-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
404 lines (331 loc) · 9.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from language_models.evaluation_utils import eval_rocauc
from data_processor.data_loader import load_local_dataset
from language_models.data_utils import prepare_train_ds, prepare_test_ds, train_df_to_ds
from language_models.tokenizer_utils import configure_tokenizer
from language_models.model_utils import configure_model, train_model, distil_model
import gc
import argparse
import logging
import random
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoModelForMaskedLM
import torch
torch.cuda.empty_cache()
torch.cuda.memory_summary(device=None, abbreviated=False)
# torch.use_deterministic_algorithms(True)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__file__)
parser = argparse.ArgumentParser(
description="Language Modelling with BERT parameters.")
parser.add_argument(
"--ds",
type=str,
help="dataset name",
default="kyoto-2016",
choices=[
"kyoto-2016",
],
)
parser.add_argument(
"--architecture",
type=str,
help="arhictecture type",
default="bert_small",
choices=["bert", "bert_small", "electra", "lstm"],
)
parser.add_argument(
"--experiment_type",
type=str,
help="experiment type",
default="ood",
choices=["ood", "finetune", "distil", "indistr", "indistr_full"],
)
parser.add_argument(
"--ds_size",
type=str,
help="dataset size: large or small",
default="subset",
choices=["full", "subset"],
)
parser.add_argument(
"--contamination",
type=float,
help="percent of outliers in train data",
default=0.0,
)
parser.add_argument(
"--random_seed",
type=int,
help="percent of outliers in train data",
default=46,
)
parser.add_argument(
"--experiment_year",
help="Year to train on. Only available for Kyoto dataset",
type=str,
default="",
choices=[
"",
"2006",
"2007",
"2008",
"2009",
"2010",
"2011",
"2012",
"2013",
"2014",
"2015",
],
)
parser.add_argument(
"--epochs", help="Number of epochs to train", type=int, default=5)
parser.add_argument("--byte_level", action="store_true")
parser.add_argument("--pretrained", action="store_true")
parser.add_argument("--nolog", action="store_true")
args = parser.parse_args()
bs = 256
bs_eval = 512
num_epochs = args.epochs
ds_size = args.ds_size
random_seed = args.random_seed
torch.manual_seed(42)
random.seed(42)
byte_level_tokenization = args.byte_level
small = False
architecture = args.architecture
if architecture == "bert_small":
architecture = "bert"
small = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pretrained = args.pretrained
experiment_year = args.experiment_year
experiment_type = args.experiment_type
experiment_set = "principal"
contamination = args.contamination
nolog = args.nolog
print("Running", experiment_set, experiment_type)
ds = args.ds
if ds == "kyoto-2016":
preload_tokenizer = True
else:
preload_tokenizer = False
print("Loading datasets")
dfs_train, dfs_test = load_local_dataset(
ds,
experiment_year=experiment_year,
experiment_set=experiment_set,
experiment_type=experiment_type,
contamination=contamination,
ds_size=ds_size,
random_seed=random_seed,
)
print("Loaded datasets")
block_size = dfs_test[0][1].shape[1]
if "HDFS" in ds:
# HDFS has variable-length sequences
block_size = 512 # max len train 273
bs = 64
bs_eval = 128
if "BGL" in ds:
# BGL has variable-length sequences
block_size = 1024
bs = 16
bs_eval = 16
if "Thunderbird" in ds:
# BGL has variable-length sequences
block_size = 1024
bs = 16
bs_eval = 16
if "spirit2" in ds:
# BGL has variable-length sequences
block_size = 1024
bs = 16
bs_eval = 16
if "kyoto" in ds:
block_size = 14
if byte_level_tokenization is True:
# increase block size for byte level tokenization
block_size = 512
model_name = f"{architecture}"
if small:
model_name += "_small"
if pretrained:
model_name += "_pretrained"
if byte_level_tokenization:
model_name += "_byte_level"
else:
model_name += "_word_level"
train_part_name = ""
if len(dfs_train) > 0:
train_part_name = dfs_train[0][0]
run_name = "[{}] Small_BERT_{}_{}_{}-{}-{}_contamination={}_nodups_nopadeval".format(
train_part_name,
ds,
architecture,
experiment_set,
experiment_type,
experiment_year,
contamination,
)
writer = SummaryWriter(f"runs/{run_name}")
save_model_path = f"saved_models/{model_name}/{experiment_set}/{ds}_{ds_size}"
for df_train in dfs_train:
print(df_train)
save_model_path += f"_{df_train[0]}"
print("Model will be saved to: ", save_model_path)
def ood_experiment():
print("Configuring tokenizer")
tokenizer, vocab_size = configure_tokenizer(
byte_level_tokenization=byte_level_tokenization,
dfs_train=dfs_train,
ds_name=ds,
)
print("Configured tokenizer")
print("Preparing train ds")
(df_name_train, df_train) = dfs_train[0]
print("Train shape", df_train.shape)
print(df_train)
lm_ds_train = prepare_train_ds(
df_train=df_train, tokenizer=tokenizer, block_size=block_size
)
print("Prepared train ds")
gc.collect()
print("Preparing test ds")
dss_test = prepare_test_ds(
dfs_test=dfs_test, tokenizer=tokenizer, block_size=block_size
)
print("Prepared test ds")
gc.collect()
print("Configuring model")
model = configure_model(
architecture=architecture,
pretrained=pretrained,
small=small,
vocab_size=vocab_size,
tokenizer=tokenizer,
embed_size=block_size,
)
print("Training model")
train_model(
model=model,
tokenizer=tokenizer,
ds_name=ds,
train_set_name=df_name_train,
run_name=run_name,
lm_ds_train=lm_ds_train,
lm_ds_eval=dss_test[0][1]["inlier"],
dss_test=dss_test,
save_model_path=save_model_path,
batch_size_train=bs,
batch_size_eval=bs_eval,
num_epochs=num_epochs,
tb_writer=writer,
)
def finetune_experiment():
"""
Finetune experiment for one year requires the checkpoint of a finetune model on the previous year.
