-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathtests_impl.h
338 lines (317 loc) · 17.6 KB
/
tests_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/***********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_RECOVERY_TESTS_H
#define SECP256K1_MODULE_RECOVERY_TESTS_H
static int recovery_test_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
(void) msg32;
(void) key32;
(void) algo16;
(void) data;
/* On the first run, return 0 to force a second run */
if (counter == 0) {
memset(nonce32, 0, 32);
return 1;
}
/* On the second run, return an overflow to force a third run */
if (counter == 1) {
memset(nonce32, 0xff, 32);
return 1;
}
/* On the next run, return a valid nonce, but flip a coin as to whether or not to fail signing. */
memset(nonce32, 1, 32);
return testrand_bits(1);
}
static void test_ecdsa_recovery_api(void) {
/* Setup contexts that just count errors */
secp256k1_pubkey pubkey;
secp256k1_pubkey recpubkey;
secp256k1_ecdsa_signature normal_sig;
secp256k1_ecdsa_recoverable_signature recsig;
unsigned char privkey[32] = { 1 };
unsigned char message[32] = { 2 };
int recid = 0;
unsigned char sig[74];
unsigned char zero_privkey[32] = { 0 };
unsigned char over_privkey[32] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
/* Construct and verify corresponding public key. */
CHECK(secp256k1_ec_seckey_verify(CTX, privkey) == 1);
CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, privkey) == 1);
/* Check bad contexts and NULLs for signing */
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, privkey, NULL, NULL) == 1);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign_recoverable(CTX, NULL, message, privkey, NULL, NULL));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign_recoverable(CTX, &recsig, NULL, privkey, NULL, NULL));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, NULL, NULL, NULL));
CHECK_ILLEGAL(STATIC_CTX, secp256k1_ecdsa_sign_recoverable(STATIC_CTX, &recsig, message, privkey, NULL, NULL));
/* This will fail or succeed randomly, and in either case will not ARG_CHECK failure */
secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, privkey, recovery_test_nonce_function, NULL);
/* These will all fail, but not in ARG_CHECK way */
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, zero_privkey, NULL, NULL) == 0);
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, over_privkey, NULL, NULL) == 0);
/* This one will succeed. */
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, privkey, NULL, NULL) == 1);
/* Check signing with a goofy nonce function */
/* Check bad contexts and NULLs for recovery */
CHECK(secp256k1_ecdsa_recover(CTX, &recpubkey, &recsig, message) == 1);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recover(CTX, NULL, &recsig, message));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recover(CTX, &recpubkey, NULL, message));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recover(CTX, &recpubkey, &recsig, NULL));
/* Check NULLs for conversion */
CHECK(secp256k1_ecdsa_sign(CTX, &normal_sig, message, privkey, NULL, NULL) == 1);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_convert(CTX, NULL, &recsig));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_convert(CTX, &normal_sig, NULL));
CHECK(secp256k1_ecdsa_recoverable_signature_convert(CTX, &normal_sig, &recsig) == 1);
/* Check NULLs for de/serialization */
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &recsig, message, privkey, NULL, NULL) == 1);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, NULL, &recid, &recsig));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, NULL, &recsig));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, &recid, NULL));
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, &recid, &recsig) == 1);
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, NULL, sig, recid));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, NULL, recid));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, sig, -1));
CHECK_ILLEGAL(CTX, secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, sig, 5));
/* overflow in signature will not result in calling illegal_callback */
memcpy(sig, over_privkey, 32);
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &recsig, sig, recid) == 0);
}
static void test_ecdsa_recovery_end_to_end(void) {
unsigned char extra[32] = {0x00};
unsigned char privkey[32];
unsigned char message[32];
secp256k1_ecdsa_signature signature[5];
secp256k1_ecdsa_recoverable_signature rsignature[5];
unsigned char sig[74];
secp256k1_pubkey pubkey;
secp256k1_pubkey recpubkey;
int recid = 0;
/* Generate a random key and message. */
{
secp256k1_scalar msg, key;
testutil_random_scalar_order_test(&msg);
testutil_random_scalar_order_test(&key);
secp256k1_scalar_get_b32(privkey, &key);
secp256k1_scalar_get_b32(message, &msg);
}
/* Construct and verify corresponding public key. */
CHECK(secp256k1_ec_seckey_verify(CTX, privkey) == 1);
CHECK(secp256k1_ec_pubkey_create(CTX, &pubkey, privkey) == 1);
/* Serialize/parse compact and verify/recover. */
extra[0] = 0;
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &rsignature[0], message, privkey, NULL, NULL) == 1);
CHECK(secp256k1_ecdsa_sign(CTX, &signature[0], message, privkey, NULL, NULL) == 1);
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &rsignature[4], message, privkey, NULL, NULL) == 1);
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &rsignature[1], message, privkey, NULL, extra) == 1);
extra[31] = 1;
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &rsignature[2], message, privkey, NULL, extra) == 1);
extra[31] = 0;
extra[0] = 1;
CHECK(secp256k1_ecdsa_sign_recoverable(CTX, &rsignature[3], message, privkey, NULL, extra) == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, &recid, &rsignature[4]) == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_convert(CTX, &signature[4], &rsignature[4]) == 1);
CHECK(secp256k1_memcmp_var(&signature[4], &signature[0], 64) == 0);
CHECK(secp256k1_ecdsa_verify(CTX, &signature[4], message, &pubkey) == 1);
memset(&rsignature[4], 0, sizeof(rsignature[4]));
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsignature[4], sig, recid) == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_convert(CTX, &signature[4], &rsignature[4]) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &signature[4], message, &pubkey) == 1);
/* Parse compact (with recovery id) and recover. */
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsignature[4], sig, recid) == 1);
CHECK(secp256k1_ecdsa_recover(CTX, &recpubkey, &rsignature[4], message) == 1);
CHECK(secp256k1_memcmp_var(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
/* Serialize/destroy/parse signature and verify again. */
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(CTX, sig, &recid, &rsignature[4]) == 1);
sig[testrand_bits(6)] += 1 + testrand_int(255);
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsignature[4], sig, recid) == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_convert(CTX, &signature[4], &rsignature[4]) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &signature[4], message, &pubkey) == 0);
/* Recover again */
CHECK(secp256k1_ecdsa_recover(CTX, &recpubkey, &rsignature[4], message) == 0 ||
secp256k1_memcmp_var(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
}
/* Tests several edge cases. */
static void test_ecdsa_recovery_edge_cases(void) {
const unsigned char msg32[32] = {
'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
's', 's', 'a', 'g', 'e', '.', '.', '.'
