-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathbenchmark.py
79 lines (60 loc) · 2.74 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python
"""
benchmark.py
"""
from __future__ import print_function, division
import sys
import json
import torch
import argparse
import numpy as np
from time import time
from lap import lapjv as jv_gat # gatagat
from lapjv import lapjv as jv_src # src-d
from auction_lap import auction_lap
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--max-entry', type=int, default=100, help='maximum entry in matrix')
parser.add_argument('--min-dim', type=int, default=1000, help='minimum dimension matrix to test')
parser.add_argument('--max-dim', type=int, default=10000, help='maximum dimension matrix to test')
parser.add_argument('--n-evals', type=int, default=10, help='number of steps between min and max matrix size')
parser.add_argument('--eps', type=int, help='"bid size" -- smaller values give better accuracy w/ longer runtime')
parser.add_argument('--seed', type=int, default=123, help='random seed')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
np.random.seed(args.seed)
X_all = np.random.choice(args.max_entry, (args.max_dim, args.max_dim))
for dim in np.linspace(args.min_dim, args.max_dim, args.n_evals, dtype=int):
X = X_all[:dim,:dim]
t = time()
_, gat_ass, _ = jv_gat(X.max() - X)
gat_score = X[(np.arange(X.shape[0]), gat_ass)].sum()
gat_time = time() - t
t = time()
src_ass, _, _ = jv_src(X.max() - X)
src_score = X[(np.arange(X.shape[0]), src_ass)].sum()
src_time = time() - t
# Run auction solver
Xt_cpu = torch.from_numpy(X).float()
Xt_gpu = Xt_cpu.cuda()
# t = time()
auc_cpu_score, auc_cpu_ass, _ = auction_lap(Xt_cpu, eps=None) # Score is accurate to within n * eps
# auc_cpu_time = time() - t
t = time()
auc_gpu_score, auc_gpu_ass = auction_lap(Xt_gpu, eps=args.eps) # Score is accurate to within n * eps
auc_gpu_time = time() - t
print(json.dumps({
"max_entry" : int(args.max_entry),
"dim" : int(dim),
"eps" : float(args.eps) if args.eps is not None else None,
"gat_score" : int(gat_score),
"src_score" : int(src_score),
# "auc_cpu_score" : int(auc_cpu_score),
"auc_gpu_score" : int(auc_gpu_score),
"gat_time" : float(gat_time),
"src_time" : float(src_time),
# "auc_cpu_time" : float(auc_cpu_time),
"auc_gpu_time" : float(auc_gpu_time),
}))
sys.stdout.flush()