forked from amazon-science/tanl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoreference_metrics.py
257 lines (201 loc) · 8.9 KB
/
coreference_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# Copyright 2017 Kenton Lee
# SPDX-License-Identifier: Apache-2.0
# uses some code from
# https://github.com/kentonl/e2e-coref/blob/master/metrics.py
from typing import List, Tuple, Dict
import numpy as np
from collections import Counter
from scipy.optimize import linear_sum_assignment
MUC = 'muc'
BCUBED = 'b_cubed'
CEAFE = 'ceafe'
class CorefAllMetrics(object):
"""
Wrapper for coreference resolution metrics.
"""
@staticmethod
def _get_mention_to_x(clusters: List[list]) -> dict:
mention_to_x = {}
for cluster in clusters:
for m in cluster:
mention_to_x[m] = tuple(cluster)
return mention_to_x
def _compute_coref_metrics(self, gold_clusters: List[list], predicted_clusters: List[list]) \
-> Dict[str, Dict[str, float]]:
"""
Compute all coreference metrics given a list of gold cluster and a list of predicted clusters.
"""
mention_to_predicted = self._get_mention_to_x(predicted_clusters)
mention_to_gold = self._get_mention_to_x(gold_clusters)
result = {}
metric_name_evals = [('muc', Evaluator(muc)), ('b_cubed', Evaluator(b_cubed)), ('ceaf', Evaluator(ceafe))]
for name, evaluator in metric_name_evals:
evaluator.update(predicted_clusters, gold_clusters, mention_to_predicted, mention_to_gold)
result[name] = {
'precision': evaluator.get_precision(),
'recall': evaluator.get_recall(),
'f1': evaluator.get_f1()
}
result['average'] = {
'precision': sum([result[k]['precision'] for k, _ in metric_name_evals]) / len(metric_name_evals),
'recall': sum([result[k]['recall'] for k, _ in metric_name_evals]) / len(metric_name_evals),
'f1': sum([result[k]['f1'] for k, _ in metric_name_evals]) / len(metric_name_evals)
}
return result
@staticmethod
def _average_nested_dict(list_nested_dict: List[Dict[str, Dict[str, float]]]) -> Dict[str, Dict[str, float]]:
"""
Given a list of 2-level nested dict, compute the average.
"""
result_dict = {}
# sum up all values
for outer_dict in list_nested_dict:
for key_outer, value_outer in outer_dict.items():
if key_outer not in result_dict:
result_dict[key_outer] = {}
for key_inner, value_inner in value_outer.items():
result_dict[key_outer][key_inner] = result_dict[key_outer].get(key_inner, 0.0) + value_inner
# take the average
for key_outer, value_outer in result_dict.items():
for key_inner, value_inner in value_outer.items():
result_dict[key_outer][key_inner] = result_dict[key_outer][key_inner] / len(list_nested_dict)
return result_dict
def get_all_metrics(self, labels: List[List[List[Tuple[int, int]]]], preds: List[List[List[Tuple[int, int]]]])\
-> Dict[str, Dict[str, Dict[str, float]]]:
"""
Compute all metrics for coreference resolution.
In input are given two list of mention groups, for example:
[ # this is the corpus level, with a list of documents
[ # this is the document level, with a list of mention clusters
[ # this is the cluster level, with a list of spans
(5, 7),
(11, 19),
...
],
...