};
const unsigned char sig64[64] = {
/* Generated by signing the above message with nonce 'This is the nonce we will use...'
* and secret key 0 (which is not valid), resulting in recid 1. */
0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
};
secp256k1_pubkey pubkey;
/* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
const unsigned char sigb64[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
};
secp256k1_pubkey pubkeyb;
secp256k1_ecdsa_recoverable_signature rsig;
secp256k1_ecdsa_signature sig;
int recid;
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sig64, 0));
CHECK(!secp256k1_ecdsa_recover(CTX, &pubkey, &rsig, msg32));
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sig64, 1));
CHECK(secp256k1_ecdsa_recover(CTX, &pubkey, &rsig, msg32));
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sig64, 2));
CHECK(!secp256k1_ecdsa_recover(CTX, &pubkey, &rsig, msg32));
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sig64, 3));
CHECK(!secp256k1_ecdsa_recover(CTX, &pubkey, &rsig, msg32));
for (recid = 0; recid < 4; recid++) {
int i;
int recid2;
/* (4,4) encoded in DER. */
unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01};
unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00};
unsigned char sigbderalt1[39] = {
0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
};
unsigned char sigbderalt2[39] = {
0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
};
unsigned char sigbderalt3[40] = {
0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
};
unsigned char sigbderalt4[40] = {
0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
};
/* (order + r,4) encoded in DER. */
unsigned char sigbderlong[40] = {
0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC,
0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
};
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sigb64, recid) == 1);
CHECK(secp256k1_ecdsa_recover(CTX, &pubkeyb, &rsig, msg32) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbder, sizeof(sigbder)) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyb) == 1);
for (recid2 = 0; recid2 < 4; recid2++) {
secp256k1_pubkey pubkey2b;
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sigb64, recid2) == 1);
CHECK(secp256k1_ecdsa_recover(CTX, &pubkey2b, &rsig, msg32) == 1);
/* Verifying with (order + r,4) should always fail. */
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbderlong, sizeof(sigbderlong)) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyb) == 0);
}
/* DER parsing tests. */
/* Zero length r/s. */
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigcder_zr, sizeof(sigcder_zr)) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigcder_zs, sizeof(sigcder_zs)) == 0);
/* Leading zeros. */
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbderalt1, sizeof(sigbderalt1)) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbderalt2, sizeof(sigbderalt2)) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbderalt3, sizeof(sigbderalt3)) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbderalt4, sizeof(sigbderalt4)) == 0);
sigbderalt3[4] = 1;
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbderalt3, sizeof(sigbderalt3)) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyb) == 0);
sigbderalt4[7] = 1;
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbderalt4, sizeof(sigbderalt4)) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyb) == 0);
/* Damage signature. */
sigbder[7]++;
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbder, sizeof(sigbder)) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyb) == 0);
sigbder[7]--;
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbder, 6) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbder, sizeof(sigbder) - 1) == 0);
for(i = 0; i < 8; i++) {
int c;
unsigned char orig = sigbder[i];
/*Try every single-byte change.*/
for (c = 0; c < 256; c++) {
if (c == orig ) {
continue;
}
sigbder[i] = c;
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigbder, sizeof(sigbder)) == 0 || secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyb) == 0);
}
sigbder[i] = orig;
}
}
/* Test r/s equal to zero */
{
/* (1,1) encoded in DER. */
unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01};
unsigned char sigc64[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
};
secp256k1_pubkey pubkeyc;
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sigc64, 0) == 1);
CHECK(secp256k1_ecdsa_recover(CTX, &pubkeyc, &rsig, msg32) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigcder, sizeof(sigcder)) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyc) == 1);
sigcder[4] = 0;
sigc64[31] = 0;
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sigc64, 0) == 1);
CHECK(secp256k1_ecdsa_recover(CTX, &pubkeyb, &rsig, msg32) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigcder, sizeof(sigcder)) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyc) == 0);
sigcder[4] = 1;
sigcder[7] = 0;
sigc64[31] = 1;
sigc64[63] = 0;
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(CTX, &rsig, sigc64, 0) == 1);
CHECK(secp256k1_ecdsa_recover(CTX, &pubkeyb, &rsig, msg32) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(CTX, &sig, sigcder, sizeof(sigcder)) == 1);
CHECK(secp256k1_ecdsa_verify(CTX, &sig, msg32, &pubkeyc) == 0);
}
}
static void run_recovery_tests(void) {
int i;
for (i = 0; i < COUNT; i++) {
test_ecdsa_recovery_api();
}
for (i = 0; i < 64*COUNT; i++) {
test_ecdsa_recovery_end_to_end();
}
test_ecdsa_recovery_edge_cases();
}
#endif /* SECP256K1_MODULE_RECOVERY_TESTS_H */