Skip to content

Latest commit

 

History

History
49 lines (35 loc) · 2.41 KB

README.md

File metadata and controls

49 lines (35 loc) · 2.41 KB

RESCAN (ECCV'2018)

Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining (ECCV'2018)
@inproceedings{li2018recurrent,
  title={Recurrent squeeze-and-excitation context aggregation net for single image deraining},
  author={Li, Xia and Wu, Jianlong and Lin, Zhouchen and Liu, Hong and Zha, Hongbin},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={254--269},
  year={2018}
}

rescan


Quantitative Result

The metrics are PSNR/SSIM. Both are evaluated on RGB channels.

NOTE: Following the authors' setup, random seed is set to 66 in all experiments.

Method Rain200L Rain200H Rain800 Rain1200 Rain1400
RESCAN(ConvRNN+Add) 36.09/0.973 25.56/0.806 26.17/0.835 31.91/0.897 30.70/0.905
RESCAN(ConvRNN+Full) 36.07/0.973 25.88/0.810 25.89/0.826 31.93/0.896 30.75/0.904
RESCAN(ConvGRU+Add) 36.74/0.977 26.31/0.828 26.55/0.843 32.25/0.905 30.88/0.910
RESCAN(ConvGRU+Full) 36.92/0.978 26.55/0.834 26.70/0.840 32.24/0.904 30.92/0.910
RESCAN(ConvLSTM+Add) 36.83/0.977 26.34/0.829 26.69/0.847 32.18/0.903 30.92/0.909
RESCAN(ConvLSTM+Full) 36.95/0.978 26.49/0.833 26.76/0.841 32.23/0.904 31.02/0.911

Pretrained models can be downloaded from here


Network Complexity

Method Input shape Flops Params
RESCAN(ConvGRU) (3, 256, 256) 32.47GFlops 150.22k
RESCAN(ConvLSTM) (3, 256, 256) 43.23GFlops 197.76k
RESCAN(ConvRNN) (3, 256, 256) 12.37GFlops 55.13k