-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunc.go
615 lines (559 loc) · 17.9 KB
/
func.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"crypto/sha1"
"fmt"
"math"
"os"
"strings"
"github.com/bjwbell/cmd/src"
)
// A Func represents a Go func declaration (or function literal) and its body.
// This package compiles each Func independently.
// Funcs are single-use; a new Func must be created for every compiled function.
type Func struct {
Config *Config // architecture information
Cache *Cache // re-usable cache
fe Frontend // frontend state associated with this Func, callbacks into compiler frontend
pass *pass // current pass information (name, options, etc.)
Name string // e.g. bytes·Compare
Type Type // type signature of the function.
Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID)
Entry *Block // the entry basic block
bid idAlloc // block ID allocator
vid idAlloc // value ID allocator
// Given an environment variable used for debug hash match,
// what file (if any) receives the yes/no logging?
logfiles map[string]*os.File
HTMLWriter *HTMLWriter // html writer, for debugging
DebugTest bool // default true unless $GOSSAHASH != ""; as a debugging aid, make new code conditional on this and use GOSSAHASH to binary search for failing cases
scheduled bool // Values in Blocks are in final order
NoSplit bool // true if function is marked as nosplit. Used by schedule check pass.
WBPos src.XPos // line number of first write barrier
// when register allocation is done, maps value ids to locations
RegAlloc []Location
// map from LocalSlot to set of Values that we want to store in that slot.
NamedValues map[LocalSlot][]*Value
// Names is a copy of NamedValues.Keys. We keep a separate list
// of keys to make iteration order deterministic.
Names []LocalSlot
freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil.
freeBlocks *Block // free Blocks linked by succstorage[0].b. All other fields except ID are 0/nil.
cachedPostorder []*Block // cached postorder traversal
cachedIdom []*Block // cached immediate dominators
cachedSdom SparseTree // cached dominator tree
cachedLoopnest *loopnest // cached loop nest information
auxmap auxmap // map from aux values to opaque ids used by CSE
constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type
}
// NewFunc returns a new, empty function object.
// Caller must set f.Config and f.Cache before using f.
func NewFunc(fe Frontend) *Func {
return &Func{fe: fe, NamedValues: make(map[LocalSlot][]*Value)}
}
// NumBlocks returns an integer larger than the id of any Block in the Func.
func (f *Func) NumBlocks() int {
return f.bid.num()
}
// NumValues returns an integer larger than the id of any Value in the Func.
func (f *Func) NumValues() int {
return f.vid.num()
}
// newSparseSet returns a sparse set that can store at least up to n integers.
func (f *Func) newSparseSet(n int) *sparseSet {
for i, scr := range f.Cache.scrSparse {
if scr != nil && scr.cap() >= n {
f.Cache.scrSparse[i] = nil
scr.clear()
return scr
}
}
return newSparseSet(n)
}
// retSparseSet returns a sparse set to the config's cache of sparse sets to be reused by f.newSparseSet.
func (f *Func) retSparseSet(ss *sparseSet) {
for i, scr := range f.Cache.scrSparse {
if scr == nil {
f.Cache.scrSparse[i] = ss
return
}
}
f.Cache.scrSparse = append(f.Cache.scrSparse, ss)
}
// newValue allocates a new Value with the given fields and places it at the end of b.Values.
func (f *Func) newValue(op Op, t Type, b *Block, pos src.XPos) *Value {
var v *Value
if f.freeValues != nil {
v = f.freeValues
f.freeValues = v.argstorage[0]
v.argstorage[0] = nil
} else {
ID := f.vid.get()
if int(ID) < len(f.Cache.values) {
v = &f.Cache.values[ID]
v.ID = ID
} else {
v = &Value{ID: ID}
}
}
v.Op = op
v.Type = t
v.Block = b
v.Pos = pos
b.Values = append(b.Values, v)
return v
}
// newValueNoBlock allocates a new Value with the given fields.
