-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_final.py
474 lines (413 loc) · 21.4 KB
/
train_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
"""
Train a mobilenet-variant with varying channel numbers.
File based on Gluon-cv train_imagenet.py at https://github.com/dmlc/gluon-cv/blob/18f8ab526ffb97660e6e5661f991064c20e2699d/scripts/classification/imagenet/train_imagenet.py
"""
import argparse, time, logging, os, math
import numpy as np
import mxnet as mx
import gluoncv as gcv
from mxnet import gluon, nd
from mxnet import autograd as ag
from mxnet.gluon.data.vision import transforms
from gluoncv.data import imagenet
from gluoncv.model_zoo import get_model
from gluoncv.utils import makedirs, LRSequential, LRScheduler
import mxnet_mobilenet as mobilenet
_models = {
'mobilenet': mobilenet.get_mobilenet,
}
# CLI
def parse_args():
parser = argparse.ArgumentParser(description='Train a model for image classification.')
parser.add_argument('--data-dir', type=str, default='~/.mxnet/datasets/imagenet',
help='training and validation pictures to use.')
parser.add_argument('--rec-train', type=str, default='~/.mxnet/datasets/imagenet/rec/train.rec',
help='the training data')
parser.add_argument('--rec-train-idx', type=str, default='~/.mxnet/datasets/imagenet/rec/train.idx',
help='the index of training data')
parser.add_argument('--rec-val', type=str, default='~/.mxnet/datasets/imagenet/rec/val.rec',
help='the validation data')
parser.add_argument('--rec-val-idx', type=str, default='~/.mxnet/datasets/imagenet/rec/val.idx',
help='the index of validation data')
parser.add_argument('--use-rec', action='store_true',
help='use image record iter for data input. default is false.')
parser.add_argument('--batch-size', type=int, default=32,
help='training batch size per device (CPU/GPU).')
parser.add_argument('--dtype', type=str, default='float32',
help='data type for training. default is float32')
parser.add_argument('--num-gpus', type=int, default=0,
help='number of gpus to use.')
parser.add_argument('-j', '--num-data-workers', dest='num_workers', default=4, type=int,
help='number of preprocessing workers')
parser.add_argument('--num-epochs', type=int, default=3,
help='number of training epochs.')
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate. default is 0.1.')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum value for optimizer, default is 0.9.')
parser.add_argument('--wd', type=float, default=0.0001,
help='weight decay rate. default is 0.0001.')
parser.add_argument('--lr-mode', type=str, default='step',
help='learning rate scheduler mode. options are step, poly and cosine.')
parser.add_argument('--lr-decay', type=float, default=0.1,
help='decay rate of learning rate. default is 0.1.')
parser.add_argument('--lr-decay-period', type=int, default=0,
help='interval for periodic learning rate decays. default is 0 to disable.')
parser.add_argument('--lr-decay-epoch', type=str, default='40,60',
help='epochs at which learning rate decays. default is 40,60.')
parser.add_argument('--warmup-lr', type=float, default=0.0,
help='starting warmup learning rate. default is 0.0.')
parser.add_argument('--warmup-epochs', type=int, default=0,
help='number of warmup epochs.')
parser.add_argument('--last-gamma', action='store_true',
help='whether to init gamma of the last BN layer in each bottleneck to 0.')
parser.add_argument('--mode', type=str,
help='mode in which to train the model. options are symbolic, imperative, hybrid')
parser.add_argument('--configuration', type=str, default=None,
help=("The custom mobilenet configuration to train. "
"Can be MOBILENET or comma-separated channel numbers."))
parser.add_argument('--model', type=str, default="mobilenet",
help='type of model to use. set to mobilenet in this modified version.')
parser.add_argument('--input-size', type=int, default=224,
help='size of the input image size. default is 224')
parser.add_argument('--crop-ratio', type=float, default=0.875,
help='Crop ratio during validation. default is 0.875')
parser.add_argument('--use-pretrained', action='store_true',
help='enable using pretrained model from gluon.')
parser.add_argument('--use_se', action='store_true',
help='use SE layers or not in resnext. default is false.')
parser.add_argument('--mixup', action='store_true',
help='whether train the model with mix-up. default is false.')
parser.add_argument('--mixup-alpha', type=float, default=0.2,
help='beta distribution parameter for mixup sampling, default is 0.2.')
parser.add_argument('--mixup-off-epoch', type=int, default=0,
help='how many last epochs to train without mixup, default is 0.')
parser.add_argument('--label-smoothing', action='store_true',
help='use label smoothing or not in training. default is false.')
parser.add_argument('--no-wd', action='store_true',
help='whether to remove weight decay on bias, and beta/gamma for batchnorm layers.')
