-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtcplatencyConnect.py
43 lines (41 loc) · 1.42 KB
/
tcplatencyConnect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pandas as pd
import numpy as np
import datetime
import time
import matplotlib.pyplot as plot
df1=pd.read_csv("nginx.out",sep='\t')
df2=pd.read_csv("tomcat1Tcp.out",sep='\t')
df3=pd.read_csv("tomcat2Tcp.out",sep='\t')
df4=pd.read_csv("tomcat3Tcp.out",sep='\t')
df5=pd.read_csv("tomcat4tcp.out",sep='\t')
df6=pd.read_csv("tcpmem.out",sep='\t')
df7=pd.read_csv("maxscale.out",sep='\t')
df8=pd.read_csv("dbtcp.out",sep='\t')
for line in df1.columns:
if line != "timestamp" and line != "med":
df1=df1.drop(columns=line)
df2=df2.drop(columns=line)
df3=df3.drop(columns=line)
df4=df4.drop(columns=line)
df5=df5.drop(columns=line)
df6=df6.drop(columns=line)
df7=df7.drop(columns=line)
df8=df8.drop(columns=line)
print(df1["med"].mean())
print(df2["med"].mean())
print(df3["med"].mean())
print(df4["med"].mean())
print(df5["med"].mean())
print(df6["med"].mean())
print(df7["med"].mean())
print(df8["med"].mean())
# df=pd.merge(df1,df2,on="timestamp")
# df=pd.merge(df,df3,on="timestamp")
# df=pd.merge(df,df4,on="timestamp")
# df=pd.merge(df,df5,on="timestamp")
# df=pd.merge(df,df6,on="timestamp")
# df=pd.merge(df,df7,on="timestamp")
# df=pd.merge(df,df8,on="timestamp")
# # df.rename(columns=["timestamp","nginx","tomcat1","tomcat2","tomcat3","tomcat4","memcached","maxscale","mariadb"])
# df=df.drop(columns="timestamp")
# df.to_csv("./result/tcplatency.csv",index=False,sep=',')