// The returned value is not placed in any block. Once the caller
// decides on a block b, it must set b.Block and append
// the returned value to b.Values.
func (f *Func) newValueNoBlock(op Op, t Type, pos src.XPos) *Value {
var v *Value
if f.freeValues != nil {
v = f.freeValues
f.freeValues = v.argstorage[0]
v.argstorage[0] = nil
} else {
ID := f.vid.get()
if int(ID) < len(f.Cache.values) {
v = &f.Cache.values[ID]
v.ID = ID
} else {
v = &Value{ID: ID}
}
}
v.Op = op
v.Type = t
v.Block = nil // caller must fix this.
v.Pos = pos
return v
}
// logPassStat writes a string key and int value as a warning in a
// tab-separated format easily handled by spreadsheets or awk.
// file names, lines, and function names are included to provide enough (?)
// context to allow item-by-item comparisons across runs.
// For example:
// awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log
func (f *Func) LogStat(key string, args ...interface{}) {
value := ""
for _, a := range args {
value += fmt.Sprintf("\t%v", a)
}
n := "missing_pass"
if f.pass != nil {
n = strings.Replace(f.pass.name, " ", "_", -1)
}
f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name)
}
// freeValue frees a value. It must no longer be referenced.
func (f *Func) freeValue(v *Value) {
if v.Block == nil {
f.Fatalf("trying to free an already freed value")
}
if v.Uses != 0 {
f.Fatalf("value %s still has %d uses", v, v.Uses)
}
// Clear everything but ID (which we reuse).
id := v.ID
// Values with zero arguments and OpOffPtr values might be cached, so remove them there.
nArgs := opcodeTable[v.Op].argLen
if nArgs == 0 || v.Op == OpOffPtr {
vv := f.constants[v.AuxInt]
for i, cv := range vv {
if v == cv {
vv[i] = vv[len(vv)-1]
vv[len(vv)-1] = nil
f.constants[v.AuxInt] = vv[0 : len(vv)-1]
break
}
}
}
*v = Value{}
v.ID = id
v.argstorage[0] = f.freeValues
f.freeValues = v
}
// newBlock allocates a new Block of the given kind and places it at the end of f.Blocks.
func (f *Func) NewBlock(kind BlockKind) *Block {
var b *Block
if f.freeBlocks != nil {
b = f.freeBlocks
f.freeBlocks = b.succstorage[0].b
b.succstorage[0].b = nil
} else {
ID := f.bid.get()
if int(ID) < len(f.Cache.blocks) {
b = &f.Cache.blocks[ID]
b.ID = ID
} else {
b = &Block{ID: ID}
}
}
b.Kind = kind
b.Func = f
b.Preds = b.predstorage[:0]
b.Succs = b.succstorage[:0]
b.Values = b.valstorage[:0]
f.Blocks = append(f.Blocks, b)
f.invalidateCFG()
return b
}
func (f *Func) freeBlock(b *Block) {
if b.Func == nil {
f.Fatalf("trying to free an already freed block")
}
// Clear everything but ID (which we reuse).
id := b.ID
*b = Block{}
b.ID = id
b.succstorage[0].b = f.freeBlocks
f.freeBlocks = b
}
// NewValue0 returns a new value in the block with no arguments and zero aux values.
func (b *Block) NewValue0(pos src.XPos, op Op, t Type) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and an auxint value.
func (b *Block) NewValue0I(pos src.XPos, op Op, t Type, auxint int64) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and an aux value.
func (b *Block) NewValue0A(pos src.XPos, op Op, t Type, aux interface{}) *Value {
if _, ok := aux.(int64); ok {
// Disallow int64 aux values. They should be in the auxint field instead.
// Maybe we want to allow this at some point, but for now we disallow it
// to prevent errors like using NewValue1A instead of NewValue1I.
b.Fatalf("aux field has int64 type op=%s type=%s aux=%v", op, t, aux)
}
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and both an auxint and aux values.
func (b *Block) NewValue0IA(pos src.XPos, op Op, t Type, auxint int64, aux interface{}) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Aux = aux
v.Args = v.argstorage[:0]
return v
}
// NewValue1 returns a new value in the block with one argument and zero aux values.
func (b *Block) NewValue1(pos src.XPos, op Op, t Type, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1I returns a new value in the block with one argument and an auxint value.
func (b *Block) NewValue1I(pos src.XPos, op Op, t Type, auxint int64, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1A returns a new value in the block with one argument and an aux value.