parser.add_argument('--teacher', type=str, default=None,
help='teacher model for distillation training')
parser.add_argument('--temperature', type=float, default=20,
help='temperature parameter for distillation teacher model')
parser.add_argument('--hard-weight', type=float, default=0.5,
help='weight for the loss of one-hot label for distillation training')
parser.add_argument('--batch-norm', action='store_true',
help='enable batch normalization or not in vgg. default is false.')
parser.add_argument('--save-frequency', type=int, default=10,
help='frequency of model saving.')
parser.add_argument('--save-dir', type=str, default='params',
help='directory of saved models')
parser.add_argument('--resume-epoch', type=int, default=0,
help='epoch to resume training from.')
parser.add_argument('--resume-params', type=str, default='',
help='path of parameters to load from.')
parser.add_argument('--resume-states', type=str, default='',
help='path of trainer state to load from.')
parser.add_argument('--log-interval', type=int, default=50,
help='Number of batches to wait before logging.')
parser.add_argument('--logging-file', type=str, default='train_imagenet.log',
help='name of training log file')
parser.add_argument('--use-gn', action='store_true',
help='whether to use group norm.')
opt = parser.parse_args()
return opt
def main():
opt = parse_args()
filehandler = logging.FileHandler(opt.logging_file)
streamhandler = logging.StreamHandler()
logger = logging.getLogger('')
logger.setLevel(logging.INFO)
logger.addHandler(filehandler)
logger.addHandler(streamhandler)
logger.info(opt)
batch_size = opt.batch_size
classes = 1000
num_training_samples = 1281167
num_gpus = opt.num_gpus
batch_size *= max(1, num_gpus)
context = [mx.gpu(i) for i in range(num_gpus)] if num_gpus > 0 else [mx.cpu()]
num_workers = opt.num_workers
lr_decay = opt.lr_decay
lr_decay_period = opt.lr_decay_period
if opt.lr_decay_period > 0:
lr_decay_epoch = list(range(lr_decay_period, opt.num_epochs, lr_decay_period))
else:
lr_decay_epoch = [int(i) for i in opt.lr_decay_epoch.split(',')]
lr_decay_epoch = [e - opt.warmup_epochs for e in lr_decay_epoch]
num_batches = num_training_samples // batch_size
lr_scheduler = LRSequential([
LRScheduler('linear', base_lr=0, target_lr=opt.lr,
nepochs=opt.warmup_epochs, iters_per_epoch=num_batches),
LRScheduler(opt.lr_mode, base_lr=opt.lr, target_lr=0,
nepochs=opt.num_epochs - opt.warmup_epochs,
iters_per_epoch=num_batches,
step_epoch=lr_decay_epoch,
step_factor=lr_decay, power=2)
])
model_name = opt.model
kwargs = {'ctx': context, 'pretrained': opt.use_pretrained, 'classes': classes}
if opt.use_gn:
from gluoncv.nn import GroupNorm
kwargs['norm_layer'] = GroupNorm
if model_name.startswith('vgg'):
kwargs['batch_norm'] = opt.batch_norm
elif model_name.startswith('resnext'):
kwargs['use_se'] = opt.use_se
if opt.last_gamma:
kwargs['last_gamma'] = True
if opt.configuration is not None:
kwargs['configuration'] = opt.configuration
optimizer = 'nag'
optimizer_params = {'wd': opt.wd, 'momentum': opt.momentum, 'lr_scheduler': lr_scheduler}
if opt.dtype != 'float32':
optimizer_params['multi_precision'] = True
if model_name in _models:
net = _models[model_name](**kwargs)
else:
net = get_model(model_name, **kwargs)
net.cast(opt.dtype)
if opt.resume_params is not '':
net.load_parameters(opt.resume_params, ctx = context)
# teacher model for distillation training
if opt.teacher is not None and opt.hard_weight < 1.0:
teacher_name = opt.teacher
teacher = get_model(teacher_name, pretrained=True, classes=classes, ctx=context)
teacher.cast(opt.dtype)
distillation = True
else:
distillation = False
# Two functions for reading data from record file or raw images
def get_data_rec(rec_train, rec_train_idx, rec_val, rec_val_idx, batch_size, num_workers):
rec_train = os.path.expanduser(rec_train)
rec_train_idx = os.path.expanduser(rec_train_idx)
rec_val = os.path.expanduser(rec_val)