Run as:
python main.py --experiment_type=finetune --experiment_year=2006
python main.py --experiment_type=finetune --experiment_year=2007
and so on.
"""
if experiment_year == '2006':
return ood_experiment()
print("Configuring tokenizer")
tokenizer, vocab_size = configure_tokenizer(
byte_level_tokenization=byte_level_tokenization,
dfs_train=dfs_train,
ds_name=ds,
preload=True,
)
print("Configured tokenizer")
dss_test = prepare_test_ds(
dfs_test=dfs_test, tokenizer=tokenizer, block_size=block_size
)
print("Prepared test ds")
prev_model_path = f"saved_models/{model_name}/{experiment_set}/{ds}_{ds_size}_{experiment_set}_{experiment_type}_{int(experiment_year)-1}_final"
print("Loading model from ", prev_model_path)
model = AutoModelForMaskedLM.from_pretrained(prev_model_path).cuda()
print("Loaded model")
num_experiment_years = len(dfs_train)
for idx, (df_name_train, df_train) in enumerate(dfs_train):
print("Training on: ", df_name_train, df_train.shape)
lm_ds_train = prepare_train_ds(
df_train=df_train, tokenizer=tokenizer, block_size=block_size
)
ds_test_step = [
dss_test[idx],
] + dss_test[num_experiment_years:]
print([d[0] for d in ds_test_step])
model = train_model(
model=model,
tokenizer=tokenizer,
ds_name=ds,
train_set_name=df_name_train,
run_name=run_name,
lm_ds_train=lm_ds_train,
lm_ds_eval=dss_test[0][1]["inlier"],
dss_test=dss_test,
save_model_path=save_model_path,
batch_size_train=bs,
batch_size_eval=bs_eval,
num_epochs=num_epochs,
tb_writer=writer,
)
def distil_experiment():
"""
Distil experiment for one year requires the checkpoint of a distil model on the previous year.
Run as:
python main.py --experiment_type=distil --experiment_year=2006
python main.py --experiment_type=distil --experiment_year=2007
and so on.
"""
if experiment_year == '2006':
return ood_experiment()
student_dfs_train = dfs_train
_, df_train = student_dfs_train[0]
ds_train = train_df_to_ds(df_train)
tokenizer, vocab_size = configure_tokenizer(
byte_level_tokenization=byte_level_tokenization,
dfs_train=student_dfs_train,
ds_name=ds,
preload=True,
)
print("Configured tokenizer")
prev_model_path = f"saved_models/{model_name}/{experiment_set}/{ds}_{ds_size}_{experiment_set}_{experiment_type}_{int(experiment_year)-1}_final"
print("Loading model from ", prev_model_path)
teacher_model = AutoModelForMaskedLM.from_pretrained(
prev_model_path).cuda()
teacher_model.eval()
dss_test = prepare_test_ds(
dfs_test=dfs_test, tokenizer=tokenizer, block_size=block_size
)
print("Prepared ds test")
student_model = configure_model(
architecture=architecture,
pretrained=pretrained,
small=small,
vocab_size=vocab_size,
tokenizer=tokenizer,
embed_size=block_size,
)
student_model = distil_model(
teacher=teacher_model,
student=student_model,
tokenizer=tokenizer,
ds_train=ds_train,
dss_test=dss_test,
save_model_path=save_model_path,
batch_size_train=bs,
batch_size_eval=bs_eval,
num_epochs=num_epochs,
tb_writer=writer,
)
if __name__ == "__main__":
if experiment_type == "ood" or "indistr" in experiment_type:
ood_experiment()
elif experiment_type == "finetune":
finetune_experiment()
elif experiment_type == "distil":
distil_experiment()