func (b *Block) NewValue1A(pos src.XPos, op Op, t Type, aux interface{}, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1IA returns a new value in the block with one argument and both an auxint and aux values.
func (b *Block) NewValue1IA(pos src.XPos, op Op, t Type, auxint int64, aux interface{}, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Aux = aux
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue2 returns a new value in the block with two arguments and zero aux values.
func (b *Block) NewValue2(pos src.XPos, op Op, t Type, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue2I returns a new value in the block with two arguments and an auxint value.
func (b *Block) NewValue2I(pos src.XPos, op Op, t Type, auxint int64, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue3 returns a new value in the block with three arguments and zero aux values.
func (b *Block) NewValue3(pos src.XPos, op Op, t Type, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue3I returns a new value in the block with three arguments and an auxint value.
func (b *Block) NewValue3I(pos src.XPos, op Op, t Type, auxint int64, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue3A returns a new value in the block with three argument and an aux value.
func (b *Block) NewValue3A(pos src.XPos, op Op, t Type, aux interface{}, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue4 returns a new value in the block with four arguments and zero aux values.
func (b *Block) NewValue4(pos src.XPos, op Op, t Type, arg0, arg1, arg2, arg3 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = []*Value{arg0, arg1, arg2, arg3}
arg0.Uses++
arg1.Uses++
arg2.Uses++
arg3.Uses++
return v
}
// constVal returns a constant value for c.
func (f *Func) constVal(pos src.XPos, op Op, t Type, c int64, setAuxInt bool) *Value {
if f.constants == nil {
f.constants = make(map[int64][]*Value)
}
vv := f.constants[c]
for _, v := range vv {
if v.Op == op && v.Type.Compare(t) == CMPeq {
if setAuxInt && v.AuxInt != c {
panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c))
}
return v
}
}
var v *Value
if setAuxInt {
v = f.Entry.NewValue0I(pos, op, t, c)
} else {
v = f.Entry.NewValue0(pos, op, t)
}
f.constants[c] = append(vv, v)
return v
}
// These magic auxint values let us easily cache non-numeric constants
// using the same constants map while making collisions unlikely.
// These values are unlikely to occur in regular code and
// are easy to grep for in case of bugs.
const (
constSliceMagic = 1122334455
constInterfaceMagic = 2233445566
constNilMagic = 3344556677
constEmptyStringMagic = 4455667788
)
// ConstInt returns an int constant representing its argument.
func (f *Func) ConstBool(pos src.XPos, t Type, c bool) *Value {
i := int64(0)
if c {
i = 1
}
return f.constVal(pos, OpConstBool, t, i, true)
}
func (f *Func) ConstInt8(pos src.XPos, t Type, c int8) *Value {
return f.constVal(pos, OpConst8, t, int64(c), true)
}
func (f *Func) ConstInt16(pos src.XPos, t Type, c int16) *Value {
return f.constVal(pos, OpConst16, t, int64(c), true)
}
func (f *Func) ConstInt32(pos src.XPos, t Type, c int32) *Value {
return f.constVal(pos, OpConst32, t, int64(c), true)
}
func (f *Func) ConstInt64(pos src.XPos, t Type, c int64) *Value {
return f.constVal(pos, OpConst64, t, c, true)
}
func (f *Func) ConstFloat32(pos src.XPos, t Type, c float64) *Value {
return f.constVal(pos, OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true)
}
func (f *Func) ConstFloat64(pos src.XPos, t Type, c float64) *Value {
return f.constVal(pos, OpConst64F, t, int64(math.Float64bits(c)), true)
}
func (f *Func) ConstSlice(pos src.XPos, t Type) *Value {
return f.constVal(pos, OpConstSlice, t, constSliceMagic, false)
}
func (f *Func) ConstInterface(pos src.XPos, t Type) *Value {
return f.constVal(pos, OpConstInterface, t, constInterfaceMagic, false)
}
func (f *Func) ConstNil(pos src.XPos, t Type) *Value {
return f.constVal(pos, OpConstNil, t, constNilMagic, false)
}
func (f *Func) ConstEmptyString(pos src.XPos, t Type) *Value {
v := f.constVal(pos, OpConstString, t, constEmptyStringMagic, false)
v.Aux = ""
return v
}
func (f *Func) ConstOffPtrSP(pos src.XPos, t Type, c int64, sp *Value) *Value {
v := f.constVal(pos, OpOffPtr, t, c, true)
if len(v.Args) == 0 {
v.AddArg(sp)
}
return v
}
func (f *Func) Frontend() Frontend { return f.fe }
func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) }
func (f *Func) Logf(msg string, args ...interface{}) { f.fe.Logf(msg, args...) }
func (f *Func) Log() bool { return f.fe.Log() }
func (f *Func) Fatalf(msg string, args ...interface{}) { f.fe.Fatalf(f.Entry.Pos, msg, args...) }
// postorder returns the reachable blocks in f in a postorder traversal.