rec_val_idx = os.path.expanduser(rec_val_idx)
jitter_param = 0.4
lighting_param = 0.1
input_size = opt.input_size
crop_ratio = opt.crop_ratio if opt.crop_ratio > 0 else 0.875
resize = int(math.ceil(input_size / crop_ratio))
mean_rgb = [123.68, 116.779, 103.939]
std_rgb = [58.393, 57.12, 57.375]
def batch_fn(batch, ctx):
data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
return data, label
train_data = mx.io.ImageRecordIter(
path_imgrec = rec_train,
path_imgidx = rec_train_idx,
preprocess_threads = num_workers,
shuffle = True,
batch_size = batch_size,
data_shape = (3, input_size, input_size),
mean_r = mean_rgb[0],
mean_g = mean_rgb[1],
mean_b = mean_rgb[2],
std_r = std_rgb[0],
std_g = std_rgb[1],
std_b = std_rgb[2],
rand_mirror = True,
random_resized_crop = True,
max_aspect_ratio = 4. / 3.,
min_aspect_ratio = 3. / 4.,
max_random_area = 1,
min_random_area = 0.08,
brightness = jitter_param,
saturation = jitter_param,
contrast = jitter_param,
pca_noise = lighting_param,
)
val_data = mx.io.ImageRecordIter(
path_imgrec = rec_val,
path_imgidx = rec_val_idx,
preprocess_threads = num_workers,
shuffle = False,
batch_size = batch_size,
resize = resize,
data_shape = (3, input_size, input_size),
mean_r = mean_rgb[0],
mean_g = mean_rgb[1],
mean_b = mean_rgb[2],
std_r = std_rgb[0],
std_g = std_rgb[1],
std_b = std_rgb[2],
)
return train_data, val_data, batch_fn
def get_data_loader(data_dir, batch_size, num_workers):
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
jitter_param = 0.4
lighting_param = 0.1
input_size = opt.input_size
crop_ratio = opt.crop_ratio if opt.crop_ratio > 0 else 0.875
resize = int(math.ceil(input_size / crop_ratio))
def batch_fn(batch, ctx):
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
return data, label
transform_train = transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomFlipLeftRight(),
transforms.RandomColorJitter(brightness=jitter_param, contrast=jitter_param,
saturation=jitter_param),
transforms.RandomLighting(lighting_param),
transforms.ToTensor(),
normalize
])
transform_test = transforms.Compose([
transforms.Resize(resize, keep_ratio=True),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
normalize
])
train_data = gluon.data.DataLoader(
imagenet.classification.ImageNet(data_dir, train=True).transform_first(transform_train),
batch_size=batch_size, shuffle=True, last_batch='discard', num_workers=num_workers)
val_data = gluon.data.DataLoader(
imagenet.classification.ImageNet(data_dir, train=False).transform_first(transform_test),
batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_data, val_data, batch_fn
if opt.use_rec:
train_data, val_data, batch_fn = get_data_rec(opt.rec_train, opt.rec_train_idx,
opt.rec_val, opt.rec_val_idx,
batch_size, num_workers)
else:
train_data, val_data, batch_fn = get_data_loader(opt.data_dir, batch_size, num_workers)
if opt.mixup:
train_metric = mx.metric.RMSE()
else:
train_metric = mx.metric.Accuracy()
acc_top1 = mx.metric.Accuracy()
acc_top5 = mx.metric.TopKAccuracy(5)
save_frequency = opt.save_frequency
if opt.save_dir and save_frequency:
save_dir = opt.save_dir
makedirs(save_dir)
else:
save_dir = ''
save_frequency = 0
def mixup_transform(label, classes, lam=1, eta=0.0):
if isinstance(label, nd.NDArray):
label = [label]
res = []
for l in label:
y1 = l.one_hot(classes, on_value = 1 - eta + eta/classes, off_value = eta/classes)
y2 = l[::-1].one_hot(classes, on_value = 1 - eta + eta/classes, off_value = eta/classes)
res.append(lam*y1 + (1-lam)*y2)
return res
def smooth(label, classes, eta=0.1):
if isinstance(label, nd.NDArray):
label = [label]
smoothed = []
for l in label:
res = l.one_hot(classes, on_value = 1 - eta + eta/classes, off_value = eta/classes)
smoothed.append(res)
return smoothed
def test(ctx, val_data):
if opt.use_rec:
val_data.reset()
acc_top1.reset()
acc_top5.reset()
for i, batch in enumerate(val_data):
data, label = batch_fn(batch, ctx)
outputs = [net(X.astype(opt.dtype, copy=False)) for X in data]
