-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmain.py
98 lines (86 loc) · 4.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# This Python file uses the following encoding: utf-8
"""
Author: Fu Qingxu,CASIA
Description: Enterance for everything in HMP
In this file you can find:
1.Config-Parsing; 2.Multiprocess-Initilization
3.GPU-Selection; 4.Seed-Setting
If you are interested in something, you may continue to read:
Handling parallel environment --> task_runner.py & shm_env.py
Link between teams and diverse algorithms --> multi_team.py
Adding new env --> MISSION.env_router.py
Adding algorithm --> ALGORITHM.example_foundation.py
Configuring by writing py files --> config.py
Configuring by json --> xx.json
colorful printing --> colorful.py
auto pip deployer --> pip_find_missing.py
efficient parallel execting --> shm_pool.pyx
auto gpu selection --> auto_gpu.py
hmap logging/plotting bridge --> mcom.py & mcom_rec.py
experiment batch executor --> mprofile.py
"""
import os, atexit, platform
def SET_NUM_THREADS(internal_threads):
os.environ['NUM_THREADS'] = str(internal_threads)
os.environ['OPENBLAS_NUM_THREADS'] = str(internal_threads)
os.environ['MKL_NUM_THREADS'] = str(internal_threads)
os.environ['OMP_NUM_THREADS'] = str(internal_threads)
SET_NUM_THREADS(1)
# do NOT edit this func
def pytorch_gpu_init(cfg):
import torch
from UTIL.auto_gpu import sel_gpu
torch.set_num_threads(int(os.environ['NUM_THREADS']))
seed = cfg.seed; device = cfg.device
torch.manual_seed(seed)
torch.set_printoptions(precision=4, sci_mode=False)
# e.g. device='cpu'
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
if not 'cuda' in device: return
if device == 'cuda':
gpu_index = sel_gpu().auto_choice()
else: # e.g. device='cuda:0'
gpu_index = int(device.split(':')[-1]) if ',' not in device else device.split(':')[-1]
# parse gpu_party, e.g. cuda-1#2
if cfg.gpu_party.startswith('#'):
cfg.gpu_party = f"{cfg.device.replace(':', '-')}{cfg.gpu_party}"
cfg.manual_gpu_ctl = True
if cfg.gpu_fraction!=1: torch.cuda.set_per_process_memory_fraction(cfg.gpu_fraction, gpu_index)
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_index)
cfg.device = 'cuda' if ',' not in device else device # remove ':x', the selected gpu is cuda:0 from now on
torch.cuda.manual_seed(seed)
if cfg.use_float64:
torch.set_default_dtype(torch.float64)
def register_daemon(cfg):
from UTIL.hmp_daemon import start_periodic_daemon
start_periodic_daemon(cfg)
if __name__ == '__main__':
import numpy
import pyximport; pyximport.install(build_dir='./TEMP/build/', inplace=True, language_level=3, setup_args={'include_dirs': numpy.get_include()})
from UTIL.colorful import *
from UTIL.config_args import prepare_args
from UTIL.shm_pool import SmartPool
cfg = prepare_args()
register_daemon(cfg)
# Set numpy seed
numpy.random.seed(cfg.seed)
numpy.set_printoptions(3, suppress=True)
# Get mem-sharing process pool
assert cfg.num_threads % cfg.fold == 0, ('Use n process to run n*m parallel threads!')
smart_pool = SmartPool(fold=cfg.fold, proc_num=cfg.num_threads // cfg.fold, base_seed=cfg.seed)
atexit.register(smart_pool.party_over) # failsafe, handles shm leak
# Pytorch has to be init AFTER the process pool starts, set pytorch seed
pytorch_gpu_init(cfg=cfg)
# Prepare everything else
from task_runner import Runner
runner = Runner(process_pool=smart_pool)
# GO! GO! GO!
runner.run()
runner.conclude_experiment()
# DONE!
print绿('--- All jobs finished ---')
smart_pool.party_over()
elif platform.system()!="Linux":
# Linux uses fork for multi-processing, but Windows does not, reload config for Windows
from UTIL.config_args import prepare_args
cfg = prepare_args(vb=False)