]
]
"""
assert len(labels) == len(preds)
result = {}
# compute micro-averaged scores (treat all clusters from all docs as a single list of clusters)
gold_clusters = [
[(i,) + span for span in cluster] for i, clusters in enumerate(labels) for cluster in clusters
]
predicted_clusters = [
[(i,) + span for span in cluster] for i, clusters in enumerate(preds) for cluster in clusters
]
result['micro'] = self._compute_coref_metrics(gold_clusters, predicted_clusters)
# compute macro-averaged scores (compute p/r/f1 for each doc first, then take average per doc)
doc_metrics = []
for gold_clusters, predicted_clusters in zip(labels, preds):
doc_metrics.append(self._compute_coref_metrics(
gold_clusters, predicted_clusters
))
result['macro'] = self._average_nested_dict(doc_metrics)
return result
def f1(p_num, p_den, r_num, r_den, beta=1):
p = 0 if p_den == 0 else p_num / float(p_den)
r = 0 if r_den == 0 else r_num / float(r_den)
return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r)
class CorefEvaluator(object):
def __init__(self):
self.metric_names = [MUC, BCUBED, CEAFE]
self.evaluators = [Evaluator(m) for m in (muc, b_cubed, ceafe)]
assert len(self.evaluators) == len(self.metric_names)
self.name_to_evaluator = {n: e for n, e in zip(self.metric_names, self.evaluators)}
def update(self, predicted, gold, mention_to_predicted, mention_to_gold):
for e in self.evaluators:
e.update(predicted, gold, mention_to_predicted, mention_to_gold)
def get_f1(self):
return sum(e.get_f1() for e in self.evaluators) / len(self.evaluators)
def get_recall(self):
return sum(e.get_recall() for e in self.evaluators) / len(self.evaluators)
def get_precision(self):
return sum(e.get_precision() for e in self.evaluators) / len(self.evaluators)
def get_prf(self):
return self.get_precision(), self.get_recall(), self.get_f1()
class Evaluator(object):
def __init__(self, metric, beta=1):
self.p_num = 0
self.p_den = 0
self.r_num = 0
self.r_den = 0
self.metric = metric
self.beta = beta
def update(self, predicted, gold, mention_to_predicted, mention_to_gold):
if self.metric == ceafe:
pn, pd, rn, rd = self.metric(predicted, gold, mention_to_predicted, mention_to_gold)
else:
pn, pd = self.metric(predicted, mention_to_gold)
rn, rd = self.metric(gold, mention_to_predicted)
self.p_num += pn
self.p_den += pd
self.r_num += rn
self.r_den += rd
def get_f1(self):
return f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta)
def get_recall(self):
return 0 if self.r_num == 0 else self.r_num / float(self.r_den)
def get_precision(self):
return 0 if self.p_num == 0 else self.p_num / float(self.p_den)
def get_prf(self):
return self.get_precision(), self.get_recall(), self.get_f1()
def get_counts(self):
return self.p_num, self.p_den, self.r_num, self.r_den
def evaluate_documents(documents, metric, beta=1):
evaluator = Evaluator(metric, beta=beta)
for document in documents:
evaluator.update(document)
return evaluator.get_precision(), evaluator.get_recall(), evaluator.get_f1()
def b_cubed(clusters, mention_to_gold):
num, dem = 0, 0
for c in clusters: # loop over each cluster
gold_counts = Counter()
correct = 0
for m in c: # loop over each mention
if m in mention_to_gold:
gold_counts[tuple(mention_to_gold[m])] += 1
for c2, count in gold_counts.items():
correct += count * count
num += correct / float(len(c))
dem += len(c)
return num, dem
def muc(clusters, mention_to_gold):
tp, p = 0, 0
for c in clusters:
p += len(c) - 1
tp += len(c)
linked = set()
for m in c:
if m in mention_to_gold:
linked.add(mention_to_gold[m])
else:
tp -= 1
tp -= len(linked)
return tp, p
def phi4(matrix1, matrix2):
m_sum1 = np.sum(matrix1, axis=1)
m_sum2 = np.sum(matrix2, axis=0)
return 2 * np.dot(matrix1, matrix2) / (np.outer(m_sum1, np.ones_like(
m_sum2)) + np.outer(np.ones_like(m_sum1), m_sum2))
def ceafe(clusters, gold_clusters, mention_to_predicted, mention_to_gold):
key_list = list(set(mention_to_gold.keys()).union(
set(mention_to_predicted.keys())))
key_to_ix = {}
for i, k in enumerate(key_list):
key_to_ix[k] = i
len_key = len(key_list)
pred_matrix = np.zeros((len(clusters), len_key))
gold_matrix = np.zeros((len(gold_clusters), len_key))
fill_cluster_to_matrix(clusters, pred_matrix, key_to_ix)
fill_cluster_to_matrix(gold_clusters, gold_matrix, key_to_ix)
scores = phi4(pred_matrix, gold_matrix.transpose())
row_ind, col_ind = linear_sum_assignment(-scores)
similarity = scores[row_ind, col_ind].sum()
return similarity, len(clusters), similarity, len(gold_clusters)
def fill_cluster_to_matrix(clusters, matrix, key_to_ix):
for i, c in enumerate(clusters):
for m in c:
matrix[i][key_to_ix[m]] = 1