acc_top1.update(label, outputs)
acc_top5.update(label, outputs)
_, top1 = acc_top1.get()
_, top5 = acc_top5.get()
return (1-top1, 1-top5)
def train(ctx):
if isinstance(ctx, mx.Context):
ctx = [ctx]
if opt.resume_params is '':
net.initialize(mx.init.MSRAPrelu(), ctx=ctx)
if opt.no_wd:
for k, v in net.collect_params('.*beta|.*gamma|.*bias').items():
v.wd_mult = 0.0
trainer = gluon.Trainer(net.collect_params(), optimizer, optimizer_params)
if opt.resume_states is not '':
trainer.load_states(opt.resume_states)
if opt.label_smoothing or opt.mixup:
sparse_label_loss = False
else:
sparse_label_loss = True
if distillation:
L = gcv.loss.DistillationSoftmaxCrossEntropyLoss(temperature=opt.temperature,
hard_weight=opt.hard_weight,
sparse_label=sparse_label_loss)
else:
L = gluon.loss.SoftmaxCrossEntropyLoss(sparse_label=sparse_label_loss)
best_val_score = 1
for epoch in range(opt.resume_epoch, opt.num_epochs):
tic = time.time()
if opt.use_rec:
train_data.reset()
train_metric.reset()
btic = time.time()
for i, batch in enumerate(train_data):
data, label = batch_fn(batch, ctx)
if opt.mixup:
lam = np.random.beta(opt.mixup_alpha, opt.mixup_alpha)
if epoch >= opt.num_epochs - opt.mixup_off_epoch:
lam = 1
data = [lam*X + (1-lam)*X[::-1] for X in data]
if opt.label_smoothing:
eta = 0.1
else:
eta = 0.0
label = mixup_transform(label, classes, lam, eta)
elif opt.label_smoothing:
hard_label = label
label = smooth(label, classes)
if distillation:
teacher_prob = [nd.softmax(teacher(X.astype(opt.dtype, copy=False)) / opt.temperature) \
for X in data]
with ag.record():
outputs = [net(X.astype(opt.dtype, copy=False)) for X in data]
if distillation:
loss = [L(yhat.astype('float32', copy=False),
y.astype('float32', copy=False),
p.astype('float32', copy=False)) for yhat, y, p in zip(outputs, label, teacher_prob)]
else:
loss = [L(yhat, y.astype(opt.dtype, copy=False)) for yhat, y in zip(outputs, label)]
for l in loss:
l.backward()
trainer.step(batch_size)
if opt.mixup:
output_softmax = [nd.SoftmaxActivation(out.astype('float32', copy=False)) \
for out in outputs]
train_metric.update(label, output_softmax)
else:
if opt.label_smoothing:
train_metric.update(hard_label, outputs)
else:
train_metric.update(label, outputs)
if opt.log_interval and not (i+1)%opt.log_interval:
train_metric_name, train_metric_score = train_metric.get()
logger.info('Epoch[%d] Batch [%d]\tSpeed: %f samples/sec\t%s=%f\tlr=%f'%(
epoch, i, batch_size*opt.log_interval/(time.time()-btic),
train_metric_name, train_metric_score, trainer.learning_rate))
btic = time.time()
train_metric_name, train_metric_score = train_metric.get()
throughput = int(batch_size * i /(time.time() - tic))
err_top1_val, err_top5_val = test(ctx, val_data)
logger.info('[Epoch %d] training: %s=%f'%(epoch, train_metric_name, train_metric_score))
logger.info('[Epoch %d] speed: %d samples/sec\ttime cost: %f'%(epoch, throughput, time.time()-tic))
logger.info('[Epoch %d] validation: err-top1=%f err-top5=%f'%(epoch, err_top1_val, err_top5_val))
if err_top1_val < best_val_score:
best_val_score = err_top1_val
net.save_parameters('%s/%.4f-imagenet-%s-%d-best.params'%(save_dir, best_val_score, model_name, epoch))
trainer.save_states('%s/%.4f-imagenet-%s-%d-best.states'%(save_dir, best_val_score, model_name, epoch))
if save_frequency and save_dir and (epoch + 1) % save_frequency == 0:
net.save_parameters('%s/imagenet-%s-%d.params'%(save_dir, model_name, epoch))
trainer.save_states('%s/imagenet-%s-%d.states'%(save_dir, model_name, epoch))
if save_frequency and save_dir:
net.save_parameters('%s/imagenet-%s-%d.params'%(save_dir, model_name, opt.num_epochs-1))
trainer.save_states('%s/imagenet-%s-%d.states'%(save_dir, model_name, opt.num_epochs-1))
if opt.mode == 'hybrid':
net.hybridize(static_alloc=True, static_shape=True)
if distillation:
teacher.hybridize(static_alloc=True, static_shape=True)
train(context)
if __name__ == '__main__':
main()