y_1_2', 'cz']
class Circuit(object):
"""A CircuitGrid provides the skeleton of a circuit while it is being built.
Args:
L1: first lateral dimension of the circuit.
L2: second lateral dimension of the circuit.
depth: depth of the circuit.
Attributes:
L1: first lateral dimension of the circuit.
L2: second lateral dimension of the circuit.
depth: depth of the circuit.
grid: a str numpy.array with the sites (i1, i2, cycle) taken by a gate.
gates_at_cycle: list of gates (cycle, gate, idx(s)) at each cycle.
"""
def __init__(self, L1, L2, depth):
self.L1 = L1
self.L2 = L2
self.depth = depth
self.grid = np.zeros((L1, L2, depth), dtype=object)
self.gates_at_cycle = [[] for cycle in range(depth)]
logging.info('Created a Circuit {}'.format(self.__repr__()))
def __repr__(self):
"""String representation of the circuit."""
repr_cg = '<Circuit: L1={}, L2={}, depth={}>'.format(self.L1, self.L2,\
self.depth)
return repr_cg
def coords_to_idx(self, i1, i2):
"""Function to obtain the idx of a qubit from its 2D coordinates.
Args:
i1: first spatial coordinate.
i2: second spatial coordinate.
Returns:
idx of the qubit corresponting to the coordinates given.
"""
idx = i1 + i2*self.L1
return idx
def idx_to_coords(self, idx):
"""Function to obtain the 2D coordinates from the idx of a qubit.
Args:
idx: int index of a qubit.
Returns:
(i1, i2) tuple of ints with the 2D coordinates.
"""
i1 = idx%self.L1
i2 = idx//self.L1
return (i1, i2)
def set_gate(self, gate, coords, cycle):
"""Sets a gate at the position specified by *coords* and *cycle*.
Args:
gate: one of 'h', 't', 'x_1_2', 'y_1_2', 'cz'.
coords: coordinates of the gate in the format (i1, i2) if it is a one-qubit gate, or (i1, i2, j1, j2) if it is a two-qubit gate.
cycle: cycle at which the gate is applied time coordinate).
Raises:
ValueError: if gate doesn't belong to the valid set or if the gate and the coordinates don't match.
ValueError: if the sites in the grid are taken by another gate.
Todo: Check that the 'cz' gates are set on neighbors.
"""
if (gate not in _GATES) or (gate=='cz' and len(coords)!=4) or\
(gate!='cz' and len(coords)!=2):
msg = 'gate has to be valid and coords match the chosen gate.'
raise ValueError(msg)
if len(coords)==2:
(i1, i2) = coords
if self.grid[i1, i2, cycle]:
msg = 'The site where you attempt to set the gate is already taken.'
raise ValueError(msg)
if len(coords)==4:
(i1, i2, j1, j2) = coords
if self.grid[i1, i2, cycle] or self.grid[j1, j2, cycle]:
msg = 'The sites where you attempt to set the gate are already taken.'
raise ValueError(msg)
logging.debug('Setting {} at coordinates {} and cycle {}'\
.format(gate, coords, cycle))
if len(coords)==2:
idx = self.coords_to_idx(i1, i2)
self.grid[i1, i2, cycle] = gate
self.gates_at_cycle[cycle].append('{} {} {}'.format(cycle, gate, idx))
if len(coords)==4:
idx1 = self.coords_to_idx(i1, i2)
idx2 = self.coords_to_idx(j1, j2)
self.grid[i1, i2, cycle] = gate
self.grid[j1, j2, cycle] = gate
self.gates_at_cycle[cycle].append('{} {} {} {}'.format(cycle,\
gate, idx1, idx2))
def circuit_to_file(self, filename):
"""Print circuit to a file *filename*
Args:
filename: name of the output file.
"""
file_out = open(filename, 'w')
file_out.write('{}\n'.format(self.L1*self.L2))
for cycle in range(self.depth):
for line in self.gates_at_cycle[cycle]:
file_out.write('{}\n'.format(line))
def cz_layer(L1, L2, pattern_num):
"""Function that generates the cz layer corresponding to the pattern_num.
Args:
L1: first spatial dimension.
L2: second spatial dimension.
pattern_num: number that labels the 8 different patterns of cz layers.
