-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocclass.py
178 lines (143 loc) · 4.26 KB
/
docclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import re
import math
# from pysqlite2 import dbapi2 as sqlite
import sqlite3 as sqlite
def getwords(doc):
splitter = re.compile("\W*")
words = [s.lower() for s in splitter.split(doc) if len(s) > 2 and len(s) < 20]
return dict([(w,1) for w in words])
class classifier:
def __init__(self, getfeatures, filename = None):
self.fc = {}
self.cc = {}
self.getfeatures = getfeatures
self.thresholds={}
def setdb(self,dbfile):
self.con = sqlite.connect(dbfile)
self.con.execute('create table if not exists fc(feature,category,count)')
self.con.execute('create table if not exists cc(category,count)')
# def incf(self, f, cat):
# self.fc.setdefault(f,{})
# self.fc[f].setdefault(cat,0)
# self.fc[f][cat] += 1
def incf(self,f,cat):
count = self.fcount(f,cat)
if count == 0:
self.con.execute("insert into fc values ('%s','%s',1)" % (f,cat))
else:
self.con.execute("update fc set count=%d where feature='%s' and category = '%s'"
% (count+1,f,cat))
# def incc(self, cat):
# self.cc.setdefault(cat,0)
# self.cc[cat]+=1
def incc(self,cat):
count = self.catcount(cat)
if count == 0:
self.con.execute("insert into cc values ('%s',1)" % (cat))
else:
self.con.execute("update cc set count=%d where category = '%s'"
% (count+1,cat))
# def fcount(self, f, cat):
# if f in self.fc and cat in self.fc[f]:
# return float(self.fc[f][cat])
# return 0.0
def fcount(self,f,cat):
res = self.con.execute('select count from fc where feature="%s" and category="%s"'
%(f,cat)).fetchone()
if res == None: return 0
else: return float(res[0])
# def catcount(self, cat):
# if cat in self.cc:
# return float(self.cc[cat])
# return 0.0
def catcount(self,cat):
res = self.con.execute('select count from cc where category="%s"' %(cat)).fetchone()
if res == None: return 0
else: return float(res[0])
# def totalcount(self):
# return sum(self.cc.values())
def totalcount(self):
res = self.cone.execute('select sum(count) from cc').fetchone();
if res == None: return 0
else: return res[0]
# def categories(self):
# return self.cc.keys()
def categories(self):
cur = self.con.execute('select category from cc');
return [d[0] for d in cur]
def train(self,item,cat):
features = self.getfeatures(item)
for f in features:
self.incf(f,cat)
self.incc(cat)
self.con.commit()
def fprob(self, f, cat):
if self.catcount(cat)==0: return 0
return self.fcount(f,cat)/self.catcount(cat)
def weightedprob(self, f, cat, prf, weight=1.0, ap=0.5):
basicprob = prf(f,cat)
totals = sum([self.fcount(f,c) for c in self.categories()])
bp = ((weight*ap)+(totals*basicprob))/(weight+totals)
return bp
def setthreshold(self, cat, t):
self.thresholds[cat] = t
def getthreshold(self, cat):
if cat not in self.thresholds: return 1.0
return self.thresholds[cat]
def classify(self, item, default=None):
probs={}
max = 0.0
for cat in self.categories():
probs[cat] = self.prob(item,cat)
if probs[cat]>max:
max=probs[cat]
best=cat
for cat in probs:
if cat==best: continue
if probs[cat]*self.getthreshold(best)>probs[best]: return default
return best
class naivebayes(classifier):
def prob(self,item,cat):
features = self.getfeatures(item)
p = 1
for f in features:
p *= self.weightedprob(f,cat,self.fprob)
return p
class fisherclassifier(classifier):
def __init__(self,getfeatures):
classifier.__init__(self,getfeatures)
self.minimums = {}
def cprob(self,f,cat):
clf = self.fprob(f,cat)
if clf == 0: return 0
freqsum = sum([self.fprob(f,c) for c in self.categories()])
p = clf/freqsum
return p
def fisherprob(self,item,cat):
p = 1
features = self.getfeatures(item)
for f in features:
p *= (self.weightedprob(f,cat,self.cprob))
fscore = -2*math.log(p)
return self.invchi2(fscore,len(features)*2)
def invchi2(self,chi,df):
m = chi/2.0
sum = term = math.exp(-m)
for i in range(1,df//2):
term *= m/i
sum += term
return min(sum, 1.0)
def setminimum(self,cat, min):
self.minimums[cat]=min
def getminimum(self,cat):
if cat not in self.minimums: return 0
return self.minimums[cat]
def classify(self,item,default=None):
best = default
max = 0.0
for c in self.categories():
p = self.fisherprob(item,c)
if p > self.getminimum(c) and p > max:
best = c
max = p
return best