forked from rosen1998/PST
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
214 lines (176 loc) · 7.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
from sklearn import metrics
import math
import torch.nn as nn
from tqdm import tqdm
import numpy as np
def RMSE(pred, y):
return math.sqrt(metrics.mean_squared_error(y, pred))
def F1_score(pred, y):
f1 = metrics.f1_score(y, pred)
return f1
def auc(pred_score, true_y, label_value=1):
f, t, _ = metrics.roc_curve(true_y, pred_score, pos_label=label_value)
return metrics.auc(f, t)
def acc(pred, y):
return metrics.accuracy_score(y, pred)
def train_PST(net, optimizer, targets, e_cig, e_ctg, detail_is_acs, rates, exercises, logger, args, optimize_target):
net.to(args.device)
net.train()
N = int(math.ceil(len(targets) / args.batch_size))
if 'rate' in optimize_target:
loss_func = nn.MSELoss()
else:
loss_func = nn.BCELoss()
def loss_f(y, r, targets, rate_targets, args):
loss1 = loss_func(y, targets)
loss_func_two = nn.MSELoss()
loss2 = loss_func_two(r, rate_targets)
loss = args.alpha*loss1 + args.beta*loss2
return loss
pred_list = []
target_list = []
all_loss = 0
pred_count = 0
all_r = []
all_rate = []
for i in tqdm(range(N), desc='training a model...'):
optimizer.zero_grad()
target_batch = torch.from_numpy(targets[i*args.batch_size:(i+1)*args.batch_size])
rates_batch = torch.from_numpy(rates[i*args.batch_size:(i+1)*args.batch_size])
e_cig_batch = e_cig[i*args.batch_size:i*args.batch_size+target_batch.shape[0]].to(args.device)
e_ctg_batch = e_ctg[i*args.batch_size:i*args.batch_size+target_batch.shape[0]].to(args.device)
exercises_batch = torch.from_numpy(exercises[i*args.batch_size:(i+1)*args.batch_size]).long().to(args.device)
detail_is_ac_batch = torch.from_numpy(detail_is_acs[i*args.batch_size:(i+1)*args.batch_size]).to(args.device)
y_batch, r_batch = net(detail_is_ac_batch, exercises_batch, e_cig_batch, e_ctg_batch)
y_batch = y_batch[:, 1:].cpu()
r_batch = r_batch[:, 1:].cpu()
target_batch = target_batch[:, 1:]
target_batch = target_batch.reshape(-1)
rates_batch = rates_batch[:, 1:].reshape(-1)
y_batch = y_batch.reshape(-1)
r_batch = r_batch.reshape(-1)
# mask the pad data
mask_count = torch.sum(target_batch >= -.9)
pred_count += mask_count
mask = target_batch >= -.9
ra_mask = rates_batch >= -.9
y_mask = y_batch[mask].double()
target_mask = target_batch[mask].double()
r_mask = r_batch[ra_mask].double()
rate_mask = rates_batch[ra_mask].double()
loss = loss_f(y_mask, r_mask, target_mask, rate_mask, args)
# pass the pad data
if torch.isnan(loss):
pass
else:
all_loss += loss.item() * mask_count
# update parameters
loss.backward()
optimizer.step()
pred_list.append(y_mask.detach().numpy())
target_list.append(target_mask.numpy())
all_r.append(r_mask.detach().numpy())
all_rate.append(rate_mask.numpy())
all_pred = np.concatenate(pred_list, axis=0)
all_target = np.concatenate(target_list, axis=0)
all_r = np.concatenate(all_r, axis=0)
all_rate = np.concatenate(all_rate, axis=0)
all_pred = torch.from_numpy(all_pred)
all_target = torch.from_numpy(all_target)
all_r = torch.from_numpy(all_r)
all_rate = torch.from_numpy(all_rate)
all_pred = all_pred.reshape(-1)
all_target = all_target.reshape(-1)