Returns:
A list with four-tuples with the (i1, i2, j1, j2) coords of the cz gates.
Raises:
ValueError: if pattern_num is not in [1,8].
"""
if pattern_num<1 or pattern_num>8:
msg = 'pattern_num must be in the range [1,8].'
raise ValueError(msg)
coords_list = []
if pattern_num==1:
for i2 in range(L2):
if i2%2==0:
coords_list += [(i1, i2, i1+1, i2) for i1 in range(0, L1-1, 4)]
else:
coords_list += [(i1, i2, i1+1, i2) for i1 in range(2, L1-1, 4)]
elif pattern_num==2:
for i1 in range(L2):
if i1%2==0:
coords_list += [(i1, i2, i1, i2+1) for i2 in range(1, L1-1, 4)]
else:
coords_list += [(i1, i2, i1, i2+1) for i2 in range(3, L1-1, 4)]
elif pattern_num==3:
for i2 in range(L2):
if i2%2==0:
coords_list += [(i1, i2, i1+1, i2) for i1 in range(1, L1-1, 4)]
else:
coords_list += [(i1, i2, i1+1, i2) for i1 in range(3, L1-1, 4)]
elif pattern_num==4:
for i1 in range(L2):
if i1%2==0:
coords_list += [(i1, i2, i1, i2+1) for i2 in range(0, L1-1, 4)]
else:
coords_list += [(i1, i2, i1, i2+1) for i2 in range(2, L1-1, 4)]
elif pattern_num==5:
for i2 in range(L2):
if i2%2==0:
coords_list += [(i1, i2, i1+1, i2) for i1 in range(2, L1-1, 4)]
else:
coords_list += [(i1, i2, i1+1, i2) for i1 in range(0, L1-1, 4)]
elif pattern_num==6:
for i1 in range(L2):
if i1%2==0:
coords_list += [(i1, i2, i1, i2+1) for i2 in range(3, L1-1, 4)]
else:
coords_list += [(i1, i2, i1, i2+1) for i2 in range(1, L1-1, 4)]
elif pattern_num==7:
for i2 in range(L2):
if i2%2==0:
coords_list += [(i1, i2, i1+1, i2) for i1 in range(1, L1-1, 4)]
else:
coords_list += [(i1, i2, i1+1, i2) for i1 in range(3, L1-1, 4)]
elif pattern_num==8:
for i1 in range(L2):
if i1%2==0:
coords_list += [(i1, i2, i1, i2+1) for i2 in range(2, L1-1, 4)]
else:
coords_list += [(i1, i2, i1, i2+1) for i2 in range(0, L1-1, 4)]
return coords_list
def main(FLAGS):
np.random.seed(FLAGS.seed)
L1, L2, depth = FLAGS.L1, FLAGS.L2, FLAGS.depth
num_qubits = L1*L2
my_circuit = Circuit(L1, L2, depth)
# Set first layer of h gates.
for idx in range(num_qubits):
(i1, i2) = my_circuit.idx_to_coords(idx)
my_circuit.set_gate('h', (i1, i2), 0)
# Set cz layers.
for cycle in range(1, depth):
layer = cz_layer(L1, L2, (cycle-1)%8+1)
for coords in layer:
my_circuit.set_gate('cz', coords, cycle)
# Set one-qubit gates in between the cz ones.
fill_in_gates = ['t', 'x_1_2', 'y_1_2']
for idx in range(num_qubits):
(i1, i2) = my_circuit.idx_to_coords(idx)
coords = (i1, i2)
world_line = my_circuit.grid[i1, i2, :]
first_t_set = False
last_gate = ''
for cycle, site_content in enumerate(world_line):
if not first_t_set:
if not site_content:
my_circuit.set_gate('t', coords, cycle)
first_t_set = True
last_gate = 't'
else:
if world_line[cycle-1]=='cz' and not site_content:
available_gates = list(fill_in_gates)
available_gates.remove(last_gate)
gate = available_gates[np.random.randint(len(available_gates))]
my_circuit.set_gate(gate, coords, cycle)
last_gate = gate
# Print circuit to file.
my_circuit.circuit_to_file(FLAGS.outfile)
if __name__ == '__main__':
FLAGS = parser.parse_args()
main(FLAGS)