func (f *Func) postorder() []*Block {
if f.cachedPostorder == nil {
f.cachedPostorder = postorder(f)
}
return f.cachedPostorder
}
func (f *Func) Postorder() []*Block {
return f.postorder()
}
// Idom returns a map from block ID to the immediate dominator of that block.
// f.Entry.ID maps to nil. Unreachable blocks map to nil as well.
func (f *Func) Idom() []*Block {
if f.cachedIdom == nil {
f.cachedIdom = dominators(f)
}
return f.cachedIdom
}
// sdom returns a sparse tree representing the dominator relationships
// among the blocks of f.
func (f *Func) sdom() SparseTree {
if f.cachedSdom == nil {
f.cachedSdom = newSparseTree(f, f.Idom())
}
return f.cachedSdom
}
// loopnest returns the loop nest information for f.
func (f *Func) loopnest() *loopnest {
if f.cachedLoopnest == nil {
f.cachedLoopnest = loopnestfor(f)
}
return f.cachedLoopnest
}
// invalidateCFG tells f that its CFG has changed.
func (f *Func) invalidateCFG() {
f.cachedPostorder = nil
f.cachedIdom = nil
f.cachedSdom = nil
f.cachedLoopnest = nil
}
// DebugHashMatch returns true if environment variable evname
// 1) is empty (this is a special more-quickly implemented case of 3)
// 2) is "y" or "Y"
// 3) is a suffix of the sha1 hash of name
// 4) is a suffix of the environment variable
// fmt.Sprintf("%s%d", evname, n)
// provided that all such variables are nonempty for 0 <= i <= n
// Otherwise it returns false.
// When true is returned the message
// "%s triggered %s\n", evname, name
// is printed on the file named in environment variable
// GSHS_LOGFILE
// or standard out if that is empty or there is an error
// opening the file.
func (f *Func) DebugHashMatch(evname, name string) bool {
evhash := os.Getenv(evname)
switch evhash {
case "":
return true // default behavior with no EV is "on"
case "y", "Y":
f.logDebugHashMatch(evname, name)
return true
case "n", "N":
return false
}
// Check the hash of the name against a partial input hash.
// We use this feature to do a binary search to
// find a function that is incorrectly compiled.
hstr := ""
for _, b := range sha1.Sum([]byte(name)) {
hstr += fmt.Sprintf("%08b", b)
}
if strings.HasSuffix(hstr, evhash) {
f.logDebugHashMatch(evname, name)
return true
}
// Iteratively try additional hashes to allow tests for multi-point
// failure.
for i := 0; true; i++ {
ev := fmt.Sprintf("%s%d", evname, i)
evv := os.Getenv(ev)
if evv == "" {
break
}
if strings.HasSuffix(hstr, evv) {
f.logDebugHashMatch(ev, name)
return true
}
}
return false
}
func (f *Func) logDebugHashMatch(evname, name string) {
if f.logfiles == nil {
f.logfiles = make(map[string]*os.File)
}
file := f.logfiles[evname]
if file == nil {
file = os.Stdout
if tmpfile := os.Getenv("GSHS_LOGFILE"); tmpfile != "" {
var err error
file, err = os.Create(tmpfile)
if err != nil {
f.Fatalf("could not open hash-testing logfile %s", tmpfile)
}
}
f.logfiles[evname] = file
}
s := fmt.Sprintf("%s triggered %s\n", evname, name)
file.WriteString(s)
file.Sync()
}
func DebugNameMatch(evname, name string) bool {
return os.Getenv(evname) == name
}