all_r = all_r.reshape(-1)
all_rate = all_rate.reshape(-1)
all_loss = loss_f(all_pred, all_r, all_target, all_rate, args)
return all_loss
def test_PST(net, targets, e_cig, e_ctg, detail_is_acs, rates, exercises, logger, args, optimize_target):
net.to(args.device)
net.eval()
N = int(math.ceil(len(targets) / args.batch_size))
if 'rate' in optimize_target:
loss_func = nn.MSELoss()
else:
loss_func = nn.BCELoss()
def loss_f(y, r, targets, rate_targets, args):
loss1 = loss_func(y, targets)
loss_func_two = nn.MSELoss()
loss2 = loss_func_two(r, rate_targets)
loss = args.alpha*loss1 + args.beta*loss2
return loss
pred_list = []
target_list = []
all_loss = 0
pred_count = 0
all_r = []
all_rate = []
for i in tqdm(range(N), desc='testing a model...'):
target_batch = torch.from_numpy(targets[i*args.batch_size:(i+1)*args.batch_size])
rates_batch = torch.from_numpy(rates[i*args.batch_size:(i+1)*args.batch_size])
e_cig_batch = e_cig[i*args.batch_size:i*args.batch_size+target_batch.shape[0]].to(args.device)
e_ctg_batch = e_ctg[i*args.batch_size:i*args.batch_size+target_batch.shape[0]].to(args.device)
exercises_batch = torch.from_numpy(exercises[i*args.batch_size:(i+1)*args.batch_size]).long().to(args.device)
detail_is_ac_batch = torch.from_numpy(detail_is_acs[i*args.batch_size:(i+1)*args.batch_size]).to(args.device)
y_batch, r_batch = net(detail_is_ac_batch, exercises_batch, e_cig_batch, e_ctg_batch)
y_batch = y_batch[:, 1:].cpu()
r_batch = r_batch[:, 1:].cpu()
target_batch = target_batch[:, 1:]
target_batch = target_batch.reshape(-1)
rates_batch = rates_batch[:, 1:].reshape(-1)
y_batch = y_batch.reshape(-1)
r_batch = r_batch.reshape(-1)
# mask the pad data
mask_count = torch.sum(target_batch >= -.9)
pred_count += mask_count
mask = target_batch >= -.9
ra_mask = rates_batch >= -.9
y_mask = y_batch[mask].double()
target_mask = target_batch[mask].double()
r_mask = r_batch[ra_mask].double()
rate_mask = rates_batch[ra_mask].double()
loss = loss_f(y_mask, r_mask, target_mask, rate_mask, args)
# pass the pad data
if torch.isnan(loss):
pass
else:
all_loss += loss.item() * mask_count
pred_list.append(y_mask.detach().numpy())
target_list.append(target_mask.numpy())
all_r.append(r_mask.detach().numpy())
all_rate.append(rate_mask.numpy())
all_pred = np.concatenate(pred_list, axis=0)
all_target = np.concatenate(target_list, axis=0)
all_r = np.concatenate(all_r, axis=0)
all_rate = np.concatenate(all_rate, axis=0)
all_pred = torch.from_numpy(all_pred)
all_target = torch.from_numpy(all_target)
all_r = torch.from_numpy(all_r)
all_rate = torch.from_numpy(all_rate)
all_pred = all_pred.reshape(-1)
all_target = all_target.reshape(-1)
all_r = all_r.reshape(-1)
all_rate = all_rate.reshape(-1)
all_loss = loss_f(all_pred, all_r, all_target, all_rate, args)
if 'rate' in optimize_target:
rmse = RMSE(all_pred, all_target)
performance = {
'rmse': rmse
}
else:
u = auc(all_pred, all_target)
rmse = RMSE(all_pred, all_target)
all_pred = np.round(all_pred)
all_target = all_target
c = acc(all_pred, all_target)
f1 = F1_score(all_pred, all_target)
performance = {
'auc': u,
'acc': c,
'rmse': rmse,
'f1': f1
}
print(performance)
logger.info('performance: {0}'.format(performance))
return performance, all_loss