-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmp2rage_solve_bloch.m
169 lines (117 loc) · 5.3 KB
/
mp2rage_solve_bloch.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
function signal = mp2rage_solve_bloch( estimateT1, T1, invEFF )
%MP2RAGE_SOLVE_BLOCH function solves Bloch equations for the MP2RAGE pulse
%sequence. This process uses the sequence parameters and the T1 of the
%tissue, and compute the signal as output.
% MP2RAGE_SOLVE_BLOCH is used to build a lookuptable to associate a MP2RAGE
% UNI image signal value to a T1 value.
%
% This function is almost a copy-paste of https://github.com/JosePMarques/MP2RAGE-related-scripts/blob/master/func/MPRAGEfunc.m
nImages = 2; % INV1 & INV2
%% Link my inputs to the function variables
MPRAGE_tr = estimateT1.TR;
B0 = estimateT1.B0;
inversiontimes = estimateT1.TI;
nZslices = estimateT1.nrSlices * [ estimateT1.PartialFourierInSlice*0.5 0.5 ];
FLASH_tr = estimateT1.EchoSpacing;
flipangle = estimateT1.FA;
sequence = estimateT1.FatSat;
%% This part below is mostly from the original function
% I didn't rewrite the equation, only the typo
%% Prepare some paramterts
% Fat saturation ?
%--------------------------------------------------------------------------
if strcmpi(sequence,'no')
normalsequence = true;
waterexcitation = false;
else
normalsequence = false;
waterexcitation = true;
FatWaterCSppm = 3.3; % ppm
gamma = 42.576; % MHz/T
pulseSpace = 1/2/(FatWaterCSppm*B0*gamma);
end
% Convert Flip Angles from degree to radian
%--------------------------------------------------------------------------
fliprad = flipangle/180*pi; % Conversion from degrees to radians
% Inversion Efficiency
%--------------------------------------------------------------------------
% ideally invEFF=1;
if nargin < 3
invEFF=0.96; % Inversion efficiency of the Siemens MP2RAGE PULSE
end
% Slices
%--------------------------------------------------------------------------
nZ_bef = nZslices(1);
nZ_aft = nZslices(2);
nZslices = sum( nZslices );
%% Calculating the relevant timing and associated values
if normalsequence
E_1 = exp( -FLASH_tr/T1 ); % recovery between two excitaion
TA = nZslices * FLASH_tr;
TA_bef = nZ_bef * FLASH_tr;
TA_aft = nZ_aft * FLASH_tr;
TD (1) = inversiontimes(1) - TA_bef;
TD (nImages+1) = MPRAGE_tr - inversiontimes(nImages) - TA_aft;
E_TD(1) = exp( -TD(1) /T1 );
E_TD(nImages+1) = exp( -TD(nImages+1)/T1 );
if nImages > 1
for iImages = 2 : nImages
TD (iImages) = inversiontimes(iImages) - inversiontimes(iImages-1) - TA;
E_TD(iImages) = exp( -TD(iImages)/T1 );
end
end
[ cosalfaE1, oneminusE1, sinalfa ] = deal(zeros(1,nImages)); % pre-allocation
for iImages = 1 : nImages
cosalfaE1 (iImages) = cos( fliprad(iImages) ) * E_1;
oneminusE1(iImages) = 1 - E_1;
sinalfa (iImages) = sin( fliprad(iImages) );
end
end
if waterexcitation
E_1 = exp( -FLASH_tr / T1 );
E_1A = exp( -pulseSpace / T1 );
E_2A = exp( -pulseSpace / 0.06 ); % 60ms is an estimation of the T2star.. not very relevant
E_1B = exp( -(FLASH_tr-pulseSpace) / T1 );
TA = nZslices * FLASH_tr;
TA_bef = nZ_bef * FLASH_tr;
TA_aft = nZ_aft * FLASH_tr;
TD (1) = inversiontimes(1) - TA_bef;
TD (nImages+1) = MPRAGE_tr - inversiontimes(nImages) - TA_aft;
E_TD(1) = exp( -TD(1) /T1 );
E_TD(nImages+1) = exp( -TD(nImages+1)/T1 );
if nImages > 1
for iImages = 2 : nImages
TD (iImages) = inversiontimes(iImages) - inversiontimes(iImages-1) - TA;
E_TD(iImages) = exp (-TD(iImages)/T1 );
end
end
for iImages = 1 : nImages
cosalfaE1 (iImages) = ( cos( fliprad(iImages)/2 ) )^ 2 * (E_1A * E_1B) - ( sin( fliprad(iImages)/2 ) )^2 * ( E_2A * E_1B );
oneminusE1(iImages) = (1 - E_1A) * cos( fliprad(iImages)/2 ) * E_1B + (1 - E_1B);
sinalfa (iImages) = sin( fliprad(iImages)/2 ) * cos( fliprad(iImages)/2 ) * (E_1A + E_2A);
end
end
%% Steady state calculation
M0 = 1;
MZss_num = M0 * (1 - E_TD(1));
for iImages = 1 : nImages
% term relative to the image acquisition
MZss_num = MZss_num * ( cosalfaE1(iImages) )^nZslices + M0 * (1 - E_1) * (1 - ( cosalfaE1(iImages) )^nZslices) / (1 - cosalfaE1(iImages));
% term for the relaxation time after it
MZss_num = MZss_num * E_TD(iImages+1) + M0 * (1 - E_TD(iImages+1));
end
MZss_den = 1 + invEFF * ( prod(cosalfaE1) )^nZslices * prod(E_TD);
MZss = MZss_num / MZss_den;
%% Signal
signal = zeros(1,nImages);% pre-allocation
iImages = 1;
temp = (-invEFF * MZss * E_TD(1) + M0 * (1 - E_TD(1))) * ( cosalfaE1(iImages) )^nZ_bef + M0 * (1 - E_1) * (1 - ( cosalfaE1(iImages) )^nZ_bef) / (1 - cosalfaE1(iImages));
signal(1) = sinalfa(iImages) * temp ;
if nImages > 1
for iImages = 2 :(nImages)
temp = temp * ( cosalfaE1(iImages-1) )^nZ_aft + M0 * (1 - E_1) * (1 - ( cosalfaE1(iImages-1) )^nZ_aft) / (1 - cosalfaE1(iImages-1));
temp = (temp * E_TD(iImages) + M0 * (1-E_TD(iImages))) * ( cosalfaE1(iImages) )^nZ_bef + M0 * (1 - E_1) * (1 - ( cosalfaE1(iImages) )^(nZ_bef)) / (1 - cosalfaE1(iImages));
signal(iImages) = sinalfa(iImages) * temp;
end
end
end % function